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For a finite non-cyclic group G, let Cyc(G) be the set of elements a of G such
that (a,b) is cyclic for each b of G. The non-cyclic graph of G is the graph
with vertex set G\ Cyc(G), two distinct vertices z and y are adjacent if (z,y)
is not cyclic. In this paper, we characterize the full automorphism group of
the non-cyclic graph of a finite group. As applications, we compute the full
automorphism group of the non-cyclic graph of an elementary abelian group, a
dihedral group, a semi-dihedral group, and a generalized quaternion group.
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1. INTRODUCTION

In this paper, G always denotes a finite non-cyclic group. The cyclicizer
Cyc(G) of G is the set of elements a of G such that (a,b) is cyclic for each b of
G. It has been proved in [12], that Cyc(G) is a normal cyclic subgroup of G.
The non-cyclic graph I'; of G is the graph whose vertex set is G\ Cyc(G), and
two distinct vertices are adjacent if they do not generate a cyclic subgroup.

Graphs associated with groups and other algebraic structures have been
actively investigated, since they have valuable applications (cf. [9]) and are
related to automata theory (cf. [7]). In 2007, Abdollahi and Hassanabadi [2]
introduced the concept of a non-cyclic graph and established basic graph the-
oretical properties. In [3], Abdollahi and Hassanabadi investigated the clique
number of a non-cyclic graph. Recently, Costa et al. [6] studied the Eulerian
properties of non-cyclic graphs of finite groups. Finite groups whose non-
cyclic graphs have genus one were classified by Selvakumar and Subajini [13]
and, independently, by Ma and Su [10]. Moreover, star-free non-cyclic graphs
were studied in [11]. In 2017, Aalipour et al. [1] investigated the relationship
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between the complement graph of a non-cyclic graph and two well-studied
graphs—power graphs (cf. [5, 8]) and commuting graphs (cf. [4]).

In this paper, we characterize the full automorphism group Aut(I'¢) of the
non-cyclic graph of G. As applications, we compute Aut(I'g) if G is elementary
abelian, dihedral, semi-dihedral and generalized quaternion.

2. MAIN RESULT

Recall that G is a finite non-cyclic group. Denote by Cg the set of all
cyclic subgroups C' of G such that C' ¢ Cyc(G). A cyclic subgroup (z) is said
to be mazimal in G if (z) C (y) implies (x) = (y). The set of all maximal
cyclic subgroups of G is denoted by M. It was noted in [12] that

Cye(@)= () C
CeMg

Assume now that G has precisely k& maximal cyclic subgroups, that is,
MG — {Cl, CQ, e ,Ck}

Suppose that for any 1 < i < k, C; has s; generators. The set of all generators
of C; is denoted by [C;]. Write

[CZ] = {[Clh> [Ci]27 ) [CZ]81}7 Ca \MG = {Ck-i-lv Ck+27 ) Cm}

Then it is easy to see that

V(Te) = I
i=1
Now we define Fe,, as the set of all permutations o on Cg satisfying:
(a) |C¢| = |Cy| for all C; € Cg;
(b) Ci C Cj if and only if CF* C CF.

It is easy to check that P, is a permutation group on Cg. Denote by Sq
the symmetric group on a set 2. Suppose that [C;]; is an arbitrary vertex of
V(Fg). Let

I+ Peg — Syrg)
be a mapping such that [Ci]?f = [C2]); for all a € Pe,,, where o is the value
of a under f. Note that f is a monomorphism. So FP¢. is isomorphic to a
subgroup of Sy (r)-

In the non-cyclic graph I'g, the neighborhood of a vertex a, denoted
by N(a), is the set of all vertices that are adjacent to a. Now we define an
equivalence relation = on V(I'¢) by the rule that for z,y € V(I'g), z = y if
N(x) = N(y). Let w denote the =-class containing vertex w. Write

Wae={w:weV(lq)}={wr,ws,..., o}
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Note that the ws, ..., w; are distinct. Let

t
f/ : H SUT‘ — SV(Fg)

=1

be a mapping satisfying [C’i]g-ﬁl”BQ""’Bt)f/ = ([Ci];)P for all (B1,Ba,...,B) €
Hle Swy, where [C;]; € wy for some [ € {1,2,...,t}. It is easy to check that f’
is a monomorphism. Thus, we see that Hle Sw; is isomorphic to a subgroup
of SV(F(;)'

Now, let Pe,, and []i_, Su; act on V(I'g) as following;

(1) (€3 = [0, [C)rP P = ()P,

where a € Pe,, (B1,B2,...,0:) € szl Sw;, and [C]; € w; for some | €
{1,2,...,t}.

The goal of the paper is to characterize the full automorphism group
of the non-cyclic graph of a finite non-cyclic group. Our main result is the
following theorem.

THEOREM 2.1. Let G be a finite non-cyclic group. Then
t
Aut(Tg) = Peg x | [ S,
=1

where Pe,, and [['_, Sz act on V(I'g) as in (1).

3. PROOF OF THEOREM 2.1

For x € V(I'), denote by M¢(x) the set of all maximal cyclic subgroups
of G containing z. Then N(z) = G\ Ugepy(n) C- Note that 2 and y are
adjacent in I'¢ if and only if Mg(z) N Ma(y) = 0.

Fact 1. Let z,y € V(I'g). Then x =y if and only if Mg(z) = Mg(y).

Note that every automorphism of a graph maps edges to edges and non-
edges to non-edges. The proof of the following result is straightforward.

Fact 2. Let x € V(I'g) and m € Aut(I'). Then T° = x™.
For a subset f of Mg, write
Sr = Ncer O\ Uoreme\r C"-

LEMMA 3.1. Let S be a non-empty subset of V(I'g). Then S € Wqg if
and only if there exists a subset F of Mg such that S = Sy .
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Proof. “=” Write S =% and f = Mg(x). Then we have that x € Sy .
Take an arbitrary element y in Z. Then by Fact 1 one has that Mg(x) =
Mg (y). This implies that y € Sy and so S C Sy. Since for any z € Sy, one
has that Mg(z) = F which implies that z = z. Thus, we have that Sy C S,
and hence S = Sg, as desired.

“<” Note that f is a non-empty proper subset of M. Let z be an
element of S. Then Mg (x) = F. It follows that every element of S is equivalent
to z. On the other hand, we can see that T C S, since Mg(y) = F = Mg(x)
for each y € T. Therefore, one has that S = 7, as required. [

An independent set is a set of vertices in a graph, no two of which are
adjacent; that is, a set whose induced subgraph is null. By Lemma 3.1, one
has that for any T € W, there exists a subset [ of Mg such that T = S.
Let Noep € =T. Then T =T\ Ucemg\ (€ NT). This means that T equals
the set obtained by deleting some cyclic subgroups of T from T'. Set

T|=n, Mg\ F ={C1,C2....Clpmg|-r 1} 1CiNT| > |Cipa N T

The equivalence class T is said to be of type (n;ni,no,... ,n|MG‘_|”), where
|C; NT| = n; for each i in {1,2,...,|Mg| —|F|}

LEMMA 3.2. Let m € Aut(l'g) and T € Wq. Then T and T are of the
same type.

Proof. By Lemma 3.1, we may assume that T = S, for some subset F of
Mg. Let oy C =T. Then it follows from Fact 2 that

27 =7" =S} = (T \ Ugrepa\r (TNCN)".

We now extend 7 to G by defining h™ = h for all h € Cyc(G). Let
M € Mg. We claim that M™ € M. If z,y,z € G, and any two of {z,y, z}
can generate a cyclic subgroup, then (z,y, z) is cyclic (cf. [1, Lemma 35]). Now
by an induction, the union of a maximal independent set in I'¢ and Cyc(G)
is a maximal cyclic subgroup of G. Clearly, for any C' € Mg, C\ Cyc(G)
is a maximal independent set of I'g. Since an automorphism maps maximal
independent sets to maximal independent sets, it follows that the union of
(M \ Cyc(G))™ and Cyc(G) is a maximal cyclic subgroup of G. This implies
that M™ is a maximal cyclic subgroup, and the claim follows.

Now note that ((Noey C) = Neey CF and {C7 : C € F} € Mg. For
any C' € Mg \ F, we have

‘(ﬂ c)ync’ :\((ﬂ oync)”
CerF

Cer
and so T and T" are of the same type. [

9

_ ’( m Cﬂ') no
Cer
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Proof of Theorem 2.1. We first prove that P, C Aut(I'g). Let {z,y} €
E(T¢). Then Mg (z)NMa(y) = 0. Pick any o in Pe,. One has that Mg (z7)N
Ma(y?) = 0. It follows that {z7,y7} € E(I'¢). Hence, ¢ € Aut(I's), as
desired.

It is similar to the above proof, we can obtain that ['_; Sz; C Aut(T'g).
Thus, now we have that both Pe, and [['_, Sz are subgroups of Aut(T'g).

We now claim that Fg, N H;l Sw; = 1. To see that, pick any 7 in
Pe. NTIi_, Sw; and let = in V(T'g). Then the order of x equals the order of
™ by m € Fe,. Since m € Hle Sw;, * and z” lie in the same equivalence
class, and so z is not adjacent to ™ in I'. It follows that (x,2™) is a cyclic
subgroup. Then (z) = (2™). Let z = [(z)];. By (1) one has that

z" = ([(2)];)" = [2)7]; = [(2)]; = =,
and thus 7 = 1. So our claim is valid.
Next we prove that Aut(Tg) = Pe, [[i; Sz;- Let 7 be an arbitrary
element of Aut(I'). Pick any x € V(I'¢). Then T and ™ are two equivalence
classes of the same type by Lemma 3.2. By Lemma 3.1 we may assume that

T = {[01]1, [Cl]g, e [Cl]kly RN [Cm]la [Cm]g, e [Cm]km}

and
T = {[Cﬂh [01]27 SRR [Cﬂklv R [C;n]la [C;n]% SRR [C;n]km}ﬂ

where C; and C! are cyclic groups and |C;| = |C]] for all i. Let z = [C}],. Now
by (1) we may choose an element 7 in Sz~ so that (([C;],)™)” = [C!],. Then,
we have that 7 € [['_, Sz; and 77 € Pe,. It follows that m € Pe, [['—; Sur-
Namely, Aut(T'g) = Peg [[i—, Swr

In order to complete the proof, now, it suffices to prove that Hle Sw; 1s
normal in Aut(T'g). For any o € Peg, p € [\, Sz and @ € Wg. By Fact 2
we get

(@) 77 = (w7 = (w7 =,
It follows that o~ 1po € ngl Sw;. S0 Pe,, is a subgroup of the normalizer of
[1;_, Sw; in Aut(T), and hence [['_, Sz; is normal in Aut(T'g). O

4. EXAMPLES

In this section, we compute Aut(I'g) if G is elementary abelian, dihedral,
semi-dihedral or generalized quaternion.

Let H be a group and K be a permutation group on a set Y. The wreath
product H! K is the semidirect product N x K, where N is the direct product
of |Y| copies of H (indexed by Y'), and K acts on N by permuting the factors
in the same way as it permutes elements of Y.
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Let Zj; be the elementary abelian p-group for some prime number p. Then
Cyc(Zy) = 1. Let Czp = {(g;) : i =1,2,...,m}, where m = Ig%ll and |g;| = p
for all 4. Note that

WZ;L = {{9179%7 A 79117_1}7 {927957 A 795_1}7 MR {gm7g'r2n7 A 79%71}}'
Thus, we have that PCZ;; ~ S, and [['_, Swr = [[1"; Sp—1. In view of Theorem
2.1, the following result is straightforward.

EXAMPLE 4.1. Aut(FZ;L) = Sp—11Sm, where m = %.

ExXaAMPLE 4.2. For n > 3, let Doy, denote the dihedral group of order 2n.
Then Aut(I'p,,) = S, X Sp_1.

Proof. Let G = Dy, = {a,b:a" =b*> =e,btab=a'). Then Cyc(G) =
{e}, .

Co={(a'0) :i=1,2,....,n} U{(g) : {e} # (9) € (@)},

We = {{ab}. {a®b}, ... {a"b}, {a,a’,....a" 1},
Note that |a’b| = 2 for all i = 1,2,...,n — 1. We have that

t
FPeg = Syaivy1<i<ny = Sn, stﬁ- = Sta,a?,....an-1} = Sn—1.
=1

For any o € Pe,, a € [[i_; Sz; and 1 # C C (a), one has that
Coflaoa — (Cofl)a — C, <aib>oflaa — <aib>aa — <aib>a'
It follows that o loa € Fe, and so F¢,, is normalized by H§:1 Sw;. By Theo-
rem 2.1, we know that Aut(I'p,,) = Sy, X Sp—1. O
Let n be a natural number greater than or equal to 4. The semi-dihedral
group of order 2", denoted by SDsn, is defined by the following presentation:
SDon = (a,x : o =22 =e,zazx = a2n_2_1).

The set of elements of SDan is {a’z : 1 < i < 2" 11U(a). Note that |a’z| = 2 for
each even number i, and |a/z| = 4 and (a?z)2= a2"" for each odd number j.

ExXAMPLE 4.3. Aut(I'sp,.) = (S21S9n-3) X Syn—2 X Son-1_7.
Proof. Let G = SDon. Then Cyc(G) = {e} and

Co={(a'z): 1 <i < 2"} U{{g): {e} # (9) C (a)}.
Therefore, Wg = {{a’z} : 1 <i < 2" 1 iiseven} U {{d'z, (a/2)"1}:1<i <
271 jis odd}U{a?" *YU((a)\{e,a?"*}), where (afz) ! = oD@ =) g
It follows that

Peg = Siaizy1<i<an—1, jis odd} X S{aiz:1<i<2n-1, i is even} = Sn-3 X Sgn-2
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and
t 2n73 L
HSUT, = H S{ajix,(ajix)_l} X S< >\{e a2 2} = 52 X 512"*1—17
i=1 i=1

where 1 < j; <2771, 4, is odd and

{dPiz, (ix) 1 :1<i<2" 3} ={d*z:1<k<2" ! k:lsodd}
We note that any automorphism of I'g fixes the vertex a®" . Now it is easy
to check that S<a>\{e7a2n—2} and Fe, commute, and Sygiz1<i<on—1, i is even) and

[1._, Sw; commute. By Theorem 2.1, Aut(I'sp,, ) is obtained. [

Let n > 2, denote by Q4, the generalized quaternion group of order 4n,
that is,
Qun = (a,b:a® =e,a” =b* b tab=a™1).

EXAMPLE 4.4. Aut(Tg,, ) = 52153, ifn=2,
. (S22Sn) X S2p—2, otherwise.

Proof. Note that Cyc(Q4,) = {e,a™} and |a’b| = 4 for all i = 1,2,...,2n.
Let G = Q4n. It is clear that

Co={{a'b):i=1,2,....n} U{(g) : {e} # (9) C {a), g # a"},
and
We ={{a’b) \ (b) :i=1,2,...,n}U{(a) \ (a")}.
Thus, if n = 2, then ngl Sz &2 S3 and Pe, & S3, so it follows from Theorem
2.1 that Aut(I'g,,,) = S2 1S3, as desired. Now we suppose that n > 3. Then

Feq = S{taivy:1<i<ny = Sn

and

t n

H Swr = HS<aib>\<b> X S{a7a27.__7an717an+17._.7a2n71} = 55 X Sop_2.

i=1 i=1
Note that it is easy to check that Sy, .2 . gn—1gn+1 . 4201} and Pe, commute
in Aut(I'g,,). Now the required result follows from Theorem 2.1. [
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