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For a finite non-cyclic group G, let Cyc(G) be the set of elements a of G such
that ⟨a, b⟩ is cyclic for each b of G. The non-cyclic graph of G is the graph
with vertex set G \ Cyc(G), two distinct vertices x and y are adjacent if ⟨x, y⟩
is not cyclic. In this paper, we characterize the full automorphism group of
the non-cyclic graph of a finite group. As applications, we compute the full
automorphism group of the non-cyclic graph of an elementary abelian group, a
dihedral group, a semi-dihedral group, and a generalized quaternion group.

AMS 2020 Subject Classification: 05C25, 20B25.

Key words: non-cyclic graph, non-cyclic group, full automorphism group.

1. INTRODUCTION

In this paper, G always denotes a finite non-cyclic group. The cyclicizer
Cyc(G) of G is the set of elements a of G such that ⟨a, b⟩ is cyclic for each b of
G. It has been proved in [12], that Cyc(G) is a normal cyclic subgroup of G.
The non-cyclic graph ΓG of G is the graph whose vertex set is G\Cyc(G), and
two distinct vertices are adjacent if they do not generate a cyclic subgroup.

Graphs associated with groups and other algebraic structures have been
actively investigated, since they have valuable applications (cf. [9]) and are
related to automata theory (cf. [7]). In 2007, Abdollahi and Hassanabadi [2]
introduced the concept of a non-cyclic graph and established basic graph the-
oretical properties. In [3], Abdollahi and Hassanabadi investigated the clique
number of a non-cyclic graph. Recently, Costa et al. [6] studied the Eulerian
properties of non-cyclic graphs of finite groups. Finite groups whose non-
cyclic graphs have genus one were classified by Selvakumar and Subajini [13]
and, independently, by Ma and Su [10]. Moreover, star-free non-cyclic graphs
were studied in [11]. In 2017, Aalipour et al. [1] investigated the relationship
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between the complement graph of a non-cyclic graph and two well-studied
graphs–power graphs (cf. [5, 8]) and commuting graphs (cf. [4]).

In this paper, we characterize the full automorphism group Aut(ΓG) of the
non-cyclic graph of G. As applications, we compute Aut(ΓG) if G is elementary
abelian, dihedral, semi-dihedral and generalized quaternion.

2. MAIN RESULT

Recall that G is a finite non-cyclic group. Denote by CG the set of all
cyclic subgroups C of G such that C ⊈ Cyc(G). A cyclic subgroup ⟨x⟩ is said
to be maximal in G if ⟨x⟩ ⊆ ⟨y⟩ implies ⟨x⟩ = ⟨y⟩. The set of all maximal
cyclic subgroups of G is denoted by MG. It was noted in [12] that

Cyc(G) =
⋂

C∈MG

C.

Assume now that G has precisely k maximal cyclic subgroups, that is,

MG = {C1, C2, . . . , Ck}.
Suppose that for any 1 ≤ i ≤ k, Ci has si generators. The set of all generators
of Ci is denoted by [Ci]. Write

[Ci] = {[Ci]1, [Ci]2, . . . , [Ci]si}, CG \MG = {Ck+1, Ck+2, . . . , Cm}
Then it is easy to see that

V (ΓG) =

m⋃
i=1

[Ci].

Now we define PCG as the set of all permutations α on CG satisfying:
(a) |Cα

i | = |Ci| for all Ci ∈ CG;
(b) Ci ⊆ Cj if and only if Cα

i ⊆ Cα
j .

It is easy to check that PCG is a permutation group on CG. Denote by SΩ

the symmetric group on a set Ω. Suppose that [Ci]j is an arbitrary vertex of
V (ΓG). Let

f : PCG −→ SV (ΓG)

be a mapping such that [Ci]
αf

j = [Cα
i ]j for all α ∈ PCG , where αf is the value

of α under f . Note that f is a monomorphism. So PCG is isomorphic to a
subgroup of SV (ΓG).

In the non-cyclic graph ΓG, the neighborhood of a vertex a, denoted
by N(a), is the set of all vertices that are adjacent to a. Now we define an
equivalence relation ≡ on V (ΓG) by the rule that for x, y ∈ V (ΓG), x ≡ y if
N(x) = N(y). Let w denote the ≡-class containing vertex w. Write

WG = {w : w ∈ V (ΓG)} = {w1, w2, . . . , wt}.
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Note that the w2, . . . , wt are distinct. Let

f ′ :

t∏
i=1

Swi −→ SV (ΓG)

be a mapping satisfying [Ci]
(β1,β2,...,βt)f

′

j = ([Ci]j)
βl for all (β1, β2, . . . , βt) ∈∏t

i=1 Swi , where [Ci]j ∈ wl for some l ∈ {1, 2, . . . , t}. It is easy to check that f ′

is a monomorphism. Thus, we see that
∏t

i=1 Swi is isomorphic to a subgroup
of SV (ΓG).

Now, let PCG and
∏t

i=1 Swi act on V (ΓG) as following:

(1) [Ci]
α
j = [Cα

i ]j , [Ci]
(β1,β2,...,βt)
j = ([Ci]j)

βl ,

where α ∈ PCG , (β1, β2, . . . , βt) ∈
∏t

i=1 Swi , and [Ci]j ∈ wl for some l ∈
{1, 2, . . . , t}.

The goal of the paper is to characterize the full automorphism group
of the non-cyclic graph of a finite non-cyclic group. Our main result is the
following theorem.

Theorem 2.1. Let G be a finite non-cyclic group. Then

Aut(ΓG) = PCG ⋉
t∏

i=1

Swi ,

where PCG and
∏t

i=1 Swi act on V (ΓG) as in (1).

3. PROOF OF THEOREM 2.1

For x ∈ V (ΓG), denote by MG(x) the set of all maximal cyclic subgroups
of G containing x. Then N(x) = G \

⋃
C∈MG(x)C. Note that x and y are

adjacent in ΓG if and only if MG(x) ∩MG(y) = ∅.

Fact 1. Let x, y ∈ V (ΓG). Then x ≡ y if and only if MG(x) = MG(y).

Note that every automorphism of a graph maps edges to edges and non-
edges to non-edges. The proof of the following result is straightforward.

Fact 2. Let x ∈ V (ΓG) and π ∈ Aut(ΓG). Then xπ = xπ.

For a subset 𭟋 of MG, write

S𭟋 = ∩C∈𭟋C \ ∪C′∈MG\𭟋C
′.

Lemma 3.1. Let S be a non-empty subset of V (ΓG). Then S ∈ WG if
and only if there exists a subset 𭟋 of MG such that S = S𭟋.
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Proof. “⇒” Write S = x and 𭟋 = MG(x). Then we have that x ∈ S𭟋.
Take an arbitrary element y in x. Then by Fact 1 one has that MG(x) =
MG(y). This implies that y ∈ S𭟋 and so S ⊆ S𭟋. Since for any z ∈ S𭟋, one
has that MG(z) = 𭟋 which implies that z ≡ x. Thus, we have that S𭟋 ⊆ S,
and hence S = S𭟋, as desired.

“⇐” Note that 𭟋 is a non-empty proper subset of MG. Let x be an
element of S. ThenMG(x) = 𭟋. It follows that every element of S is equivalent
to x. On the other hand, we can see that x ⊆ S, since MG(y) = 𭟋 = MG(x)
for each y ∈ x. Therefore, one has that S = x, as required.

An independent set is a set of vertices in a graph, no two of which are
adjacent; that is, a set whose induced subgraph is null. By Lemma 3.1, one
has that for any x ∈ WG, there exists a subset 𭟋 of MG such that x = S𭟋.
Let

⋂
C∈𭟋C = T . Then x = T \

⋃
C∈MG\𭟋(C ∩ T ). This means that x equals

the set obtained by deleting some cyclic subgroups of T from T . Set

|T | = n, MG \𭟋 = {C1, C2, . . . , C|MG|−|𭟋|}, |Ci ∩ T | ≥ |Ci+1 ∩ T |.

The equivalence class x is said to be of type (n;n1, n2, . . . , n|MG|−|𭟋|), where
|Ci ∩ T | = ni for each i in {1, 2, . . . , |MG| − |𭟋|}.

Lemma 3.2. Let π ∈ Aut(ΓG) and x ∈ WG. Then x and xπ are of the
same type.

Proof. By Lemma 3.1, we may assume that x = S𭟋 for some subset 𭟋 of
MG. Let

⋂
C∈𭟋C = T . Then it follows from Fact 2 that

xπ = xπ = Sπ
𭟋 =

(
T \ ∪C′∈MG\𭟋(T ∩ C ′)

)π
.

We now extend π to G by defining hπ = h for all h ∈ Cyc(G). Let
M ∈ MG. We claim that Mπ ∈ MG. If x, y, z ∈ G, and any two of {x, y, z}
can generate a cyclic subgroup, then ⟨x, y, z⟩ is cyclic (cf. [1, Lemma 35]). Now
by an induction, the union of a maximal independent set in ΓG and Cyc(G)
is a maximal cyclic subgroup of G. Clearly, for any C ∈ MG, C \ Cyc(G)
is a maximal independent set of ΓG. Since an automorphism maps maximal
independent sets to maximal independent sets, it follows that the union of
(M \ Cyc(G))π and Cyc(G) is a maximal cyclic subgroup of G. This implies
that Mπ is a maximal cyclic subgroup, and the claim follows.

Now note that (
⋂

C∈𭟋C)π =
⋂

C∈𭟋Cπ and {Cπ : C ∈ 𭟋} ⊆ MG. For
any C ′ ∈ MG \𭟋, we have∣∣∣( ⋂

C∈𭟋
C) ∩ C ′

∣∣∣ = ∣∣∣(( ⋂
C∈𭟋

C) ∩ C ′)π∣∣∣ = ∣∣∣( ⋂
C∈𭟋

Cπ) ∩ C ′π
∣∣∣,

and so x and xπ are of the same type.
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Proof of Theorem 2.1. We first prove that PCG ⊆ Aut(ΓG). Let {x, y} ∈
E(ΓG). ThenMG(x)∩MG(y) = ∅. Pick any σ in PCG . One has thatMG(x

σ)∩
MG(y

σ) = ∅. It follows that {xσ, yσ} ∈ E(ΓG). Hence, σ ∈ Aut(ΓG), as
desired.

It is similar to the above proof, we can obtain that
∏t

i=1 Swi ⊆ Aut(ΓG).
Thus, now we have that both PCG and

∏t
i=1 Swi are subgroups of Aut(ΓG).

We now claim that PCG ∩
∏t

i=1 Swi = 1. To see that, pick any π in
PCG ∩

∏t
i=1 Swi and let x in V (ΓG). Then the order of x equals the order of

xπ by π ∈ PCG . Since π ∈
∏t

i=1 Swi , x and xπ lie in the same equivalence
class, and so x is not adjacent to xπ in ΓG. It follows that ⟨x, xπ⟩ is a cyclic
subgroup. Then ⟨x⟩ = ⟨xπ⟩. Let x = [⟨x⟩]j . By (1) one has that

xπ = ([⟨x⟩]j)π = [⟨x⟩π]j = [⟨x⟩]j = x,

and thus π = 1. So our claim is valid.
Next we prove that Aut(ΓG) = PCG

∏t
i=1 Swi . Let π be an arbitrary

element of Aut(ΓG). Pick any x ∈ V (ΓG). Then x and xπ are two equivalence
classes of the same type by Lemma 3.2. By Lemma 3.1 we may assume that

x = {[C1]1, [C1]2, . . . , [C1]k1 , . . . , [Cm]1, [Cm]2, . . . , [Cm]km}

and
xπ = {[C ′

1]1, [C
′
1]2, . . . , [C

′
1]k1 , . . . , [C

′
m]1, [C

′
m]2, . . . , [C

′
m]km},

where Ci and C ′
i are cyclic groups and |Ci| = |C ′

i| for all i. Let x = [Ci]p. Now
by (1) we may choose an element τ in Sxπ so that (([Ci]p)

π)τ = [C ′
i]p. Then,

we have that τ ∈
∏t

i=1 Swi and πτ ∈ PCG . It follows that π ∈ PCG
∏t

i=1 Swi .
Namely, Aut(ΓG) = PCG

∏t
i=1 Swi .

In order to complete the proof, now, it suffices to prove that
∏t

i=1 Swi is
normal in Aut(ΓG). For any σ ∈ PCG , ρ ∈

∏t
i=1 Swi and w ∈ WG. By Fact 2

we get

(w)σ
−1ρσ = (wσ−1)ρσ = (wσ−1)σ = w.

It follows that σ−1ρσ ∈
∏t

i=1 Swi . So PCG is a subgroup of the normalizer of∏t
i=1 Swi in Aut(ΓG), and hence

∏t
i=1 Swi is normal in Aut(ΓG).

4. EXAMPLES

In this section, we compute Aut(ΓG) if G is elementary abelian, dihedral,
semi-dihedral or generalized quaternion.

Let H be a group and K be a permutation group on a set Y . The wreath
product H ≀K is the semidirect product N ⋊K, where N is the direct product
of |Y | copies of H (indexed by Y ), and K acts on N by permuting the factors
in the same way as it permutes elements of Y .



742 X. Ma, J. Li, and K. Wang 6

Let Zn
p be the elementary abelian p-group for some prime number p. Then

Cyc(Zn
p ) = 1. Let CZn

p
= {⟨gi⟩ : i = 1, 2, . . . ,m}, where m = pn−1

p−1 and |gi| = p
for all i. Note that

WZn
p
= {{g1, g21, . . . , g

p−1
1 }, {g2, g22, . . . , g

p−1
2 }, . . . , {gm, g2m, . . . , gp−1

m }}.

Thus, we have that PCZnp
∼= Sm and

∏t
i=1 Swi

∼=
∏m

i=1 Sp−1. In view of Theorem

2.1, the following result is straightforward.

Example 4.1. Aut(ΓZn
p
) ∼= Sp−1 ≀ Sm, where m = pn−1

p−1 .

Example 4.2. For n ≥ 3, let D2n denote the dihedral group of order 2n.
Then Aut(ΓD2n)

∼= Sn × Sn−1.

Proof. Let G = D2n = ⟨a, b : an = b2 = e, b−1ab = a−1⟩. Then Cyc(G) =
{e},

CG = {⟨aib⟩ : i = 1, 2, . . . , n} ∪ {⟨g⟩ : {e} ≠ ⟨g⟩ ⊆ ⟨a⟩},
and

WG = {{ab}, {a2b}, . . . , {anb}, {a, a2, . . . , an−1}}.
Note that |aib| = 2 for all i = 1, 2, . . . , n− 1. We have that

PCG = S{⟨aib⟩:1≤i≤n}
∼= Sn,

t∏
i=1

Swi = S{a,a2,...,an−1} ∼= Sn−1.

For any σ ∈ PCG , α ∈
∏t

i=1 Swi and 1 ̸= C ⊆ ⟨a⟩, one has that

Cα−1σα = (Cα−1
)α = C, ⟨aib⟩α−1σα = ⟨aib⟩σα = ⟨aib⟩σ.

It follows that α−1σα ∈ PCG and so PCG is normalized by
∏t

i=1 Swi . By Theo-
rem 2.1, we know that Aut(ΓD2n)

∼= Sn × Sn−1.

Let n be a natural number greater than or equal to 4. The semi-dihedral
group of order 2n, denoted by SD2n , is defined by the following presentation:

SD2n = ⟨a, x : a2
n−1

= x2 = e, xax = a2
n−2−1⟩.

The set of elements of SD2n is {aix : 1 ≤ i ≤ 2n−1}∪⟨a⟩. Note that |aix| = 2 for
each even number i, and |ajx| = 4 and (ajx)2= a2

n−2
for each odd number j.

Example 4.3. Aut(ΓSD2n
) ∼= (S2 ≀ S2n−3)× S2n−2 × S2n−1−1.

Proof. Let G = SD2n . Then Cyc(G) = {e} and

CG = {⟨aix⟩ : 1 ≤ i ≤ 2n−1} ∪ {⟨g⟩ : {e} ≠ ⟨g⟩ ⊆ ⟨a⟩}.
Therefore, WG = {{aix} : 1 ≤ i ≤ 2n−1, i is even} ∪ {{ajx, (ajx)−1} : 1 ≤ i ≤
2n−1, j is odd}∪{a2n−2}∪(⟨a⟩\{e, a2n−2}), where (ajx)−1 = a(2

n−2−1)(2n−1−j)x.
It follows that

PCG = S{⟨ajx⟩:1≤i≤2n−1, j is odd} × S{aix:1≤i≤2n−1, i is even}
∼= S2n−3 × S2n−2



7 Automorphism groups of non-cyclic graphs 743

and

t∏
i=1

Swi =
2n−3∏
i=1

S{ajix,(ajix)−1} × S⟨a⟩\{e,a2n−2}
∼= S2n−3

2 × S2n−1−1,

where 1 ≤ ji ≤ 2n−1, ji is odd and

{ajix, (ajix)−1 : 1 ≤ i ≤ 2n−3} = {akx : 1 ≤ k ≤ 2n−1, k is odd}.

We note that any automorphism of ΓG fixes the vertex a2
n−2

. Now it is easy
to check that S⟨a⟩\{e,a2n−2} and PCG commute, and S{aix:1≤i≤2n−1, i is even} and∏t

i=1 Swi commute. By Theorem 2.1, Aut(ΓSD2n
) is obtained.

Let n ≥ 2, denote by Q4n the generalized quaternion group of order 4n,
that is,

Q4n = ⟨a, b : a2n = e, an = b2, b−1ab = a−1⟩.

Example 4.4. Aut(ΓQ4n)
∼=

{
S2 ≀ S3, if n = 2,

(S2 ≀ Sn)× S2n−2, otherwise.

Proof. Note that Cyc(Q4n) = {e, an} and |aib| = 4 for all i = 1, 2, . . . , 2n.
Let G = Q4n. It is clear that

CG = {⟨aib⟩ : i = 1, 2, . . . , n} ∪ {⟨g⟩ : {e} ≠ ⟨g⟩ ⊆ ⟨a⟩, g ̸= an},

and

WG = {⟨aib⟩ \ ⟨b⟩ : i = 1, 2, . . . , n} ∪ {⟨a⟩ \ ⟨an⟩}.
Thus, if n = 2, then

∏t
i=1 Swi

∼= S3
2 and PCG

∼= S3, so it follows from Theorem
2.1 that Aut(ΓQ4n)

∼= S2 ≀ S3, as desired. Now we suppose that n ≥ 3. Then

PCG = S{⟨aib⟩:1≤i≤n}
∼= Sn

and

t∏
i=1

Swi =

n∏
i=1

S⟨aib⟩\⟨b⟩ × S{a,a2,...,an−1,an+1,...,a2n−1} ∼= Sn
2 × S2n−2.

Note that it is easy to check that S{a,a2,...,an−1,an+1,...,a2n−1} and PCG commute
in Aut(ΓQ4n). Now the required result follows from Theorem 2.1.
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