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Due to their potential in pure and applied mathematics, the notions of basis and
frame have various generalizations. Recently, g-frame and g-basis were intro-
duced and studied by some mathematicians. It is well known that a frame-based
series expansion of a vector is unconditionally convergent, while a basis-based one
need not be. In applications unconditionality is more favourable than condition-
ality. In this paper, we introduce the notion of g-unconditional basis which leads
to unconditional convergence, and establish a characterization of g-unconditional
bases.
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1. INTRODUCTION

As one of fundamental problems in functional analysis, the theory of
bases in Banach spaces has interested numerous mathematicians for the last
more than ninety years. It is well known that an arbitrary infinite-dimensional
Banach space X admits a Hamel basis – a lineary independent subset of X
spanning X, when viewed as a vector space. But such bases are almost useless
since they cannot in general be constructed, their very existence depending on
the axiom of choice. Of far more importance and applicability in analysis is
the notion of a basis first introduced by Schauder in [40, 41]. In the literatures
or books, “basis” is also called “Schauder basis”.

Definition 1.1. A sequence {xj}j∈N in an infinite-dimensional Banach
space X is said to be a (Schauder) basis for X if to every x ∈ X there corre-
sponds a unique scalar sequence {cj}j∈N such that

x =
∞∑
j=1

cjxj ,(1.1)
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i.e.

lim
J→∞

∥x−
J∑

j=1

cjxj∥ = 0.

It is easy to check that a Banach space with a basis must be separable.
The outstanding “basis problem” – whether or not every separable Banach
space has a basis – was raised by Banach in [5] in 1955. In 1973, Enflo in
[16] gave a negative answer to the basis problem by constructing a separable
Banach space having no basis. For fundamentals of bases in Banach spaces,
we refer to [42, 43]. Recall that the series in (1.1) of Definition 1.1 need not
be unconditionally convergent.

Let {xj}j∈N be a sequence in a Banach space X, where N denotes the

set of positive integers. If
∞∑
j=1

xσ(j) is convergent for each permutation σ of

N, we say that
∞∑
j=1

xj is unconditionally convergent. In that case, the limit is

the same regardless of the order of summation, and so we may write
∑
j∈N

xj for

∞∑
j=1

xσ(j) for each permutation σ. Hereafter, we say
∑
j∈N

xj is well defined means

that
∞∑
j=1

xj is unconditionally convergent. We write

lim
F

∑
j∈F

xj = x

if for every ϵ > 0, there exists a finite subset Fϵ of N such that

∥x−
∑
j∈F

xj∥ < ϵ

for all finite subsets F of N with Fϵ ⊂ F .
Collecting [27, Theorem 3.10, Corollary 3.11] and [46, Theorem 7.2], we

have the following characterization of unconditional convergence.

Proposition 1.1. Let {xj}j∈N be a sequence in X. Then the following
are equivalent:

(i)
∑
j∈N

xj is well defined.

(ii) lim
F

∑
j∈F

xj exists, where F is finite subset of N.

(iii)
∞∑
j=1

µjxj is well defined for each sequence µ = {µj}j∈N with |µj | ≤ 1

for j ∈ N.
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(iv)
∞∑
j=1

µjxj is well defined for each bounded sequence µ = {µj}j∈N.

In case the equivalent conditions are satisfied,
∑
j∈N

xj = lim
F

∑
j∈F

xj.

Definition 1.2. A sequence {xj}j∈N in a infinite-dimensional Banach space
X is said to be a unconditional basis for X if to every x ∈ X there corresponds
a unique scalar sequence {cj}j∈N such that

x =
∑
j∈N

cjxj ,

i.e.,
∞∑
j=1

cjxj unconditionally converges to x.

Unconditionality is an important property, and in practice we prefer “un-
conditional basis” over “conditional basis”. For unconditional bases on some
concrete spaces, we refer to [1, 2, 22, 29, 30, 34, 48] and references therein.
For unconditional bases on abstract spaces, we refer to [21, 7, 17, 31, 36, 39]
and the references therein. It is worth noting that Gowers and Maurey in [21]
constructed a hereditarily indecomposable separable Banach space which con-
tains no infinite unconditional basic sequence, where a Banach space is said
to be indecomposable if it is not isomorphic to a direct sum of two infinite-
dimensional Banach spaces, and an infinite-dimensional Banach space is called
hereditarily indecomposable if all of its infinite-dimensional closed subspaces
are indecomposable. This paper addresses a class of “g-unconditional bases”
with respect to operators between Hilbert spaces.

Another notion closely related to bases is “frame” in a Hilbert space
which is a generalization of “orthonormal basis” and may be redundant. It
was first formally introduced in [12] by Duffin and Schaeffer in 1952 to study
nonharmonic Fourier series. However, it had not attracted enough attention
from mathematics until the advent of wavelet analysis. The development of
wavelet analysis has brought new vitality to the frame theory.

During the last more than thirty years, the frame theory has seen great
achievements in pure and applied mathematics ([8, 11, 13, 14, 26, 20, 32, 28]).
For the fundamentals of the frame theory, see the references ( [10, 12, 25-28])
and therein. In 2006, Sun in [44] proposed the concept of g-frame, which covers
the existing frames: bounded quasi-projectors in [18, 19], frames of subspaces
in [4, 6], pseudo-frames in [33], oblique frames in [9, 15], and outer frames in
[3]. Casazza, Han and Larson in [8] proved that every separable Banach space
has a Banach frame, and that a Banach space having an atomic decomposition
is equivalent to it having the bounded approximation property. Kaftal, Larson
and Zhang in [32] developed operator-valued frame theory, extended many
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results in [26]. Găvruta and Găvruta in [20] presented a new formula for
operator-valued frames in finite-dimensional Hilbert spaces. For basic results
on g-frames, we refer to [35, 37, 45, 47, 49] and the references therein.

Motivated by the above works, Guo in [23] first introduced the concept
of g-basis, and characterized g-bases, g-orthonormal bases and the equivalence
between them. In [24], he obtained a perturbation result and some new prop-
erties for g-bases.

Let U , V and W be complex separable Hilbert spaces, and {Vj : j ∈ N} a
sequence of closed subspaces of V. We denote by B(U , W) the set of bounded
linear operators from U to W; by M(U , W) the set of all linear mappings from
U to W; and by l({Vj}j∈N) the vector space:

l({Vj}j∈N) = {g = {gj}j∈N : gj ∈ Vj for j ∈ N}

with the usual scalar multiplication and coordinate-wise addition.

Definition 1.3. Let {Λj : j ∈ N} be a sequence with each Λj ∈ B(U , Vj).
(i) {Λj : j ∈ N} is said to be g-complete if {f : Λjf = 0 for j ∈ N} = {0}.
(ii) {Λj : j ∈ N} is called a g-basis for U if to every x ∈ U there corre-

sponds a unique g ∈ l({Vj}j∈N) such that

x =

∞∑
j=1

Λ∗
jgj .(1.2)

Define Γj : U → Vj by Γjx = gj for each j ∈ N. Then Γj ∈ M(U , Vj) for each
j ∈ N. We call {Γj : j ∈ N} the g-dual sequence of {Λj : j ∈ N}.

(iii) {Λj : j ∈ N} is said to be g-linearly independent if
∞∑
j=1

Λ∗
jgj = 0 for

some g ∈ l({Vj}j∈N) implies g = 0.

Remark 1.1. (i) By [38, Proposition 2.11], {Λj : j ∈ N} is g-complete if
and only if span{Λ∗

j (Vj)}j∈N = U .
(ii) By a standard argument, the g-dual sequence {Γj : j ∈ N} is the

unique solution to

x =
∞∑
j=1

Λ∗
jΓjx for all x ∈ U(1.3)

with Γj ∈ M(U , Vj) for each j ∈ N, and it is a g-biorthogonal sequence of
{Λj : j ∈ N} in the sense that

(1.4) ΓjΛ
∗
j = IVj for j ∈ N and Γj1Λ

∗
j2 = 0 for j1 ̸= j2 in N,

where IVj denotes the identity operator on Vj for each j ∈ N. And by [24,
Theorems 13], Γj ∈ B(U , Vj) for j ∈ N if each Λj is surjective in addition.
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Guo in [24, Theorem 17] obtained the following characterization of g-
bases.

Proposition 1.2. Let {Λj ∈ B(U , Vj) : j ∈ N} be a g-complete sequence
with each Λj being onto. Then it is a g-basis for U if and only if there exists
a constant C such that ∥∥ M∑

j=1

Λ∗
jgj

∥∥ ≤ C
∥∥ N∑

j=1

Λ∗
jgj

∥∥(1.5)

for M,N ∈ N with M ≤ N and gj ∈ Vj with 1 ≤ j ≤ N .

As mentioned before, unconditionality is more favourable than condi-
tionality in applications. It is natural to ask what is “g-unconditional ba-
sis” and how we characterize it. In this paper, we introduce the notion of
g-unconditional basis, and characterize g-unconditional bases.

Definition 1.4. Let {Λj : j ∈ N} be a sequence with each Λj ∈ B(U , Vj).
(i) {Λj : j ∈ N} is called a g-unconditional basis for U if to every x ∈ U

there corresponds a unique g ∈ l({Vj}j∈N) such that

x =
∑
j∈N

Λ∗
jgj ,(1.6)

i.e., the series
∞∑
j=1

Λ∗
jgj is unconditionally convergent to x. Define Γj : U → Vj

by Γjx = gj for each j ∈ N. Similarly to Definition 1.3, Γj ∈ M(U , Vj) for
each j ∈ N, and {Γj : j ∈ N} is called the g-dual sequence of {Λj : j ∈ N}.

(ii) {Λj : j ∈ N} is said to be g-unconditionally linearly independent if∑
j∈N

Λ∗
jgj = 0 for some g ∈ l({Vj}j∈N) implies g = 0.

Remark 1.2. (i) Clearly, a g-unconditional basis must be a g-basis. So the
g-dual sequence {Γj : j ∈ N} is the unique solution to (1.6) with Γj ∈ M(U , Vj)
and Γjx = gj for each j ∈ N, and a g-biorthogonal sequence of {Λj : j ∈ N} in
the sense of (1.4) by Remark 1.1 (ii). And by Remark 1.1 (ii), Γj ∈ B(U , Vj)
for j ∈ N if each Λj is surjective in addition.

(ii) Observe that, if
∞∑
j=1

Λ∗
jgj is unconditionally convergent, then the sum

of
∞∑
j=1

Λ∗
σ(j)gσ(j) is the same regardless of the choice of the permutation σ of N.

It follows that {Λj : j ∈ N} is a g-unconditional basis for U if and only if to
every x ∈ U there corresponds a unique g ∈ l({Vj}j∈N) such that

x =

∞∑
j=1

Λ∗
jgj ,
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and
∞∑
j=1

Λ∗
jgj is unconditionally convergent (i.e.,

∞∑
j=1

Λ∗
σ(j)gσ(j) is convergent for

each permutation σ of N).

To state our results, we first give the following definition and notations.

Definition 1.5. Let {Λj : j ∈ N} be a sequence with each Λj ∈ B(U , Vj).
(i) Given a permutation σ of N, {Λj : j ∈ N} is called a σ permuted

g-basis for U if {Λσ(j) : j ∈ N} is a g-basis. And it is said to be σ permuted

g-linearly independent if
∞∑
j=1

Λ∗
σ(j)gσ(j) = 0 for some g ∈ l({Vj}j∈N) implies

that g = 0.
(ii) {Λj : j ∈ N} is called an arbitrarily permuted g-basis for U if, for

every permutation σ of N, {Λj : j ∈ N} is a σ permuted g-basis for U . And it is
said to be arbitrarily permuted g-linearly independent if, for every permutation
σ of N, {Λj : j ∈ N} is σ permuted g-linearly independent.

Let {Λj ∈ B(U , Vj) : j ∈ N} be a g-unconditional basis for U with the
g-dual sequence {Γj : j ∈ N}, and let F be a finite subset of N, ϵ = {ϵj}j∈F
with ϵj = ±1, and λ = {λj}j∈F with |λj | ≤ 1. Define SF : U → U by

SF (x) =
∑
j∈F

Λ∗
jΓjx,(1.7)

SF,ϵ : U → U by

SF,ϵ(x) =
∑
j∈F

ϵjΛ
∗
jΓjx,(1.8)

and SF,λ : U → U by

SF,λ(x) =
∑
j∈F

λjΛ
∗
jΓjx(1.9)

for x ∈ U , respectively. In particular, we also write SN , SN,ϵ and SN,λ in
(1.7)-(1.9) for SF , SF,ϵ and SF,λ if F = {1, 2, · · · , N} with N ∈ N. For x ∈ U ,
we write

∥|x|∥ = sup{∥SF (x)∥ : F is a finite subset of N},
∥|x|∥ϵ = sup{∥SF,ϵ(x)∥ : F is a finite subset of N,

and ϵ = {ϵj}j∈F with ϵj = ±1},
∥|x|∥λ = sup{∥SF,λ(x)∥ : F is a finite subset of N,

and λ = {λj}j∈F with |λj | ≤ 1},(1.10)

and

(1.11) C = sup{∥SF ∥ : F is a finite subset of N},
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(1.12) Cϵ = sup{∥SF,ϵ∥ :F is a finite subset of N, ϵ = {ϵj}j∈F with ϵj = ±1},
(1.13)

Cλ = sup{∥SF,λ∥ :F is a finite subset of N, λ = {λj}j∈F with |λj | ≤ 1}.
The main result of this paper is as follows.

Theorem 1.1. Let {Λj ∈ B(U , Vj) : j ∈ N} be a g-complete sequence
with each Λj being onto. Then the following are equivalent:

(i) {Λj : j ∈ N} is a g-unconditional basis for U .
(ii) {Λj : j ∈ N} is arbitrarily permuted g-basis for U .
(iii) There exists a constant C such that∥∥ N∑

j=1

ϵjΛ
∗
jgj

∥∥ ≤ C
∥∥ N∑

j=1

Λ∗
jgj

∥∥(1.14)

for N ∈ N, ϵj = ±1 and gj ∈ Vj with 1 ≤ j ≤ N .
(iv) There exists a constant C such that∥∥ N∑

j=1

µjΛ
∗
jgj

∥∥ ≤ C
∥∥ N∑

j=1

Λ∗
jgj

∥∥
for N ∈ N, gj ∈ Vj and |µj | ≤ 1 with 1 ≤ j ≤ N .

(v) {Λj : j ∈ N} is a g-basis for U , and for each bounded sequence
µ = {µj}j∈N there exists an operator Tµ ∈ B(U) such that

TµΛ
∗
jgj = µjΛ

∗
jgj

for gj ∈ Vj with j ∈ N.
(vi) There exists a constant C such that∥∥ ∑

j∈F1

Λ∗
jgj

∥∥ ≤ C
∥∥ ∑
j∈F2

Λ∗
jgj

∥∥(1.15)

for finite sets F1, F2 ⊂ N with F1 ⊂ F2 and gj ∈ Vj with j ∈ F2.

2. SOME AUXILIARY LEMMAS

This section focuses on some auxiliary lemmas for later use. The first
lemma is repeated from [27, Theorem 3.13] and [42].

Lemma 2.1. Suppose {λn}Nn=1 is a sequence of real numbers with |λn| ≤ 1
for 1 ≤ n ≤ N . Then there exist sequences {ϵnk}Nk=1 with ϵnk = ±1 and real
numbers ck ≥ 0 for k = 1, 2, · · · , N + 1 and n = 1, 2, · · · , N such that

N+1∑
k=1

ck = 1 and
N+1∑
k=1

ϵnkck = λn

for 1 ≤ n ≤ N .
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A slight modification of the proof of [24, Theorem 11] leads to the follow-
ing lemma.

Lemma 2.2. Let {Λj ∈ B(U , Vj) : j ∈ N} be a sequence with each Λj

being onto. Define

G =
{
g ∈ l({Vj}j∈N) :

∑
j∈N

Λ∗
jgj is well defined

}
,

and

∥g∥G = sup
{∥∥∑

j∈F
Λ∗
jgj

∥∥ : F is a finite subset of N
}
for g ∈ l({Vj}j∈N).

Then
(i) G is a Banach space.
(ii) The operator T : G → U defined by

Tg =
∑
j∈N

Λ∗
jgj

is a bounded and invertible operator from G onto U provided that {Λj : j ∈ N}
is a g-unconditional basis for U .

Lemma 2.3. Let {Λj ∈ B(U , Vj) : j ∈ N} be a g-unconditional basis for U
with the g-dual sequence {Γj : j ∈ N}, and each Λj be onto. Then the numbers
C, Cϵ and Cλ in (1.11)-(1.13) are finite, and ∥| · |∥, ∥| · |∥ϵ and ∥| · |∥λ in (1.10)
form norms defined on U , each equivalent to the initial norm ∥ · ∥ with

∥ · ∥ ≤ ∥| · |∥ ≤ C∥ · ∥,(2.1)

∥ · ∥ ≤ ∥| · |∥ϵ ≤ Cϵ∥ · ∥,(2.2)

∥ · ∥ ≤ ∥| · |∥λ ≤ Cλ∥ · ∥.(2.3)

Proof. We first deal with ∥|·|∥-case. Since {Λj : j ∈ N} is a g-unconditional
basis for U with the g-dual sequence {Γj : j ∈ N}, we have

x =
∑
j∈N

Λ∗
jΓjx,(2.4)

equivalently,

x = lim
F

SF (x)(2.5)

for x ∈ U by Proposition 1.1. This implies that

∥|x|∥ < ∞ for x ∈ U .(2.6)

So ∥| · |∥ is well defined on U by the arbitrariness of x. Also it is easy to check
that ∥| · |∥ is a semi-norm. Now suppose ∥|x|∥ = 0. Then

∑
j∈F

Λ∗
jΓjx = 0 for
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each finite set F . This implies that x = 0 by (2.5), and thus ∥| · |∥ is a norm
defined on U . Now let G and the operator T be defined as in Lemma 2.2. Then
for each x ∈ U , we have {Γjx}j∈N ∈ G by (2.4). It follows that

∥SF (x)∥ = ∥
∑
j∈F

Λ∗
jΓjx∥

≤ ∥{Γjx}j∈N∥G
= ∥T−1(x)∥
≤ ∥T−1∥∥x∥

for x ∈ U and arbitrary finite set F ⊂ N by Lemma 2.2. So ∥SF ∥ ≤ ∥T−1∥ for
each finite set F ⊂ N, and thus

C = sup{∥SF ∥ : for all finite set F ⊂ N}
≤ ∥T−1∥
< ∞.

This implies that

∥SF (x)∥ ≤ C∥x∥(2.7)

for x ∈ U and each finite set F ⊂ N, and thus

∥|x|∥ ≤ C∥x∥(2.8)

for x ∈ U . On the other hand,

∥SF (x)∥ ≤ ∥|x|∥

for x ∈ U and each finite set F ⊂ N by the definition of ∥| · |∥, which implies
that

∥x∥ ≤ ∥|x|∥(2.9)

for x ∈ U by (2.5). Collecting (2.8) and (2.9) gives (2.1).

Next we deal with (2.2). Arbitrarily fix a finite set F ⊂ N and a sequence
ϵ = {ϵj}j∈F with ϵj = ±1. Let F+ = {j ∈ F : ϵj = 1} and F− = {j ∈ F : ϵj =
−1}. Then

∥SF,ϵ(x)∥ = ∥
∑
j∈F

ϵjΛ
∗
jΓjx∥

= ∥
∑
j∈F+

Λ∗
jΓjx−

∑
j∈F−

Λ∗
jΓjx∥

≤ ∥SF+(x)∥+ ∥SF−(x)∥
≤ 2C∥x∥(2.10)
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for x ∈ U by (2.7). This implies that ∥SF,ϵ∥ ≤ 2C, and

Cϵ ≤ 2C < ∞.

By the definition of Cϵ, we have

∥SF,ϵ(x)∥ ≤ Cϵ∥x∥,(2.11)

and thus

∥|x|∥ϵ ≤ Cϵ∥x∥(2.12)

for x ∈ U . On the other hand, it is easy to check that ∥| · |∥ϵ is a semi-norm
defined on U , and

∥x∥ ≤ ∥|x|∥ϵ(2.13)

for x ∈ U . This implies that x = 0 if ∥|x|∥ϵ = 0 due to ∥ · ∥ being a norm on
U . So ∥| · |∥ϵ is a norm defined on U . Collecting (2.12) and (2.13) gives (2.2).

Now we turn to (2.3). Arbitrarily fix a finite set F ⊂ N and a sequence
λ = {λj}j∈F with |λj | ≤ 1. Then

∥SF,λ(x)∥ = ∥
∑
j∈F

λjΛ
∗
jΓjx∥

= ∥
∑
j∈F

(Re(λj) + iIm(λj)) Λ
∗
jΓjx∥

≤ ∥
∑
j∈F

Re(λj)Λ
∗
jΓjx∥+ ∥

∑
j∈F

Im(λj)Λ
∗
jΓjx∥(2.14)

for x ∈ U , where Re(λj) and Im(λj) denotes the real part and imaginary
part of λj with j ∈ F , respectively. Observe that Re(λj) belongs to R and
|Re(λj)| ≤ 1 for j ∈ F . Then by letting N = card(F ), we can find a scalar

sequence α = {αl}N+1
l=1 with αl ≥ 0 and sequences ϵj = {ϵjl }

N+1
l=1 for each j ∈ F

with ϵjl = ±1 for 1 ≤ l ≤ N + 1 such that

N+1∑
l=1

αl = 1 and Re(λj) =

N+1∑
l=1

ϵjlαl for j ∈ F(2.15)

by Lemma 2.1. This implies that

∥∥∑
j∈F

Re(λj)Λ
∗
jΓjx

∥∥ =
∥∥∑
j∈F

N+1∑
l=1

ϵjlαlΛ
∗
jΓjx

∥∥
=

∥∥N+1∑
l=1

αl

∑
j∈F

ϵjlΛ
∗
jΓjx

∥∥
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≤
N+1∑
l=1

αl

∥∥∑
j∈F

ϵjlΛ
∗
jΓjx

∥∥
≤ 2C

(N+1∑
l=1

αl

)
∥x∥

= 2C∥x∥(2.16)

by (2.10). Similarly, ∥∥∑
j∈F

Im(λj)Λ
∗
jΓjx

∥∥ ≤ 2C∥x∥.(2.17)

So

∥SF,λ(x)∥ ≤ 4C∥x∥(2.18)

for x ∈ U by (2.14). It follows that ∥SF,λ∥ ≤ 4C, and

Cλ ≤ 4C < ∞.

By the definition of Cλ,

∥|x|∥λ ≤ Cλ∥x∥(2.19)

for x ∈ U , and ∥| · |∥λ is well defined by the arbitrariness of x. On the other
hand,

∥x∥ ≤ ∥|x|∥λ(2.20)

for x ∈ U by (2.5). By a standard argument, we can prove that ∥| · |∥λ is a
norm defined on U . The proof is completed.

3. PROOF OF THEOREM 1.1

We prove the theorem by showing that

(i) ⇒ (iii) ⇒ (ii) ⇒ (i) ⇒ (iv) ⇒ (ii) and (v) ⇔ (i) ⇔ (vi).

(i) =⇒ (iii). Suppose {Λj : j ∈ N} is a g-unconditional basis for U with
the g-dual sequence {Γj : j ∈ N}. Arbitrarily fix N ∈ N, ϵj ∈ {±1} and gj ∈ Vj

with 1 ≤ j ≤ N . Take

x =
N∑
j=1

Λ∗
jgj .

Then

Γjx =


gj , 1 ≤ j ≤ N ;

0, otherwise
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by Remark 1.1. It follows that

∥
N∑
j=1

ϵjΛ
∗
jgj∥ = ∥

N∑
j=1

ϵjΛ
∗
jΓjx∥ = ∥SN,ϵ(x)∥ ≤ ∥|x∥|ϵ ≤ Cϵ∥

N∑
j=1

Λ∗
jgj∥.

(iii) =⇒ (ii). Suppose (iii) holds. Arbitrarily fix a permutation σ of N.
Observe that {Λj : j ∈ N} is g-complete and each Λj is onto. To demonstrate
that {Λj : j ∈ N} is a σ permuted g-basis, we only need to prove that there
exists a constant Cσ such that

∥
M∑
j=1

Λ∗
σ(j)gσ(j)∥ ≤ Cσ∥

N∑
j=1

Λ∗
σ(j)gσ(j)∥(3.1)

for M,N ∈ N with M ≤ N and g ∈ l({Vj}j∈N) by Proposition 1.2. Arbitrarily
fix M,N ∈ N with M ≤ N and g ∈ l({Vj}j∈N). Let L = max{σ(j) : 1 ≤ j ≤
N}. Define

g̃j =


gj , j ∈ {σ(l) : 1 ≤ l ≤ N};

0, otherwise,
and

ϵj = 1 and γj =


1, j ∈ {σ(l) : 1 ≤ l ≤ M};

−1, otherwise
for j ∈ N, respectively. Then

∥
M∑
j=1

Λ∗
σ(j)gσ(j)∥ = ∥

L∑
j=1

ϵj + γj
2

Λ∗
j g̃j∥

≤ 1

2
∥

L∑
j=1

ϵjΛ
∗
j g̃j∥+

1

2
∥

L∑
j=1

γjΛ
∗
j g̃j∥

≤ C

2
∥

L∑
j=1

Λ∗
j g̃j∥+

C

2
∥

L∑
j=1

Λ∗
j g̃j∥

= C∥
N∑
j=1

Λ∗
σ(j)gσ(j)∥

by (iii), and thus (3.1) holds with Cσ = C.
(ii) =⇒ (i). Suppose {Λj : j ∈ N} is an arbitrarily permuted g-basis for

U . Arbitrarily fix a permutation σ of N. Then {Λj : j ∈ N} is both a g-basis
and σ permutated g-basis. Let {Γj : j ∈ N} and {Γ′

σ(j) : j ∈ N} be the g-dual

sequences of {Λj : j ∈ N} and {Λσ(j) : j ∈ N}, respectively. Then

x =

∞∑
j=1

Λ∗
jΓjx,(3.2)
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and

x =

∞∑
j=1

Λ∗
σ(j)Γ

′
σ(j)x(3.3)

for x ∈ U . It follows that

ΓjΛ
∗
j = IVj for j in N, ΓjΛ

∗
l = 0 for j ̸= l in N,

and

Γ
′
jΛ

∗
j = IVj for j in N, Γ

′
jΛ

∗
l = 0 for j ̸= l in N(3.4)

by Remark 1.1 (ii), where we used the fact that σ is a permutation of N in
(3.4). It follows that

ΓjΛ
∗
l = Γ′

jΛ
∗
l for j, l ∈ N.(3.5)

Since {Λj : j ∈ N} is g-complete and each Λj is onto, span{Λ∗
j (Vj) : j ∈ N}) =

U and Γj , Γ
′
j ∈ B(U , Vj) for j ∈ N by Remark 1.1. This, together with (3.5),

implies that

Γj = Γ′
j for j ∈ N.

So collecting (3.2) and (3.3) leads to

x =
∑
j∈N

Λ∗
jΓjx(3.6)

for x ∈ U by the arbitrariness of σ. Thus {Λj : j ∈ N} is a g-unconditional
basis by its definition.

(i) =⇒ (iv). Suppose {Λj : j ∈ N} is a g-unconditional basis for U with
the g-dual sequence {Γj : j ∈ N}. Arbitrarily fix N ∈ N, gj ∈ Vj and {µj}Nj=1

with |µj | ≤ 1 for 1 ≤ j ≤ N . Let x =
N∑
j=1

Λ∗
jgj . Then

∥
N∑
j=1

µjΛ
∗
jgj∥ = ∥

N∑
j=1

µjΛ
∗
jΓjx∥

≤ ∥|x|∥λ
≤ Cλ∥x∥

= Cλ∥
N∑
j=1

Λ∗
jgj∥

by Lemma 2.3.

(iv) =⇒ (ii). Suppose (iv) holds. Arbitrarily fix a permutation σ. It is
enough to demonstrate that {Λj : j ∈ N} is a σ permutated g-basis. Observe
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that {Λj : j ∈ N} is g-complete and each Λj is onto. So, we only need to prove
that there exists a constant Cσ such that

∥
M∑
j=1

Λ∗
σ(j)gσ(j)∥ ≤ Cσ∥

N∑
j=1

Λ∗
σ(j)gσ(j)∥(3.7)

for M,N ∈ N with M ≤ N and g ∈ l({Vj}j∈N) by Proposition 1.2. Now
arbitrarily fix M,N ∈ N with M ≤ N and g ∈ l({Vj}j∈N). Let L = max{σ(j) :
1 ≤ j ≤ N} and define

g̃j =


gj , j ∈ {σ(l) : 1 ≤ l ≤ N};

0, otherwise,
and µj =


1, j ∈ {σ(l) : 1 ≤ l ≤ M};

0, otherwise

for j ∈ N. Then

∥
M∑
j=1

Λ∗
σ(j)gσ(j)∥ = ∥

L∑
j=1

µjΛ
∗
j g̃j∥

≤ C∥
L∑

j=1

Λ∗
j g̃j∥

= C∥
N∑
j=1

Λ∗
σ(j)gσ(j)∥

by (iv), and thus (3.7) holds with Cσ = C.

(i) ⇒ (v). Suppose {Λj : j ∈ N} is a g-unconditional basis for U with
{Γj : j ∈ N} its g-dual sequence. Then it must be a g-basis for U , and

x =
∑
j∈N

Λ∗
jΓjx(3.8)

for x ∈ U , which implies that

∞∑
j=1

λjΛ
∗
jΓjx(3.9)

is well defined for x ∈ U and each sequence λ = {λj}j∈N with each |λj | ≤ 1
by Proposition 1.1. Arbitrarily fix a bounded sequence µ = {µj}j∈N with
|µj | < M < ∞ for j ∈ N. Then the mapping Tµ : U → U defined by

Tµx =

∞∑
j=1

µjΛ
∗
jΓjx(3.10)
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for x ∈ U is well defined by (3.9). Since
∞∑
j=1

µjΛ
∗
jΓjx = M

∞∑
j=1

µj

MΛ∗
jΓjx, we see

that

∥Tµx∥ = M∥
∞∑
j=1

µj

M
Λ∗
jΓjx∥

≤ MCλ∥x∥

for x ∈ U by (3.9) and Lemma 2.3. Also observe that

Tµ(Λ
∗
jgj) =

∞∑
j′=1

µj′Λ
∗
j′Γj′Λ

∗
jgj = µjΛ

∗
jgj .

Tµ is as desired.

(v) ⇒ (i). Suppose (v) holds. Let {Λj : j ∈ N} be a g-basis with the
g-dual sequence {Γj : j ∈ N}. Then

x =
∞∑
j=1

Λ∗
jΓjx(3.11)

for x ∈ U . By Remark 1.1 (ii), to obtain (i), we only need to prove that,

for every x ∈ U , the series
∞∑
j=1

Λ∗
jΓjx is unconditionally convergent for every

x ∈ U , equivalently,
∞∑
j=1

µjΛ
∗
jΓjx is well defined for each bounded sequence

µ = {µj}j∈N by Proposition 1.1. Let µ be such a sequence. Then there exists
an operator Tµ ∈ B(U) defined by

TµΛ
∗
jgj = µjΛ

∗
jgj

for gj ∈ Vj with j ∈ N by (v). It follows that

Tµ(

∞∑
j=1

Λ∗
jΓjx) =

∞∑
j=1

Tµ(Λ
∗
jΓjx) =

∞∑
j=1

µjΛ
∗
jΓjx(3.12)

for x ∈ U , and thus
∞∑
j=1

µjΛ
∗
jΓjx is well defined for x ∈ U by (3.11).

(i) ⇒ (vi). Suppose {Λj : j ∈ N} is a g-unconditional basis for U with
the g-dual sequence {Γj : j ∈ N}. Then we have

∥x∥ ≤ ∥|x|∥ ≤ C∥x∥(3.13)

for x ∈ U by Lemma 2.3. Arbitrarily fix g ∈ l({Vj}j∈N) and a finite subset
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F0 ⊂ N. Take x =
∑
j∈F0

Λ∗
jgj . Then

Γjx =


gj , if j ∈ F0;

0, otherwise,
(3.14)

and thus

∥|x|∥ = ∥|
∑
j∈F0

Λ∗
jΓjx|∥

≤ C∥
∑
j∈F0

Λ∗
jΓjx∥

= C∥
∑
j∈F0

Λ∗
jgj∥(3.15)

by (3.13). Also observe that

SF (x) =
∑
j∈F

Λ∗
jΓj(

∑
j′∈F0

Λ∗
j′gj′)

=
∑
j∈F

∑
j′∈F0

Λ∗
jΓjΛ

∗
j′gj′

=
∑

j∈F∩F0

Λ∗
jgj(3.16)

for each finite set F ⊂ N by Remark 1.1 (ii). It follows that∥∥ ∑
j∈F∩F0

Λ∗
jgj

∥∥ ≤ ∥|x∥| ≤ C
∥∥ ∑
j∈F0

Λ∗
jgj

∥∥(3.17)

for each finite set F ⊂ N. In particular,∥∥∑
j∈F

Λ∗
jgj

∥∥ ≤ C
∥∥ ∑
j∈F0

Λ∗
jgj

∥∥(3.18)

for F ⊂ F0. This leads to (1.15) by the arbitrariness of F0.
(vi) ⇒ (i). Suppose (vi) holds. Then (1.5) holds, and thus {Λj : j ∈ N}

is a g-basis by Proposition 1.2, that is, to every x ∈ U there corresponds a
unique g ∈ l({Vj}j∈N) such that

x =

∞∑
j=1

Λ∗
jgj .(3.19)

By Remark 1.2 (ii), to obtain (i), we only need to prove that the series
∞∑
j=1

Λ∗
jgj

is unconditionally convergent, equivalently,
∞∑
j=1

Λ∗
σ(j)gσ(j)
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is convergent for an arbitrary permutation σ of N. Arbitrarily fix an arbitrary

permutation σ. Next, we prove the series
∞∑
j=1

Λ∗
σ(j)gσ(j) is convergent. By

(3.19), to every ϵ > 0 there corresponds N ∈ N such that∥∥ n∑
j=m

Λ∗
jgj

∥∥ < ϵ for n ≥ m > N.(3.20)

Take

K = min
{
k ∈ N : {1, 2, · · · , N} ⊂ {σ(1), σ(2), · · · , σ(k)}

}
.

Then σ(j) > N for j > K, this implies that

{σ(j) : k ≤ j ≤ l} ⊂ {j ∈ N : N + 1 ≤ j ≤ M}

for l ≥ k > K, where M = max{σ(j) : k ≤ j ≤ l}. It follows that∥∥ l∑
j=k

Λ∗
σ(j)gσ(j)

∥∥ ≤ C
∥∥ M∑
j=N+1

Λ∗
jgj

∥∥ < Cϵ

for l ≥ k > K by (vi) and (3.20). Therefore,
∞∑
j=1

Λ∗
σ(j)gσ(j) converges. The

proof is completed.
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