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In this work, it is considered a combination of the CIR model framework with
a Markov regime-switching model to price VIX and S&P500 American put op-
tions. We first present a closed-form formula for conditional higher moments of
the stock return which are sensibly more straightforward than those obtained
through a characteristic function approach. Next, we estimate the parameters of
model by applying a complete maximum likelihood procedure. Then, we provide
a Least Square Monte-Carlo (LSM) algorithm to determine S&P500 American
option price in the regime-switching Heston model. Finally, by the binomial tree
method as a benchmark, we provide some numerical experiments to illustrate
the accuracy of proposed algorithm.
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1. INTRODUCTION

One of the most noticeable and widely used stochastic volatility models
is the Heston model [15]. The volatility of this model follows a mean reverting
Cox-Ingersoll-Ross (CIR) process presented by Cox et al. [3]. The asset price
dynamic under the Heston model is defined as follows{

dSt = rSt dt+ St

√
Vt dW

1
t

dVt = κ
(
θ − Vt

)
dt+ σ

√
Vt dW

2
t ,

(1.1)

where St and Vt represent the price and volatility of the underlying asset and
also, W 1

t and W 2
t are the Brownian motions with correlation ρ ∈ (−1, 1).

Besides, κ, θ and σ are the mean reversion speed of the volatility, the long-run
mean, and the volatility of volatility, respectively. r is the interest rate. We
note that parameters should be chosen to satisfy the Feller condition, 2κθ > σ2.
This will ensure that Vt stays strictly positive [1].

Among stochastic volatility models, the Heston model is an industry stan-
dard. Its parameters are known to exert clear and specific control over the
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implied volatility skew or smile, and it can mimic the implied volatilities of
around-the-money options with a fair degree of accuracy. However, researches
show that modification of regime should be indicated by the asset prices or
the associated volatility process [8, 10]. In [14, 20, 23], according to [18], it
is demonstrated that the model should have at least two regimes under the
risk neutral measure. Moreover, a wide stream of research argues that index
volatilities are subjected to regime switches under the physical measure. The
economic consideration is one of the main motivations to exert regime switches
using Markov chains instead of jump-diffusion, in order to deal with sudden
changes in volatility.

The first incorporation of regime switching in the volatility process itself
was achieved by [7, 9], which propose an extension of the Heston model, in
which the mean-reverting level of volatility is modulated by an observable
Markov chain and use it to derive the price of volatility derivatives, such as
variance swaps and volatility swaps. In [12], it is generalized this approach by
considering that a hidden Markov chain modulates the speed of mean reversion,
the mean-reversion level, the volatility of volatility and the correlation with the
stock index for the pricing and hedging of derivatives. In [13] and [19], it is
showed that the regime-switching feature gives rise to a significant increase in
the non-Gaussianity of conditional stock returns at short time horizons and
also, the leptokurtotic of model is close to market data.

The first extension of the Heston model with regime switching to price
VIX options was recently reported in [21], in which an observed Markov chain
modeling the state of volatility modulates two components of the stock process:
the intensity of jumps and an additional multiplicative factor for volatility.
Although this model overcomes the shortcoming of VIX skew, regime shifts
drive the stock returns, and thus, it is not clear how the dynamics of volatility
itself can be monitored using this model. Moreover, as shown in [11], there is
a very good consistency between forward variance swap rates estimates from
S&P500 and VIX options, invalidating the existence of a jump premium priced
in the market, since the unique underlying assumption behind the computation
of VIX index is the continuity of stock price process.

The implied higher-order moment of stock return is one of the interesting
issues in the study of asset price. In [5], it is provided a closed-form formula to
the skewness and kurtosis of a stock price model with stochastic volatility, but
these results can not be applied for the Heston model. In [25], the analytical
solution for the skewness of stock return under Heston model obtained. Here,
we give a formula to calculate the conditional higher moments of the stock
return under the regime-switching Heston model.

In this work, it is considered a combination of the CIR framework with
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a Markov regime-switching model to price VIX and S&P500 American put
options. Moreover, we estimate the parameters of the model by applying a
complete maximum likelihood procedure.

The rest of the paper is organized as follows: in Section 2, we study
the regime-switching Heston model and also, we estimate the parameters of
the model by applying an organized iterative procedure. In Section 3, it is
considered two algorithms, named LSM and binomial tree algorithms, to price
S&P 500 American put option under the regime-switching Heston model. Some
numerical studies are presented in Section 4.

2. REGIME-SWITCHING HESTON MODEL

We work on a probability space (Ω,F := (Ft)[0,T ],P) where P is a risk-
neutral or equivalent martingale measure. We assume that Zt is a continuous-
time Markov chain that represents the regime state of volatility where is inde-
pendent of two Brownian motions W 1 = {W 1

t , t ≥ 0} and W 2 = {W 2
t , t ≥ 0}

that the correlation between two Brownian motions is ρ(Zt). The regime vari-
able can take three values, Zt ∈ E := {1, 2, 3} where {Zt = 1} means that
volatility is in its low state, {Zt = 2} means it is in medium state, and {Zt = 3}
means it is in a high state. Besides, we define Ft := FW

t ∨FZ
t where FW

t is the
filtration generated by two Brownian motions W 1 and W 2 and also, FZ

t is the
filtration generated by the process Z. We denote by Π the generator matrix of
Z, which is given for all i, j ∈ E by Πi,j ≥ 0 if i ̸= j and Πii = −

∑
i ̸=j Πi,j . We

assume that the transition probabilities from a state i ∈ E at time t towards a
state j ∈ E at time t+h are stationary. This leads to an infinitesimal generator
Π independent of time. Let us denote now by T (h) the matrix of transition
probabilities defined by Tij(h) = P(Zh = j|Z0 = i), for all i, j ∈ E. Then, the
following relation holds

dTij(h)

dh
= Πij for all i, j ∈ E.

Note that this relation implies Tij(h) = (eΠh)ij . We denote by P the matrix
of transition probabilities of the embedded discrete time Markov chain. P is
given by

Pij =

{ Πij∑
i̸=j Πij

if i ̸= j

0 otherwise.

Assume that S = {St}t≥0 and V = {Vt}t≥0 be two stochastic processes in our
probability space that model, respectively, the spot value of the S&P500 index
and the instantaneous variance of S. The dynamic of our model follows paths
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generated by the following stochastic differential equations{
dSt = rSt dt+ St

√
Vt dW

1
t , S0 = s

dVt = κ(Zt)
(
θ(Zt)− Vt

)
dt+ σ(Zt)

√
Vt dW

2
t , V0 = v0,

(2.1)

where all the parameters of the volatility process Vt and the correlation factor
between the S&P 500 index and its instantaneous variance Vt depend on the
homogeneous continuous time Markov chain Z.

We now apply the maximum likelihood procedure in order to know how
the parameters of the model change over time.

Definition 2.1. The VIX index is calculated as the strike of the one-month
variance swap contract on the S&P500 index. Provided that S&P500 index has
no jumps, the following relationship holds

V IX2
t = EP

[
1

τvix

∫ t+τvix

t
Vs ds

∣∣ Ft

]
,

where τvix is the duration corresponding to one month [13].

Theorem 2.2. Let M be a discrete random variable in N∗ := N\{0} such
that M − 1 is the random number of jumps of the Markov chain Z between 0
and τvix. Let

(
τ1, · · · , τM−1

)
be the sequence of M − 1 random jumps times,

and ∆tk := τk+1 − τk for each k ∈ {0, · · · ,M − 1} with τM = τvix and τ0 = 0.
For each k ∈ {0, · · · ,M − 1}, there are two families of functions {fk}0≤k≤M−1

and {gk}0≤k≤M−1 defined from Ek to R such that

EP
[ ∫ τvix

0
Vs ds

∣∣V0 = v0, FZ
τvix

]
=

(M−1∑
k=0

a(Zτk)fk(Z0, · · · , Zτk−1
)

)
v0

+

M−1∑
k=0

(
b(Zτk) + a(Zτk)gk(Z0, · · ·, Zτk−1

)
)
,(2.2)

where

fk(Zτ0 , · · · , Zτk−1
) =


k−1∏
j=0

(1− κ(Zτj ))a(Zτj ) if k ∈ {1, · · · ,M − 1}

1 if k = 0

and

gk
(
Zτ0 , · · · , Zτk−1

)

=


gk−1

(
Zτ0 , · · · , Zτk−2

)(
1− κ(Zτk−2

)a(Zτk−2
)
)

+κ(Zτk−2
)
(
θ(Zτk−2

)∆tk−2
− b(Zτk−2

)
)
, if k ∈ {2, · · · ,M − 1}

κ(Zτ0)
(
θ(Zτ0)∆t0 − b(Zτ0)

)
if k = 1

0 if k = 0
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provided that

a(Zτk) =
1− exp(−κ(Zτk)∆tk)

κ(Zτk)
,

b(Zτk) = θ(Zτk)(∆tk − a(Zτk)).

Theorem 2.3 (Implied skewness and kurtosis). Let the expiration date
T > 0 and for all 0 ≤ t ≤ T , define the compound stock return as RT

t := ln(ST
St

).
Then, under the regime-switching Heston model (2.1), we have

Et(Vs) = e−κ(Zs)s
(
eκ(Zt)tVt +

∫ s

t
θ(Zu)κ(Zu)e

κ(Zu)udu
)
,

where Et(.) denotes the conditional expectation w.r.t FW
t and also

Skewness
(
RT

t

)
=

A (t)− 3
2B(t) + 3

4C (t)− 1
8D(t)

G 3/2(t)
,(2.3)

Kurtosis
(
RT

t

)
=

H (t) + 3
2M (t)− 2N (t)− 1

2O(t) + 1
16P(t)

G 2(t)
,(2.4)

given

A (t) = 3

∫ T

t

(
e−κ(Zs)s

∫ s

t
σ(Zu)ρ(Zu)e

κ(Zu)uEt(Vu)du
)
ds,

B(t) =

∫ T

t

[
e−κ(Zs)s

∫ s

t

( ∫ T

u
e−κ(Zs)sds

)
σ2(Zu)e

κ(Zu)uEt(Vu)du
]
ds

+ 2

∫ T

t

[( ∫ T

s
e−κ(Zu)udu

)
(
e−κ(Zs)s

∫ s

t
σ(Zu)ρ(Zu)e

κ(Zu)uEt(Vu)du
)
ρ(Zs)σ(Zs)e

κ(Zs)s
]
ds,

C (t) =

∫ T

t

(( ∫ T

s
e−κ(Zu)udu

)2
(
e−κ(Zs)s

∫ s

t
σ(Zu)ρ(Zu)e

κ(Zu)uEt(Vu)du
)
σ2(Zs)e

2κ(Zs)s
)
ds

+ 2

∫ T

t

[(( ∫ T

s
e−κ(Zu)udu

)
ρ(Zs)σ(Zs)e

κ(Zs)s
)

×
(∫ s

t

( ∫ T

u
e−κ(Zν)νdν

)
σ2(Zu)e

κ(Zu)uEt(Vu)du
)]

ds,

D(t) = 3

∫ T

t

[(( ∫ T

s
e−κ(Zu)udu

)2
σ2(Zs)e

2κ(Zs)s
)

×
(
e−κ(Zs)s

∫ s

t

( ∫ T

u
e−κ(Zs)sds

)
σ2(Zu)e

κ(Zu)uEt(Vu)du
)]

ds,
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H (t) = 6

∫ T

t
e−κ(Zs)s

((
eκ(Zt)tVt +

∫ s

t
θ(Zu)κ(Zu)e

κ(Zu)udu
)

( ∫ s

t
Et(Vu)du

))
ds,

M (t) =

∫ T

t

[
e−κ(Zs)s

(
eκ(Zt)tVt +

∫ s

t
θ(Zu)κ(Zu)e

−κ(Zu)udu
)

×
(∫ s

t

( ∫ T

u
e−κ(Zν)νdν

)2
σ2(Zu)e

2κ(Zu)uEt(Vu)du
)]

ds

+

∫ T

t

[(( ∫ T

s
e−κ(Zν)νdν

)2
σ2(Zs)e

2κ(Zs)s
)

× e−κ(Zs)s
((
eκ(Zt)tVt+

∫ s

t
θ(Zu)κ(Zu)e

κ(Zu)udu
)( ∫ s

t
Et(Vu)du

))]
ds

+ 4

∫ T

t

[(( ∫ T

s
e−κ(Zν)νdν

)
σ(Zs)ρ(Zs)e

κ(Zs)s
)

× e−κ(Zs)s

(
eκ(Zt)tVt +

∫ s

t
θ(Zu)κ(Zu)e

κ(Zu)udu

)
×
(∫ s

t

( ∫ s

u
e−κ(Zν)νdν

)
σ(Zu)ρ(Zu)e

κ(Zu)uEt(Vu)du
)]

ds,

N (t) = 3

∫ T

t

[
e−κ(Zs)s

(
eκ(Zt)tVt +

∫ s

t
θ(Zu)κ(Zu)e

κ(Zu)udu
)

×
(∫ s

t

( ∫ s

u
e−κ(Zν)νdν

)
σ(Zu)ρ(Zu)e

κ(Zu)uEt(Vu)du
)]

ds

+ 3

∫ T

t

[(( ∫ T

s
e−κ(Zν)νdν

)
σ(Zs)ρ(Zs)e

κ(Zs)s
)

× e−κ(Zs)s
((
eκ(Zt)tVt+

∫ s

t
θ(Zu)κ(Zu)e

κ(Zu)udu
)( ∫ s

t
Et(Vu)du

))]
ds,

O(t) = 3

∫ T

t

[(( ∫ T

s
e−κ(Zν)νdν

)2
σ2(Zs)e

2κ(Zs)s
)

× e−κ(Zs)s
(
eκ(Zt)tVt +

∫ s

t
θ(Zu)κ(Zu)e

κ(Zu)udu
)

×
(∫ s

t

( ∫ s

u
e−κ(Zν)νdν

)
σ(Zu)ρ(Zu)e

κ(Zu)uEt(Vu)du
)]

ds

+ 3

∫ T

t

[(( ∫ T

s
e−κ(Zν)νdν

)
σ(Zs)ρ(Zs)e

κ(Zs)s
)

× e−κ(Zs)s
(
eκ(Zt)tVt +

∫ s

t
θ(Zu)κ(Zu)e

−κ(Zu)udu
)
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×
(∫ s

t

( ∫ T

u
e−κ(Zν)νdν

)2
σ2(Zu)e

2κ(Zu)uEt(Vu)du
)]

ds,

P(t) = 6

∫ T

t

[(( ∫ T

s
e−κ(Zν)νdν

)2
σ2(Zs)e

2κ(Zs)sds
)

× e−κ(Zs)s
(
eκ(Zt)tVt +

∫ s

t
θ(Zu)κ(Zu)e

−κ(Zu)udu
)

×
(∫ s

t

( ∫ T

u
e−κ(Zν)νdν

)2
σ2(Zu)e

2κ(Zu)uEt(Vu)du
)]

ds,

G (t) =

∫ T

t
Et(Vs)ds−

∫ T

t

( ∫ T

s
e−κ(Zu)udu

)
σ(Zs)ρ(Zs)e

κ(Zs)sEt(Vs)ds

+
1

4

∫ T

t

( ∫ T

s
e−κ(Zu)udu

)2
σ2(Zs)e

2κ(Zs)sEt(Vs)ds.

Proof. See Appendix A.

Table 1 shows the results of comparing the implied and unconditional
higher moments related to the compound returns of the S&P500 index under
original Heston and regime-switching Heston models with real data.

Heston Regime-Switching Heston Real Market

Imp. Skew. (t=45) 0.0307 0.1628 0.3700
Imp. Kurt. (t=45) 1.1618 1.3885 2.0024
Unconditional Skew. 0.5192 0.1532 0.0168
from 2000 to 2015
Unconditional Kurt. 1.7729 3.0544 2.9973
from 2000 to 2015

Table 1 – Implied and unconditional higher moments related to the compound
returns.

2.1. Expectation maximization algorithm

Let us denote Λt = V IX2
t , for all 0 ≤ t ≤ H. Let Π be the gener-

ator matrix of Markov chain Z, i.e. if T is the transition probabilities ma-
trix of Z, then Π = 1

δ log(T ) where the time step δ is constant. We set
Θ := {(κi)i∈E , (θi)i∈E , (σi)i∈E ,Π}. We now estimate Θ by Expectation Maxi-
mization (EM) algorithm [6].

The EM algorithm is an efficient iterative procedure to compute the Max-
imum Likelihood (ML) estimate in the presence of missing or hidden data. In
ML estimation, we wish to estimate the model parameters for which the ob-
served data are the most likely. Each iteration of the EM algorithm consists
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of two processes: The E-step, and the M-step. In the expectation, or E-step,
the missing data are estimated given the observed data and current estimate
of the model parameters. This is achieved using the conditional expectation,
explaining the choice of terminology. In the M-step, the likelihood function
is maximized under the assumption that the missing data are known. The
estimate of the missing data from the E-step are used instead of the actual
missing data.

Suppose that Θn and L are, respectively, the set of parameters in the
nth step of the EM algorithm and the Likelihood function. Thus, by Jensen
inequality we have [2]

L(Θ)− L(Θn) = logP(Λ|Θ)− logP(Λ|Θn)

= log
∑
z

P(Λ|z,Θ)P(z|Θ)− P(Λ|Θn)

= log
∑
z

P(z|Λ,Θn)

(
P(Λ|z,Θ)P(z|Θ)

P(z|Λ,Θn)

)
− P(Λ|Θn)

≥
∑
z

P(z|Λ,Θn) log

(
P(Λ|z,Θ)P(z|Θ)

P(z|Λ,Θn)P(Λ|Θn)

)
.

The aim of the EM algorithm is to choose a Θ, so that L is maximized. There-
fore,

Θn+1 = argmax
Θ

[L(Θ|Θn)]

= argmax
Θ

[
L(Θn) +

∑
z

P(z|Λ,Θn) log

(
P(Λ|z,Θ)P(z|Θ)

P(z|Λ,Θn)P(Λ|Θn)

)]
.

Considering terms that are constant relative to Θ, we have

Θn+1 = argmax
Θ

[
∑
z

P(z|Λ,Θn) log (P(Λ|z,Θ)P(z|Θ))]

= argmax
Θ

[
∑
z

P(z|Λ,Θn) logP(Λ, z|Θ)]

= argmax
Θ

[EZ|Λ,Θn
logP(Λ, z|Θ)],

where P(Λ, z|Θ) = P(Λ0 = y0, · · · ,ΛtH = ytH , Z0 = z0, · · · , ZtH = ztH |Θ). So,
the EM algorithm is asserted in each iteration as follows

Step E. Compute EZ|Λ,Θn
logP(Λ, z|Θ).

Step M. Maximizing the expression EZ|Λ,Θn
logP(Λ, z|Θ) relative to Θ.

Step E can be done according to the following theorem [13, 2].
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Theorem 2.4. Let Θn and L are, respectively, the set of parameters after
nth step and the likelihood function. Thus, we get

L(Θ,Θn) := EZ|Λ,Θn
logP(Λ = y, Z|Θ)

=
∑
j∈E

log(P(Z0 = j))P(Z0 = j|Λ = y,Θn)

+
∑

(i,j)∈E2

H∑
k=1

P(Ztk−1
= i, Ztk = j|Λ = y,Θn)

(
log(Ti,j(δ))

+ log(fΛ(yk|Ztk−1
= i, Ztk = j, yk−1,Θ))

)
,(2.5)

where the density function of Λtk with condition (Ztk = j, Ztk−1
= i,Λtk−1

=
yk−1) is calculated as follows

fΛ
(
yk

∣∣ Ztk = j, Ztk−1
= i, yk−1,Θ

)
=

1

|αj |
√
2πδ

yk−1−βi

αi
σj

× exp

{
−

(
yk−βj
αj
− θjκjδ − (1− κjδ)

yk−1−βi

αi

)2

2δσ2
j
yk−1−βi

αi

}
,(2.6)

and also,

αi =
1

τV IX
EP

[
M−1∑
k=0

a(Zτk)fk(Z0, · · · , Zτk−1
)|Z0 = i

]
,

βi =
1

τV IX
EP

[
M−1∑
k=0

b(Zτk) + a(Zτk)gk(Z0, · · · , Zτk−1
)|Z0 = i

]
.

Besides, it can be confirmed that

P
(
Ztk−1

= i,Ztk = j
∣∣ Λ = y,Θn

)
=

wi(tk−1)vj(tk)Tni,j (δ)fΛ(yk|Ztk−1
= i, Ztk = j, yk−1,Θn)

H∑
k=1

wi(tk)

,(2.7)

where we have

wi(tk) =
∑
j∈E

wj(tk−1)fΛ(yk|yk−1, Ztk−1
= j, Ztk = i,Θn)Tni,j (δ), if k ∈ {1, ...,H}

P(Z0 = j) if k = 0
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and

vi(tk) =
∑
j∈E

vj(tk+1)fΛ(yk+1|yk, Ztk = i, Ztk+1
= j,Θn)Tni,j (δ), if k ∈ {0, ...,H − 1}

1 if k = H

In Table 2, with time step δ = 1
252 , the number of iteration N = 100 of

EM algorithm and initial vector Θ0 := {(κi)0, (θi)0, (σi)0,Π0} the parameters
of the regime-switching Heston model are estimated. We use fmincon function
of Matlab to calculate the maximum value in the nth step of the algorithm.

regimes κML θML σML ρML

state 1 8.3886 0.0021 0.789 -0.6484
state 2 12.125 0.1788 1.2571 0.1685
state 3 13.545 0.252 1.245 0.2861

Table 2 – Estimation of the parameters of the regime-switching Heston model

We know that some important features of the behaviour of the S&P 500
and its volatility as well as their joint dynamics can be reproduced by the
Heston model. These main features are the excess skewness and kurtosis of
the distribution of stock returns, the mean reversion of the volatility process
and the so-called leverage effect for the stock-vol joint dynamics through the
negative correlation between the two processes (see Figures 1 and 2).

Figure 1 – The VIX index under various regimes from 2000 to 2015

Figure 1 illustrates how the VIX index varies under different regimes. In
this figure, using parameters given in Table 2, we model the VIX index under
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three regimes from 2000 to 2015, where the first state is related to the regimes
with low variance (green part), the second one is related to the forward regimes
(blue part), and the third one is related to the high level of the variance (red
part). Be noted that we are in the state i ∈ {1, 2, 3}, at time tk, if the smoothed
probability (2.7) corresponds to regime which has the maximum value.

In Figure 2, we model the S&P500 index where the VIX index is used as
a proxy for its instantaneous variance.

Figure 2 – The simulated paths of S&P500 index

3. PRICING S&P500 AMERICAN OPTIONS

Pricing an American option is generally equivalent to solve an optimal
stopping problem by defining the optimal exercise rule. The value of an Amer-
ican option is thus, calculated by computing the expected discounted payoff
under this rule.

Definition 3.1. Let Θ be a set of stopping times and St be a stock price.
The price of the American put option is defined as follows

P (0, S(0)) = sup
{
E
[
e−rτ (K − S(τ))+

]}
, τ ∈ Θ,(3.1)

where S(0) is initial stock price. If τ =∞, then the value of the American put
option is zero [22].

However, since American options do not have an analytical formula, sim-
ulation methods would be used as a helpful tool to determine the value of the
option. In this section, our goal is to obtain the value of the S&P500 Amer-
ican put option when the volatility of this index follows the regime-switching
Heston model. In the following, we verify two algorithms, named LSM and
binomial tree, to obtain the value of the American put option.
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3.1. LSM algorithm

LSM algorithm introduced by Longstaff and Schwartz [17] is a simple and
widely used Monte Carlo method for calculating the value of the American style
options by replacing the future expectation by a least squares interpolation.

In this work, LSM method used to S&P500 American put option can be
interpreted as follows:

Algorithm 1 LSM algorithm

Sj ← S&P500 AssetPath
if Sj < K then
C(j)← (K − Sj)e

−r∆t

else
C(j)← 0

end if
for j = N − 1 : −1 : 1 do

index = find(K − Sj > 0)
X = [ones(index) S(index) S(index)2]
B ← (XTX)0.5XC(index)
D ← X B
for i = 1 : length(index) do
if D ≤ K − Si then
C(index(i) = K − Si

end if
C ← Ce−r∆t

end for
AmericanPut← C

end for

3.2. Binomial tree method

The binomial tree method [4] is another commonly used method which
can be applied to price the options (see Figure 3). The binomial pricing model
traces the evolution of the option’s key underlying variables in discrete-time.
This is done by means of a binomial lattice (tree), for a number of time steps
between the valuation and expiration dates. Each node in the lattice repre-
sents a possible price of the underlying at a given point in time. Valuation is
performed iteratively, starting at each of the final nodes (those that may be
reached at the time of expiration), and then working backwards through the
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tree towards the first node (valuation date). The value computed at each stage
is the value of the option at that point in time.

Figure 3 – Various paths of the binomial tree

In what follows, it is described S&P500 American put option valuation
using this method:

Let S is the price of the S&P500 index. If T is the expiration date of
option and δt is the time interval in each period. Then in this interval the value
of the index either increases from S to Su or reduces to Sd. Since the volatility
of the S&P500 index follows the stochastic volatility regime-switching Heston
model,

ui = exp{V IXi

√
δt}, di = exp{−V IXi

√
δt},

where the value of the VIX index follows a CIR process with regimes-switching.
It is necessary to check at each node whether the earlier exercise will exceed its
maintenance over a longer period of time. Thus, the value of the put American
option in the node (i, j) is as follows

AmericanPut1ij = K − Si,j

AmericanPut2i,j = e−rδt
[
PiAmericanPuti,j+1+(1−Pi)AmericanPuti+1,j+1

]
AmericanPuti,j = max

(
AmericanPut1i,j , AmericanPut2i,j

)
,
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where Pi =
ert−di
ui−di

. Note that the value of the American option in the node
(i,N), starting node, is as follows

AmericanPuti,N = max
(
0,K − Si,N

)
where N is the number of periods.

Algorithm 2 Binomial tree algorithm

N ← number of periods of the Binomial tree
T ← time
K ← strike price
S0 ← price
δt← TN̄

S11 ← S0

for i = 1, · · · , N do
ui = exp{V IXi

√
δt}

di = (ui)
−1

Pi =
erT−di
ui−di

end for
for i = 2 : 1 : N do

for j = 1, · · · , i− 1 do
Si,j = Sj,i−1 + Sj,i−1 × ui−1

end for
Si,i = Si−1,i−1 − Si− 1, i− 1× di−1

AmericanPuti,N = max(K − Si,N , 0)
end for
for i = N − 1 : −1 : 1 do
AmericanPutj,N = max

(
K − Sj,i, e

−rδt(AmericanPutj,i+1 × Pi) +
(AmericanPutj+1,i+1 × (1− Pi))

)
end for
AmericanPut = AmericanPut1,1

4. NUMERICAL RESULTS

In this section, we calculate the value of the S&P500 American put option
where its volatility follows the regime-switching Heston model. Moreover, we
study the binomial tree algorithm with various periods.

In Table 3, we present the value of the American put option calculated
by LSM and binomial tree algorithms with different values of the strike price
and interest rate. Besides, Figure 4 illustrates more our achieved results.
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In Table 4, it is considered various values of the strike price and periods.
See Figure 5 for more illustration.

Results show that the interest rate has a negative effect on the options
price, i.e. the smaller interest rate r implies higher option price at any time.
This is reasonable, since if interest rates are high, you will hold the asset for
a longer time to deliver it under the put option. Plainly selling the asset and
using the proceeds to invest at a higher rate would be a better option. This
makes the put option less attractive and thus, less costly when interest rates
are high. Moreover, we can see that growing up the strike price causes a drop in
the value of the put option. Another intriguing outcome is that as the number
of periods of binomial tree algorithm increases, the obtained results coincide
much more with the results achieved from the LSM algorithm. Convergence of
binomial tree and LSM algorithms is investigated as [24] and [16].

Table 3 – Comparison of the S&P500 American put option price obtained
by the LSM and binomial tree algorithms with N = 1000

r K LSM Binomial | LSM - Binomial |
0.02 40 5.0656 4.8410 0.2246

60 7.6561 7.3056 0.3505
80 10.2578 9.7682 0.4896
100 12.8374 12.2373 0.6001

0.04 40 5.0541 4.7019 0.3522
60 7.6424 7.1022 0.5402
80 10.2431 9.5033 0.7396
100 12.8185 11.9443 0.8742

0.06 40 5.0505 4.5108 0.5397
60 7.6296 6.7962 0.8334
80 10.2259 9.1551 0.7081
100 12.7982 11.5472 1.2510

0.08 40 5.0470 4.2234 0.8236
60 7.6180 6.4541 1.1639
80 10.2090 8.7473 1.4617
100 12.7775 11.1392 1.6383
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Figure 4 – Value of the S&P500 American put option obtained by the
LSM and binomial tree algorithms with N = 1000.

Figure 5 – Value of the S&P500 American put option obtained by the
LSM and binomial tree algorithms with r = 0.08
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Table 4 – Comparison of the S&P500 American put option price obtained
by the LSM and binomial tree algorithms with r = 0.08

N K LSM Binomial | LSM - Binomial |
800 40 5.0239 2.8368 2.1871

60 7.6035 4.9597 2.6438
80 10.1970 7.1739 3.0231
100 12.7670 9.4995 3.2675

1000 40 5.0297 3.9994 1.0303
60 7.6072 6.1669 1.4403
80 10.1934 8.4450 1.7484
100 12.7584 10.8313 1.9271

1400 40 5.0122 4.8263 0.1859
60 7.6059 7.2733 0.3326
80 10.1892 9.7286 0.4606
100 12.7651 12.1697 0.5954

2000 40 4.9890 5.1625 0.1735
60 7.5615 7.7511 0.1897
80 10.1898 10.3447 0.1549
100 12.7491 12.9403 0.1912

APPENDIX A

Applying Itô’s Lemma to Eq. (2.1) gives

RT
t =

∫ T

t
(r − 1

2
Vu)du+

∫ T

t

√
VudW

1
u .

and also,

Et(R
T
t ) =

∫ T

t
(r − 1

2
Et(Vu))du.

To simplify, we set

XT ≡
∫ T

t

√
VudW

1
u and YT ≡

∫ T

t
(Vu − Et(Vu)du,

so

RT
t − Et(R

T
t ) = XT −

1

2
YT .

By Itô’s Lemma, we have

Vs = e−κ(Zs)s
(
eκ(Zt)tVt+

∫ s

t
θ(Zu)κ(Zu)e

κ(Zu)udu+

∫ s

t
σ(Zu)e

κ(Zu)u
√
VudW

2
u

)
,

for which

Et(Vs) = e−κ(Zs)s
(
eκ(Zt)tVt +

∫ s

t
θ(Zu)κ(Zu)e

κ(Zu)udu
)
.
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Hence,

Vs − Et(Vs) = e−κ(Zs)s

∫ s

t
σ(Zu)e

κ(Zu)u
√

VudW
2
u ,

and

YT =

∫ T

t

(
e−κ(Zs)s

∫ s

t
σ(Zu)e

κ(Zu)u
√
VudW

2
u

)
ds

=

∫ T

t

( ∫ T

u
e−κ(Zs)sds

)
σ(Zu)e

κ(Zu)u
√

VudW
2
u .

Now, we define the process Y ∗
s as

Y ∗
s :=

∫ s

t

(∫ T

u
e−κ(Zs)sds

)
σ(Zu)e

κ(Zu)u
√
VudW

2
u .

Note that Y ∗
T = YT but the weight function in Y ∗

s is
∫ T
u e−κ(Zs)sds which is

independent of s while the weight function in Ys is
∫ s
u e−κ(Zs)sds which depends

on s. This difference determines that Y ∗
s is an Itô process (martingale) and Ys

is not.
Indeed,

Et(R
T
t − Et(R

T
t ))

2

= Et(XT −
1

2
YT )

2

= Et(X
2
T )− Et(XTYT ) +

1

4
Et(Y

2
T )

=

∫ T

t
Et(Vs)ds−

∫ T

t

( ∫ T

s
e−κ(Zu)udu

)
σ(Zs)ρ(Zs)e

κ(Zs)sEt(Vs)ds

+
1

4

∫ T

t

( ∫ T

s
e−κ(Zu)udu

)2
σ2(Zs)e

2κ(Zs)sEt(Vs)ds,

and

Et(R
T
t − Et(R

T
t ))

3 = Et(XT −
1

2
YT )

3

= Et(X
3
T )−

3

2
Et(X

2
TYT ) +

3

4
Et(XTY

2
T )−

1

8
Et(Y

3
T ).(4.1)

It is worth noting that

(4.2) Et(R
T
t − Et(R

T
t ))

2 = G (t).

By Itô’s Lemma, we conclude that

dX3
s = 3X2

sdXs + 3XsdXsdXs = 3X2
s

√
VsdW

1
s + 3XsVsds,

d(X2
sY

∗
s ) = 2XsY

∗
s dXs + Y ∗

s dXsdXs +X2
sdY

∗
s + 2XsdXsdY

∗
s

= 2XsY
∗
s

√
VsdW

1
s + Y ∗

s Vsds
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+X2
s

( ∫ T

s
e−κ(Zν)νdν

)
σ(Zs)e

κ(Zs)s
√
VsdW

2
s

+ 2Xs

( ∫ T

s
e−κ(Zν)νdν

)
ρ(Zs)σ(Zs)e

κ(Zs)sVsds,

d(XsY
∗2
s) = (Y ∗

s )
2dXs + 2Y ∗

s XsdY
∗
s +XsdY

∗
s dY

∗
s + 2Y ∗

s dXsdY
∗
s

= (Y ∗
s )

2
√

VsdW
1
s + 2Y ∗

s Xs

( ∫ T

s
e−κ(Zν)νdν

)
σ(Zs)e

κ(Zs)s
√
VsdW

2
s

+Xs

( ∫ T

s
e−κ(Zν)νdν

)2
σ2(Zs)e

2κ(Zs)sVsds

+ 2Y ∗
s

( ∫ T

s
e−κ(Zν)νdν

)
ρ(Zs)σ(Zs)e

κ(Zs)sVsds,

d(Y ∗
s )

3 = 3(Y ∗
s )

2dY ∗
s + 3Y ∗

s dY
∗
s dY

∗
s

= 3(Y ∗
s )

2
( ∫ T

s
e−κ(Zν)νdν

)
σ(Zs)e

κ(Zs)s
√
VsdW

2
s

+ 3Y ∗
s

( ∫ T

s
e−κ(Zν)νdν

)2
σ2(Zs)e

2κ(Zs)sVsds.

On the other hand, we have

Et(XsVs) = e−κ(Zs)s

∫ s

t
σ(Zu)ρ(Zu)e

κ(Zu)uEt(Vu)du,

Et(Y
∗
s Vs) = e−κ(Zs)s

∫ s

t

( ∫ T

u
e−κ(Zs)sds

)
σ2(Zu)e

κ(Zu)uEt(Vu)du.

Thus,

Et(X
3
T ) = 3

∫ T

t
Et(XsVs)ds

= 3

∫ T

t

(
e−κ(Zs)s

∫ s

t
σ(Zu)ρ(Zu)e

κ(Zu)uEt(Vu)du
)
ds,

(4.3)

Et(X
2
TYT ) = Et(X

2
TY

∗
T )

(4.4)

=

∫ T

t
Et(Y

∗
s Vs)ds

+ 2

∫ T

t

( ∫ T

s
e−κ(Zu)udu

)
ρ(Zs)σ(Zs)e

κ(Zs)sEt(XsVs)ds

=

∫ T

t

[
e−κ(Zs)s

∫ s

t

( ∫ T

u
e−κ(Zs)sds

)
σ2(Zu)e

κ(Zu)uEt(Vu)du
]
ds
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+ 2

∫ T

t

[( ∫ T

s
e−κ(Zu)udu

)(
e−κ(Zs)s∫ s

t
σ(Zu)ρ(Zu)e

κ(Zu)uEt(Vu)du

)
ρ(Zs)σ(Zs)e

κ(Zs)s

]
ds,

Et(XTY
2
T ) = Et(XTY

∗2
T )

=

∫ T

t

(( ∫ T

s
e−κ(Zu)udu

)2
σ2(Zs)e

2κ(Zs)sEt(XsVs)
)
ds

+ 2

∫ T

t

(( ∫ T

s
e−κ(Zu)udu

)
ρ(Zs)σ(Zs)e

κ(Zs)sEt(Y
∗
s Vs)

)
ds

=

∫ T

t

(( ∫ T

s
e−κ(Zu)udu

)2
(
e−κ(Zs)s

∫ s

t
σ(Zu)ρ(Zu)e

κ(Zu)uEt(Vu)du

)
σ2(Zs)e

2κ(Zs)s
)
ds

+ 2

∫ T

t

[(( ∫ T

s
e−κ(Zu)udu

)
ρ(Zs)σ(Zs)e

κ(Zs)s
)

×
(∫ s

t

( ∫ T

u
e−κ(Zν)νdν

)
σ2(Zu)e

κ(Zu)uEt(Vu)du
)]

ds,

(4.5)

Et(Y
3
T ) = Et(Y

∗2
T ) = 3

∫ T

t

(( ∫ T

s
e−κ(Zu)udu

)2
σ2(Zs)e

2κ(Zs)sEt(Y
∗
sVs)

)
ds

= 3

∫ T

t

[(( ∫ T

s
e−κ(Zu)udu

)2
σ2(Zs)e

2κ(Zs)s
)

×
(
e−κ(Zs)s

∫ s

t

( ∫ T

u
e−κ(Zs)sds

)
σ2(Zu)e

κ(Zu)uEt(Vu)du
)]

ds.

(4.6)

Finally, we get from Eqs. (4.3) - (4.6) that

(4.7) Et(R
T
t − Et(R

T
t ))

3 = A (t)− 3

2
B(t) +

3

4
C (t)− 1

8
D(t),

and consequently,

(4.8) Skewness(RT
t ) =

Et(R
T
t − Et(R

T
t ))

3

(Et(RT
t − Et(RT

t ))
2)3/2

In what follows, we affirm the proof of the Kurtosis(RT
t ): One more time,

applying Itô’s Lemma gives

Et(R
T
t − Et(R

T
t ))

4 = Et(XT −
1

2
YT )

4
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= Et(X
4
T ) +

3

2
Et(X

2
TY

2
T )− 2Et(X

3
TYT )−

1

2
Et(XTY

3
T )

+
1

16
Et(Y

4
T ),(4.9)

and also,

dX4
s = 4X3

sdXs + 6X2
sdXsdXs = 4X3

s

√
VsdW

1
s + 6X2

sVsds,

d(X2
sY

∗2
s) = 2XsY

∗2
sdXs + Y ∗2

sdXsdXs + 2Y ∗
s X

2
sdY

∗
s

+X2
sdY

∗
s dY

∗
s + 4XsY

∗
s dXsdY

∗
s

= 2XsY
∗2
s

√
VsdW

1
s + Y ∗2

sVsds

+ 2Y ∗
s X

2
s

( ∫ T

s
e−κ(Zν)νdν

)
σ(Zs)e

κ(Zs)s
√
VsdW

2
s

+X2
s

( ∫ T

s
e−κ(Zν)νdν

)2
σ2(Zs)e

2κ(Zs)sVsds

+ 4XsY
∗
s

( ∫ T

s
e−κ(Zν)νdν

)
σ(Zs)ρ(Zs)e

κ(Zs)sVsds,

d(X3
sY

∗
s ) = 3X2

sY
∗
s dXs + 3XsY

∗
s dXsdXs +X3

sdY
∗
s + 3X2

sdXsdY
∗
s

= 3X2
sY

∗
s

√
VsdW

1
s + 3XsY

∗
s Vsds

+X3
s

( ∫ T

s
e−κ(Zν)νdν

)
σ(Zs)e

κ(Zs)s
√
VsdW

2
s

+ 3X2
s

( ∫ T

s
e−κ(Zν)νdν

)
σ(Zs)ρ(Zs)e

κ(Zs)sVsds,

d(XsY
∗3
s) = 3Y ∗2

sXsdY
∗
s + 3Y ∗

s XsdY
∗
s dY

∗
s + Y ∗3

sdXs + 3Y ∗2
sdY

∗
s dXs

= 3Y ∗2
sXs

( ∫ T

s
e−κ(Zν)νdν

)
σ(Zs)e

κ(Zs)s
√
VsdW

2
s

+ 3Y ∗
s Xs

( ∫ T

s
e−κ(Zν)νdν

)2
σ2(Zs)e

2κ(Zs)sVsds+ Y ∗3
s

√
VsdW

1
s

+ 3Y ∗2
s

( ∫ T

s
e−κ(Zν)νdν

)
σ(Zs)ρ(Zs)e

κ(Zs)sVsds,

dY ∗4
s = 4Y ∗3

sdY
∗
s + 6Y ∗2

sdY
∗
sdY

∗
s

= 4Y ∗3
s

( ∫ T

s
e−κ(Zν)νdν

)
σ(Zs)e

κ(Zs)s
√
VsdW

2
s

+ 6Y ∗2
s

( ∫ T

s
e−κ(Zν)νdν

)2
σ2(Zs)e

2κ(Zs)sVsds.
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On the other hand, we have

Et(X
2
sVs) = e−κ(Zs)s

[(
eκ(Zt)tVt +

∫ s

t
θ(Zu)κ(Zu)e

κ(Zu)udu
)( ∫ s

t
Et(Vu)du

)
+ Et

(( ∫ s

t

√
VudW

1
u

)2( ∫ s

t
σ(Zu)e

κ(Zu)u
√
VudW

2
u

))]
= e−κ(Zs)s

((
eκ(Zt)tVt+

∫ s

t
θ(Zu)κ(Zu)e

κ(Zu)udu
)( ∫ s

t
Et(Vu)du

))
,

Et(Y
∗2
sVs) = e−κ(Zs)s

(
eκ(Zt)tVt +

∫ s

t
θ(Zu)κ(Zu)e

−κ(Zu)udu
)

×
(∫ s

t

( ∫ T

u
e−κ(Zν)νdν

)2
σ2(Zu)e

2κ(Zu)uEt(Vu)du
)

+ e−κ(Zs)sE
(( ∫ s

t
(

∫ T

u
e−κ(Zν)νdν)σ(Zu)e

κ(Zu)u
√

VudW
2
u

)2
×
( ∫ s

t
σ(Zu)e

κ(Zu)u
√

VudW
2
u

))
= e−κ(Zs)s

(
eκ(Zt)tVt +

∫ s

t
θ(Zu)κ(Zu)e

−κ(Zu)udu
)

×
(∫ s

t

( ∫ T

u
e−κ(Zν)νdν

)2
σ2(Zu)e

2κ(Zu)uEt(Vu)du
)
,

Et(XsY
∗
s Vs) = Et

(∫ s

t

√
VudW

1
u×

[ ∫ s

t

(∫ s

u
e−κ(Zν)νdν

)
σ(Zu)e

κ(Zu)u
√

VudW
2
u

]
×
[
e−κ(Zs)s

(
eκ(Zt)tVt +

∫ s

t
θ(Zu)κ(Zu)e

κ(Zu)udu

+

∫ s

t
σ(Zu)e

κ(Zu)u
√
VudW

2
u

)])
= e−κ(Zs)s

(
eκ(Zt)tVt +

∫ s

t
θ(Zu)κ(Zu)e

κ(Zu)udu
)

×
(∫ s

t

( ∫ s

u
e−κ(Zν)νdν

)
σ(Zu)ρ(Zu)e

κ(Zu)uEt(Vu)du
)
.

Therefore, we can write

Et(X
4
T ) = 6

∫ T

t
Et(X

2
sVs)ds

= 6

∫ T

t
e−κ(Zs)s

((
eκ(Zt)tVt +

∫ s

t
θ(Zu)κ(Zu)e

κ(Zu)udu
)

( ∫ s

t
Et(Vu)du

))
ds,(4.10)
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Et(X
2
TY

∗
T
2) =

∫ T

t
Et(Y

∗2
sVs)ds

+

∫ T

t

( ∫ T

s
e−κ(Zν)νdν

)2
σ2(Zs)e

2κ(Zs)sEt(X
2
sVs)ds

+ 4

∫ T

t

( ∫ T

s
e−κ(Zν)νdν

)
σ(Zs)ρ(Zs)e

κ(Zs)sEt(VsXsY
∗
s )ds

=

∫ T

t

[
e−κ(Zs)s

(
eκ(Zt)tVt +

∫ s

t
θ(Zu)κ(Zu)e

−κ(Zu)udu
)

×
(∫ s

t

( ∫ T

u
e−κ(Zν)νdν

)2
σ2(Zu)e

2κ(Zu)uEt(Vu)du
)]

ds

+

∫ T

t

[(( ∫ T

s
e−κ(Zν)νdν

)2
σ2(Zs)e

2κ(Zs)s
)
×

× e−κ(Zs)s
((

eκ(Zt)tVt +

∫ s

t
θ(Zu)κ(Zu)e

κ(Zu)udu
)

( ∫ s

t
Et(Vu)du

))]
ds

+ 4

∫ T

t

[(( ∫ T

s
e−κ(Zν)νdν

)
σ(Zs)ρ(Zs)e

κ(Zs)s
)

× e−κ(Zs)s
(
eκ(Zt)tVt +

∫ s

t
θ(Zu)κ(Zu)e

κ(Zu)udu
)

×
(∫ s

t

( ∫ s

u
e−κ(Zν)νdν

)
σ(Zu)ρ(Zu)e

κ(Zu)uEt(Vu)du
)]

ds,(4.11)

Et(X
3
TY

∗
T ) = 3

∫ T

t
Et(XsY

∗
s Vs)ds

+ 3

∫ T

t

( ∫ T

s
e−κ(Zν)νdν

)
σ(Zs)ρ(Zs)e

κ(Zs)sEt(X
2
sVs)ds

= 3

∫ T

t

[
e−κ(Zs)s

(
eκ(Zt)tVt +

∫ s

t
θ(Zu)κ(Zu)e

κ(Zu)udu
)

×
(∫ s

t

( ∫ s

u
e−κ(Zν)νdν

)
σ(Zu)ρ(Zu)e

κ(Zu)uEt(Vu)du
)]

ds

+ 3

∫ T

t

[(( ∫ T

s
e−κ(Zν)νdν

)
σ(Zs)ρ(Zs)e

κ(Zs)s
)
e−κ(Zs)s

((
eκ(Zt)tVt

+

∫ s

t
θ(Zu)κ(Zu)e

κ(Zu)udu
)( ∫ s

t
Et(Vu)du

))]
ds,(4.12)
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Et(XTY
∗3
T ) = 3

∫ T

t

( ∫ T

s
e−κ(Zν)νdν

)2
σ2(Zs)e

2κ(Zs)sEt(Y
∗
s XsVs)ds

+ 3

∫ T

t

( ∫ T

s
e−κ(Zν)νdν

)
σ(Zs)ρ(Zs)e

κ(Zs)sEt(Y
∗2
sVs)ds

= 3

∫ T

t

[(( ∫ T

s
e−κ(Zν)νdν

)2
σ2(Zs)e

2κ(Zs)s
)

× e−κ(Zs)s
(
eκ(Zt)tVt +

∫ s

t
θ(Zu)κ(Zu)e

κ(Zu)udu
)

×
(∫ s

t

( ∫ s

u
e−κ(Zν)νdν

)
σ(Zu)ρ(Zu)e

κ(Zu)uEt(Vu)du
)]

ds

+ 3

∫ T

t

[(( ∫ T

s
e−κ(Zν)νdν

)
σ(Zs)ρ(Zs)e

κ(Zs)s
)

× e−κ(Zs)s
(
eκ(Zt)tVt +

∫ s

t
θ(Zu)κ(Zu)e

−κ(Zu)udu
)

×
(∫ s

t

( ∫ T

u
e−κ(Zν)νdν

)2
σ2(Zu)e

2κ(Zu)uEt(Vu)du
)]

ds,(4.13)

Et(Y
∗4
T ) = 6

∫ T

t

( ∫ T

s
e−κ(Zν)νdν

)2
σ2(Zs)e

2κ(Zs)sEt(Y
∗2
sVs)ds

= 6

∫ T

t

[(( ∫ T

s
e−κ(Zν)νdν

)2
σ2(Zs)e

2κ(Zs)sds
)

× e−κ(Zs)s
(
eκ(Zt)tVt +

∫ s

t
θ(Zu)κ(Zu)e

−κ(Zu)udu
)

×
(∫ s

t

( ∫ T

u
e−κ(Zν)νdν

)2
σ2(Zu)e

2κ(Zu)uEt(Vu)du
)]

ds.(4.14)

Finally, we get from Eqs. (4.10) - (4.14) that

Et(R
T
t − Et(R

T
t ))

4 = H (t) +
3

2
M (t)− 2N (t)− 1

2
O(t) +

1

16
P(t),(4.15)

and consequently,

(4.16) Kurtosis(RT
t ) =

Et(R
T
t − Et(R

T
t ))

4

(Et(RT
t − Et(RT

t ))
2)2

.

The proof is done.

5. CONCLUSION

In this paper, we studied the regime-switching Heston model. We ob-
tained a closed-form formula for conditional higher moments of the stock re-
turn. Our achieved results confirmed that the regime-switching Heston model
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is a better choice for analyzing the conditional higher moments of the real
market date than the original Heston model. We exert a maximum likelihood
procedure to estimate the parameters of model. Next, providing a LSM algo-
rithm, we calculate the value of the S&P500 American put option under this
model where its volatility managed by the VIX index. Additionally, we apply
binomial tree method as a certain criteria to verify the exactness of our pre-
sented algorithm. Based on our achieved results, by increasing the periods of
the binomial tree method, the results of this algorithm converge to the results
of the LSM algorithm.
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