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The aim of this paper is to exhibit the continued fractions expansions of nth

root of rational functions. We are particularly interested to the expansion of

(1 − 1

T
)

1
n in the field of power series of characteristic a prime integer p, for a

suitable n prime with p.
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1. INTRODUCTION

A central question in Diophantine approximation is concerned with how
algebraic numbers can be approximated by rationals. This problem is ulti-
mately connected with the behavior of their continued fraction expansion. In
[4], Khintchine conjectured that if x is a real algebraic number of degree > 2
then x has a continued fraction expansion whose sequence of partial quotients
is unbounded. The answer to this conjecture is far from being tractable. This
is due to the fact that no explicit continued fraction expansion of algebraic
number of degree n > 2 is known. However, more things are known in the
case of algebraic power series over a finite field of characteristic p. The con-
tinued fraction expansion of many algebraic, and nonquadratic, elements are
completely described. The first explicit description of continued fraction for
algebraic power series over a finite field goes back to the work of Baum and
Sweet [2], in the middle of the 1970’s. They could give the first example of
an algebraic power series, of degree 3 over F2, with all partial quotients of
bounded degree. Moreover, they have exhibited other families of formal series
with unbounded partial quotients. Later, this work was carried on by Mills and
Robbins in their paper [10]. They presented several examples of algebraic con-
tinued fractions, also, they introduced a particular subset of algebraic power
series called hyperquadratic. Let q = pt with t ≥ 0, we say that α belonging to
F((T−1)) is hyperquadratic if α is irrational and satisfies an algebraic equation
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of the particular form Aαq+1 +Bαq +Cα+D = 0, where A, B, C and D be-
long to F[T ]. Note that quadratic elements are hyperquadratic. Many explicit
continued fractions are known for nonquadratic but hyperquadratic elements;
see for example [1], [6] and [12]. Even though the pattern of hyperquadratic
expansions can sometimes be very sophisticated, it is yet doubtful whether this
description, even partial, is possible for all hyperquadratic power series.

Now we consider the case of the equation algebraic irreducible

xn = R,(1.1)

where n is a positive integer, not divisible by p, and R ∈ F(T ). Such an
equation has a root in F((T−1)) if (and only if) degR is a multiple of n and
the first coefficient of R belongs to Fn. Osgood [11], Voloch [14], de Mathan
[3] and Lasjaunias [5] have studied the rational approximation of the solution
of the equation (1.1). For instance, we know that it is well approximable by
rationals for suitable R. However, the explicit continued fraction expansion of
the solutions of (1.1) is not yet described.

In this work, we are interested in giving explicitly the continued fraction

expansion for the solution of equation (1.1) for R = 1 − 1

T
, and for the cases

when n = q + 1 and n = q − 1 respectively, where q is a power of p. Note that
in each case, it is easy to see that the solution is hyperquadratic. Moreover,
on the way, we will discuss the solutions of a Diophantine equation. We recall

that (1− 1

T
)
1
n has a continued fraction expansion in Q((T−1)) with all partial

quotient of degree 1, which is completely described (see [5] p. 225). Of course,
this is different from the case of field of power series in positive characteristic.

We note that for n an integer prime to p, the equation xn = 1 − 1

T
has a

unique root α in F((T−1)) with |α− 1| < 1. Further, in [2, Theorem 11] Baum
and Sweet have given the continued fraction expansion, in characteristic 2, of

(1− 1

T
)

1
2n−1 for all n ≥ 1. However, their method cannot be extended to odd

characteristic, see [2, Remark p. 610]. We will exhibit this expansion using
another method which is valid for all positive characteristic.

Therefore, by this work we add other examples to the explicitly known
hyperquadratic continued fractions. Furthermore, for these examples, Liou-
ville’s theorem is sharp, and thus a Thue-Siegel-Roth theorem cannot hold for
such examples. Indeed, in Corollary 4.2, we will improve the following result
of Baum and Sweet [2].

Theorem 1.1. Let d, n ∈ N\{0}. Then there exist an algebraic formal
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power series θ ∈ F2((T
−1)) of degree 2n + 1 such that the equation

|θ − P

Q
| = 2−d

|Q|2n+1

has infinitely many solutions (P,Q) ∈ F2[T ]× F2[T ].

2. PRELIMINARIES

Let p be a given prime number and F be a finite field of characteristic p.
We denote by F[T ] the ring of polynomials with coefficients in F and by F(T )
the field of fractions of F[T ]. Let F((T−1)) be the field of formal power series:

F((T−1)) =
{
α =

∑
i≥n0

ciT
−i : n0 ∈ Z and ci ∈ F

}
.

Let α =
∑

ciT
−i be any formal power series, we define its polynomial part,

denoted [α], by [α] :=
∑

i≤0 ciT
−i. If α ̸= 0, then the degree of α is deg(α) =

sup{−i; ci ̸= 0} and deg(0) = −∞. Thus, we define the non-Archimedean
absolute value over F((T−1)) by |α| = edeg(α) and |0| = 0.

As in the classical context of real numbers, we have a continued fraction
algorithm in F((T−1)). If α ∈ F((T−1)) we can write

α = a0 + 1/(a1 + 1/(a2 + · · · = [a0, a1, a2, . . .]

where ai ∈ F[T ]. The ai are called the partial quotients and we have deg ai > 0
for i > 0. This continued fraction is finite if and only if α ∈ F(T ).

We define two sequences of polynomials (Pn) and (Qn) by P0 = a0, Q0 =
1, P1 = a0a1 + 1, Q2 = a1 and, for any n ≥ 2,

Pn = anPn−1 + Pn−2, Qn = anQn−1 +Qn−2.

We easily check that Pn+1Qn − Qn+1Pn = (−1)n, whence Pn and Qn are co-
prime polynomials. The rational function Pn/Qn is called a convergent to α
and we have Pn/Qn = [a0, a1, . . . , an]. It is easily to see that degQn+1 =

deg an+1+degQn, thus degQn =

n∑
j=1

deg aj . Furthermore, we have the follow-

ing important equality ∣∣∣∣α− Pn

Qn

∣∣∣∣ = |an+1|−1|Qn|−2.

Moreover, we have for n ≥ 0 the identity:

α = [a0, a1, . . . , an, αn+1] =
Pnαn+1 + Pn−1

Qnαn+1 +Qn−1
,(2.2)

where αn+1 = [an+1, an+2, . . .] is called the complete quotient of α.
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Mahler [8] proved the equivalence of Liouville’s theorem [7] in the formal
series case:

Theorem 2.1. Let α ∈ F((T−1)) algebraic of degree d ≥ 2, then there
exists c > 0 such that for all P ,Q ∈ F[T ]:

|α− P

Q
| ≥ c

|Q|d
.

He introduced the first example of an α ∈ Fp((T
−1)) satisfying the ir-

reducible polynomial Tαp − Tα + 1 = 0, for which, the exponent d in the
previous theorem cannot be reduced. So Thue-Siegel-Roth theorem cannot
hold for such example. The reader who is interested in a survey of the different
contributions to this topic and full references can consult for example [5], [12]
and [13, Chap. 9].

We need to introduce the following two lemmas. The proof of the first is
easy so we omit it, and the proof of the second can be found in [2, p. 600].

Lemma 2.2. Let A ∈ F[T ] and α ∈ F((T−1)) such that

α = [a0, a1, · · · , an, an+1 · · · ]. Suppose that A divides ai for all i ≥ 0. Then

A−1α = [b0, · · · , bn, · · · ]

where for all k ≥ 0

b2k = A−1a2k and b2k+1 = Aa2k+1.(2.3)

Note that the formula (2.3) does not give the usual continued fraction
expansion of A−1α. Indeed, A−1a2k may be in F∗ for some index k ≥ 1.
However, the usual continued fraction expansion of A−1α can be deduced from
it. Let δ = A−1a2k ∈ F∗, then

β = [b0, . . . , b2k−1, δ, b2k+1, . . .]

= [b0, . . . , b2k−1 +
1

δ
,−δ2b2k+1 − δ,−b2k+2

δ2
,−δ2b2k+3, . . .],

because

b2k−1 +
1

δ + (1/β2k+1)
= b2k−1 +

1

δ
− 1

δ2β2k+1 + δ
.

Lemma 2.3. Let P (x) =
∑

0≤i≤nAix
i with Ai ∈ F[T ]\{0} and n ≥ 1.

Let α = [a0, · · · , an, · · · ] ∈ F((T−1)) be an algebraic formal power series such
that P (α) = 0. Let U be a nonconstant polynomial of F[T ]. Then β =
[a0(U), · · · , an(U), · · · ] = α(U) satisfies

∑
0≤i≤nBiβ

i = 0 where Bi = Ai[U ].
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We will also use a lemma relying on an idea about real continued fractions
due to Mendès France. This lemma seems to appear for the first time in his
work on finite continued fraction in the context of real numbers, see [9, p. 209].
Let Pn/Qn ∈ F(T ) such that Pn/Qn := [a1, a2, . . . , an]. For all x ∈ F(T ), we
will write [

[a1, a2, . . . , an], x
]
:=

Pn

Qn
+

1

x

Lemma 2.4. Let a1, . . . , an, x ∈ F(T ). We have the following equality:[
[a1, a2, . . . , an], x

]
= [a1, a2, . . . , an, y],where y = (−1)n−1Q−2

n x−Qn−1Q
−1
n .

Particulary, we have[
[a1, a2, a3], x

]
= [a1, a2, a3, y],where y = (a2a3 + 1)−2x− a2(a2a3 + 1)−1.

The proof of this lemma can be found in Lasjaunias’s article [6, p. 336].

3. CONTINUED FRACTION EXPANSION OF THE (q + 1)th

ROOT OF 1− 1

T

Theorem 3.1. Let F be a field of characteristic p. Let t ≥ 1 be an integer
and q = pt > 2. Let α ∈ F((T−1)) be the irrational solution of the equation:

xq+1 = 1− 1

T q+1
.(3.4)

Then, the continued fraction expansion of α is [a0, · · · , an, · · · ], where
a0 = 1, a1 = −T q+1, and, for n ≥ 0,

an+2 = −T qn+(−1)n+1
(
1 + T q+1 + T 2(q+1) + · · ·

+T (q−2)(q+1)
)qn

(T q+1 − 1)
qn+(−1)n+1

q+1 .

Proof. Let α = [a0, · · · , an, · · · ] be the irrational solution of the equation
(3.4). Then a0 = [α] = 1. Put β = Tα. Let [b0, · · · , bn, · · · ] the continued
fraction expansion of β. Then β satisfies the equation:

βq+1 = T q+1 − 1(3.5)

and [β] = b0 = T . We have β = T + β−1
1 . By replacing β by T + β−1

1 in (3.5),
we get that β1 satisfies the equation:

βq+1
1 + T qβq

1 + Tβ1 + 1 = 0.(3.6)

So [β1] = b1 = −T q. Moreover, we can write (3.6) as:

βq
1 =

−Tβ1 − 1

β1 + T q
.(3.7)
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We know that β1 = −T q + β−1
2 . So the equation (3.7) becomes:

βq
1 =

−T (−T q + β−1
2 )− 1

β−1
2

= (T q+1 − 1)β2 − T.(3.8)

The identity (3.8) gives that:

bq1 + β−q
2 = (T q+1 − 1)β2 − T.

So

β2 =
bq1 + T

T q+1 − 1
+ (T q+1 − 1)−1β−q

2

=
−T q2 + T

T q+1 − 1
+ (T q+1 − 1)−1β−q

2 .

Since

−T q2 + T = −T (T q+1 − 1)
(
1 + T q+1 + T 2(q+1) + . . .+ T (q−2)(q+1)

)
,

then b2 = −T (1 + T q+1 + T 2(q+1) + . . .+ T (q−2)(q+1)) and

β3 = (T q+1 − 1)βq
2.(3.9)

Again, knowing that β2 = b2 + β−1
3 , it follows from the identity (3.9) that

β3 = (T q+1 − 1)bq2 + (T q+1 − 1)β−q
3 . Then

b3 = (T q+1 − 1)bq2 = −T q(T q+1 − 1)
(
1 + T q+1 + T 2(q+1) + . . .+ T (q−2)(q+1)

)q
,

and β4 = (T q+1 − 1)−1βq
3. The last identity gives that β4 = b4 + β−1

5 =
(T q+1 − 1)−1bq3 + (T q+1 − 1)−1β−q

4 . Then

b4 = −T q2(T q+1 − 1)q−1
(
1 + T q+1 + T 2(q+1) + . . .+ T (q−2)(q+1)

)q2
,

and β5 = (T q+1 − 1)βq
4. So by a simple recursion we prove that for all k ≥ 1

β2k+1 = (T q+1 − 1)βq
2k and β2k+2 = (T q+1 − 1)−1βq

2k+1.

Hence for all k ≥ 1

b2k+1 = (T q+1 − 1)bq2k and b2k+2 = (T q+1 − 1)−1bq2k+1.

Thus for all k ≥ 1

b2k+1 = −T q2k−1(
1 + T q+1 + T 2(q+1)+ . . .+ T (q−2)(q+1)

)q2k−1(
T q+1− 1

) q2k−1+1
q+1

b2k+2 = −T q2k
(
1 + T q+1 + T 2(q+1) + . . .+ T (q−2)(q+1)

)q2k(
T q+1 − 1

) q2k−1
q+1 .

Now, since α = T−1β and T divides b2k for all k ≥ 0, following Lemma 2.2,
we get the continued fraction expansion of α. This is a0 = 1, a1 = −T q+1,
a2 = −(1 + T q+1 + T 2(q+1) + . . .+ T (q−2)(q+1)) and for all k ≥ 1

a2k+1 = −T q2k−1+1
(
1+T q+1+T 2(q+1)+ . . .+ T (q−2)(q+1)

)q2k−1

(T q+1− 1)
q2k−1+1

q+1
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a2k+2 = −T q2k−1
(
1 + T q+1 + T 2(q+1) + . . .+ T (q−2)(q+1)

)q2k
(T q+1 − 1)

q2k−1
q+1 .

So we obtain the desired result.

Corollary 3.1. Let F be a field of characteristic p. Let t ≥ 1 be an
integer and q = pt > 2. Let α ∈ F((T−1)) be the irrational solution of the
equation:

xq+1 = 1− 1

T
.(3.10)

Then, the continued fraction expansion of α is:

[a0, · · · , an, · · · ],

where

a0 = 1, a1 = −T, a2 = 1 + T + T 2 + . . .+ T q−2,

and for n ≥ 1

an+2 = −T
qn+(−1)n+1

q+1
(
1 + T + T 2 + . . .+ T q−2

)qn
(T − 1)

qn+(−1)n+1

q+1 .

Proof. We know that for all n ≥ 0: qn + (−1)n+1 ≡ 0 mod (q + 1). So
we can write the partial quotients of α solution of the equation (3.4) as:

an+2 = −(T q+1)
qn+(−1)n+1

q+1
(
1 + (T q+1) + (T q+1)2 + · · ·

+(T q+1)q−2
)qn

(T q+1 − 1)
qn+(−1)n+1

q+1 .

So the result is a consequence of Lemma 2.3.

The case of cubic root of (1− 1

T
) will be deduced from the first theorem

of the Section 5.

4. ON A DIOPHANTINE EQUATION

In the following theorem, we will study the solutions of a Diophantine
equation ultimately related to the equation (3.10).

Theorem 4.1. Let q be a power of p. Let B be a nonconstant polynomial
of F[T ]. The Diophantine equation

BP q+1 − (B − 1)Qq+1 = 1(4.11)

have infinitely many solution (P,Q) ∈ F[T ]× F[T ], which are the even conver-
gents of θ = α(B) where α is the solution of the equation (3.10).
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Proof. Let θ = [b0, b1, . . .] be the continued fraction expansion of θ. As
θ = α(B) then bi = ai(B). Let (Pn/Qn)n≥0 be the sequence of convergent
of θ. Let H(Y, Z) = BY q+1 − (B − 1)Zq+1 and θ be the unique root of
L(Y ) = H(Y, 1) satisfying |θ| = 1. Then by writing H(Y, 1) in the form

H(Y, 1) = Bθq(Y − θ) +BY (Y − θ)q,

we can conclude, for all integer s ≥ 0, that

|H(
P2s

Q2s
, 1)| = |B||θ − P2s

Q2s
|.(4.12)

On the other hand, a simple calculation gives that

|Q2s| =
2s∏
i=1

|bi| = |B||B|2
q2s−1−q

(q−1)(q+1) |B|(q−2) q
2s−1−1
q−1 ,

and

|b2s+1| = |B|2
q2s−1+1

q+1 |B|(q−2)q2s−1
.

We can easily check that |b2s+1| = |B||Q2s|q−1. This gives that

|θ − P2s

Q2s
| = 1

|b2s+1||Q2s|2
=

1

|B||Q2s|q+1
.(4.13)

So the equality (4.12) becomes

|H(
P2s

Q2s
, 1)| = |B| 1

|B||Q2s|q+1
=

1

|Q2s|q+1
.

Since

H(P,Q) = Qq+1H(
P

Q
, 1)

we obtain that |H(P2s, Q2s)| = 1 and so H(P2s, Q2s) ∈ F∗. Since P0 = Q0 = 1
then H(P0, Q0) = 1. This gives that H(P2s, Q2s) = 1 for all s ≥ 0.

The aim of the following corollary is to improve Baum and Sweet’s theo-
rem stated in Theorem (1.1).

Corollary 4.2. Let d ∈ N\{0} and q be a power of p. Then there exist
an algebraic formal power series α ∈ F((T−1)) of degree q + 1 such that the
equation

|α− P

Q
| = e−d

|Q|q+1

has infinitely many solutions (P,Q) ∈ F[T ]× F[T ].

Proof. The proof is directly deduced from the equality (4.13).
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5. CONTINUED FRACTION EXPANSION OF THE (q − 1)th

ROOT OF 1− 1

T

Theorem 5.1. Let F be a field of characteristic 2. Let t ≥ 2 be an integer
and q = 2t. Let α ∈ F((T−1)) be the irrational solution of the equation:

xq−1 = 1− 1

T
.(5.14)

Then, the continued fraction expansion of α is:

[a0, · · · , an, · · · ],

where

a0 = 1, a1 = T +1, a2 = T (T +1)(T q−4+T q−6+ . . .+T 2+1)+1, a3 = T (T +1)

and for all k ≥ 2

a2k = T
(q−2).qk−1+1

q−1 (T + 1)
(q−2).qk−1+1

q−1
(
T q−4 + T q−6 + . . .+ T 2 + 1

)qk−1

,

and

a2k+1 = T
qk−1
q−1 (T + 1)

qk−1
q−1 .

Proof. We begin by computing the partial quotients of the continued
fraction expansion of the solution γ of the equation:

xq−1 = 1− 1

T q−1
.(5.15)

Put γ = [a0, · · · , an, · · · ] and β = [b0, · · · , bn, · · · ] such that β = Tγ. Then β
satisfies the equation:

βq−1 = T q−1 − 1.(5.16)

We have [β] = b0 = T . Furthermore, the equation (5.16) is equivalent to

βq = (T q−1 − 1)β.(5.17)

We know that β = T + β−1
1 . So by replacing β by T + β−1

1 in the equation
(5.17), we get that β1 satisfies the following equation:

Tβq
1 + (T q−1 + 1)βq−1

1 + 1 = 0.(5.18)

We can see that
T q−1 + 1

T
is a convergent to β1. In fact

|β1 −
T q−1 + 1

T
| = 1

|β1|q−1

|Tβq
1 − (T q−1 + 1)βq−1

1 |
|T |

=
1

|T ||β1|q−1
<

1

|T |2
.
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So we obtain that b1 = [β1] = T q−2 and b2 = T . Moreover, the equation (5.18)
can be written as:

βq
1 =

β1
Tβ1 + (T q−1 + 1)

.(5.19)

We also have, from identity (2.2) that

β1 =
(T q−1 + 1)β3 + T q−2

Tβ3 + 1
.(5.20)

So, combining (5.19) and (5.20) we get the following identity:

βq
1 = (T q−1 + 1)β3 + T q−2.(5.21)

Since β1 = b1 + β−1
2 , the identity (5.21) can be written as:

bq1 + T q−2

T q−1 + 1
+ (T q−1 + 1)−1β−q

2 = β3 = [b3, β4].

We have

bq1 + T q−2

T q−1 + 1
=

T q(q−2) + T q−2

T q−1 + 1
= T q−2T

q2−3q+2 + 1

T q−1 + 1

= T q−2(1 + T q−1 + T 2(q−1) + . . .+ T (q−1)(q−3)).

So we get that

b3 = T q−2(1 + T q−1 + T 2(q−1) + . . .+ T (q−3)(q−1))

= T q−2(T q−1 + 1)(T (q−4)(q−1) + T (q−6)(q−1) + . . .+ T 2(q−1) + 1),

and
β4 = (T q−1 + 1)βq

2.
This last identity is equivalent to b4 + β−1

5 = (T q−1 + 1)bq2 + (T q−1 + 1)β−q
3 .

Hence b4 = (T q−1 + 1)T q and β5 = (T q−1 + 1)−1βq
3.

We apply again the same reason and we can prove by recursion for all k ≥ 1

β2k+2 = (T q−1 + 1)βq
2k,

and
β2k+3 = (T q−1 + 1)−1βq

2k+1.
This gives for all k ≥ 1 that

b2k+2 = (T q−1 + 1)bq2k,

b2k+3 = (T q−1 + 1)−1bq2k+1.

Thus for all k ≥ 1

b2k+1 = T (q−2).qk−1(
T q−1 + 1

) (q−2).qk−1+1
q−1

(
T (q−4)(q−1)

+ T (q−6)(q−1) + · · ·+ T 2(q−1) + 1
)qk−1

,
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b2k+2 = T qk
(
T q−1 + 1

) qk−1
q−1 .

Now, we have γ = T−1β. In this case we have that b2 = T then T−1b2 = 1 ∈ F∗.
So using Lemma 2.2 and the note that follows, we get the usual continued
fraction expansion of γ satisfying (5.15) that is: a0 = 1, a1 = T q−1 + 1,
a2 = T q−1(T q−1 + 1)(T (q−4)(q−1) + T (q−6)(q−1) + . . . + T 2(q−1) + 1) + 1, a3 =
T q−1(T q−1 + 1) and for all k ≥ 2

a2k = T (q−2).qk−1+1
(
T q−1 + 1

) (q−2).qk−1+1
q−1

(
T (q−4)(q−1)

+ T (q−6)(q−1) + . . .+ T 2(q−1) + 1
)qk−1

,

a2k+1 = T qk−1(T q−1 + 1)
qk−1
q−1 .

Since for all k ≥ 0: (q−2).qk+1 ≡ 0 mod (q−1) and qk−1 ≡ 0 mod (q−1),
we can write:

a2k = (T q−1)
(q−2).qk−1+1

q−1
(
T q−1 + 1

) (q−2).qk−1+1
q−1

(
T (q−4)(q−1)

+ T (q−6)(q−1) + . . .+ T 2(q−1) + 1
)qk−1

,

a2k+1 = (T q−1)
qk−1
q−1

(
T q−1 + 1

) qk−1
q−1 ,

for all k ≥ 2. Finally, as γ = α(T q−1) we deduce from Lemma 2.3 the desired
result.

Example 5.1. We consider a field F of characteristic 2, and α ∈ F((T−1))
be the irrational solution of the equation:

x3 = 1− 1

T
.(5.22)

Then, by applying the result of the previous Theorem with q = 4, we get
that the continued fraction expansion of α is [a0, · · · , an, · · · ], with a0 = 1,
a1 = T + 1, a2 = T 2 + T + 1 and for n ≥ 1

an+2 =
(
T 2 + T

) 2n+1+(−1)n

3 .

When F is a field of characteristic p > 2 and q is a power of p, the

determination of the partial quotients of the root of the equation xq−1 = 1− 1

T
is more complicated. This can none-the-less be achieved using the method used
to prove Theorem 5.1. We will be satisfied with giving the beginning of the
continued fraction of the (q − 1)th root of 1− 1/T in characteristic p ̸= 2.

Theorem 5.2. Let F be a field of characteristic p > 2. Let t ≥ 1 be an
integer and q = pt > 3. Let α ∈ F((T−1)) be the irrational solution of the
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equation:

xq−1 = 1− 1

T
.(5.23)

Then, the continued fraction expansion of α begins with:

α = [1, T − 1,−T q−2 − T q−3 + . . .− T − 1,−2−1T + 2−1, 2−5T − 2−5, . . .].

Proof. We begin by computing the partial quotients of the continued
fraction expansion of the solution α of the equation:

xq−1 = 1− 1

T q−1
.(5.24)

Put α = [a0, · · · , an, · · · ] and β = [b0, · · · , bn, · · · ] such that β = Tα. Then β
satisfies the equation:

βq−1 = T q−1 − 1.(5.25)

We have [β] = b0 = T . Furthermore, the equation (5.25) is equivalent to

βq = (T q−1 − 1)β.(5.26)

We know that β = T + β−1
1 . So by replacing β by T + β−1

1 in the equation
(5.26), we get that β1 satisfies the following equation:

−Tβq
1 + (T q−1 − 1)βq−1

1 − 1 = 0.(5.27)

We can see that
T q−1 − 1

T
is a convergent to β1. In fact

|β1 −
T q−1 − 1

T
| = 1

|β1|q−1

|Tβq
1 − (T q−1 − 1)βq−1

1 |
|T |

=
1

|T ||β1|q−1
<

1

|T |2
.

So we obtain that b1 = [β1] = T q−2 and b2 = −T . Moreover, the equation
(5.27) can be written as:

βq
1 =

β1
−Tβ1 + (T q−1 − 1)

.(5.28)

We also have, from identity (2.2) that

β1 =
(−T q−1 + 1)β3 + T q−2

−Tβ3 + 1
.(5.29)

So, combining (5.28) and (5.29) we get the following identity:

βq
1 = (T q−1 − 1)β3 − T q−2.(5.30)

Since β1 = b1 + β−1
2 , the identity (5.30) can be written as:

bq1 + T q−2

T q−1 − 1
+ (T q−1 − 1)−1β−q

2 = β3.
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We have T q2−2q =
(
T q2−3q+1 + T q2−4q+2 + . . .+ T q−2

)
(T q−1 − 1) + T q−2. So

bq1 + T q−2 = T q2−2q + T q−2

=
(
T q2−3q+1 + T q2−4q+2 + . . .+ T q−2

)(
T q−1 − 1

)
+ 2T q−2.

Then

bq1 + T q−2

T q−1 − 1
= (T q2−3q+1 + T q2−4q+2 + . . .+ T q−2) +

2T q−2

T q−1 − 1

= [T q2−3q+1 + T q2−4q+2 + . . .+ T q−2, 2−1T,−2T q−2].

Hence
[
[T q2−3q+1 + T q2−4q+2 + . . .+ T q−2, 2−1T,−2T q−2], (T q−1 − 1)βq

2

]
= β3.

By Lemma 2.4 we get

[T q2−3q+1 + T q2−4q+2 + . . .− T q−2, 2−1T,−2T q−2, β′] = β3,

with

β
′
=

βq
2

(T q−1 − 1)
+

2−1T

(T q−1 − 1)
.

Since |β′ | > 1 then β
′
= β6. So we obtain that

b3 = T q2−3q+1 + T q2−4q+2 + . . .+ T q−2, b4 = 2−1T, b5 = −2T q−2

β6 =
βq
2

(T q−1 − 1)
+

2−1T

(T q−1 − 1)
.

We apply again the same reasoning to get the following relation:

β6 =
bq2 + 2−1T

(T q−1 − 1)
+

1

(T q−1 − 1)βq
3

=
−T q + 2−1T

(T q−1 − 1)
+

1

(T q−1 − 1)βq
3

.

So we obtain [
[−T,−2T q−2, 2−1T ], (T q−1 − 1)βq

3

]
= β6.

Then from Lemma 2.4 we get

[−T,−2T q−2, 2−1T, β′′] = β6,

with β′′ =
βq
3

(T q−1 − 1)
+

−2T q−2

(T q−1 − 1)
. So we obtain that b6 = −T , b7 = −2T q−2,

b8 = 2−1T and β′′ = β9. Thus

β9 =
βq
3

(T q−1 − 1)
+

−2T q−2

(T q−1 − 1)
.

Note that

b3 = T q−2(T q2−4q+3 + T q2−5q+4 + . . .+ 1)

= T q−2(T (q−1)(q−3) + T (q−1)(q−4) + . . .+ T q−1 + 1).
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We conclude that the continued fraction expansion of β begins with

β = [T, T q−2,−T, T q−2(T (q−1)(q−3) + T (q−1)(q−4) + . . .+ T q−1 − 1),

2−1T,−2T q−2,−T,−2T q−2, 2−1T, · · · ].
Hence, according to Lemma 2.2 and the note that follows, the continued frac-
tion expansion of α = β/T is:

α = [1, T q−1 − 1,−T q−1(T (q−1)(q−3) + T (q−1)(q−4) + . . .+ T q−1 + 1)− 1,

−2−1T q−1 + 2−2, 2−5T q−1 − 2−5, · · · ].
So from Lemma 2.3 we deduce the desired result.
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