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The main purpose of this paper is to introduce some generalizations of the
Bernoulli-Barnes polynomials. These generalizations come from suitable mod-
ifications of the Mittag-Leffler type function linked to the generating function
corresponding to the Bernoulli-Barnes polynomials. We provide several algebraic
and combinatorial properties for these new classes of polynomials involving the
Nørlund polynomials, Frobenius-Euler functions and Stirling numbers of second
kind. Also, we deduce some connection formulae between a subclass of gen-
eralized Apostol-type Bernoulli-Barnes polynomials and the Jacobi polynomi-
als, generalized Bernoulli polynomials, Genocchi polynomials and Apostol-Euler
polynomials, respectively.
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1. INTRODUCTION

For a fixed N ∈ N and a = (a1, . . . , aN ) ∈ CN \{0}, the Bernoulli-Barnes
polynomials Br(x;a) in the variable x and multi-dimensional parameter a can
be defined by means of the generating function

(1) E(z;a)exz =
∞∑
r=0

Br(x;a)
zr

r!
, |z| < min

1≤j≤N

{
2π

|aj |

}
,

where

(2) E(z;a) :=

N∏
j=1

z

eajz − 1
,
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is the Mittag-Leffler type function associated to the multi-dimensional param-
eter a. As usual, the numbers Br(a) := Br(0;a) are called Bernoulli-Barnes
numbers.

This class of polynomials was introduced by Barnes in a series of papers
in which he developed the initial theory for the so-called multiple zeta and
gamma functions [4, 5, 6, 7, 8].

The motivation behind Barnes’ articles was to study in a comprehensive
way the following functions:

• A multi-dimensional version of the Riemann ζ-function given by

ζN (s, t;a) :=
∑

m∈ZN
≥0

1

(t+ ⟨m,a⟩)s
(3)

=
∞∑

m1,m2,...,mN=0

1

(t+m1a1 + · · ·+mNaN )s
,

where a ∈ RN
>0, the sets ZN

≥0 and RN
>0 are given by

ZN
≥0 := {m = (m1, . . . ,mN ) ∈ ZN : mj ≥ 0, for j = 1, . . . , N},

RN
>0 := {a = (a1, . . . , aN ) ∈ RN : aj > 0, for j = 1, . . . , N},

⟨ ·, ·⟩ denotes the usual inner product in RN , and the complex numbers t, s are
such that Re(t) > 0 and Re(s) > N , respectively.

• A multi-dimensional version of the gamma function, denoted by ΓB(t)
and given in terms of the s-derivative of ζN (s, t;a) at s = 0, ∂sζN (s, t;a)|s=0

(cf. [24] and the references therein).

The connection between the Barnes ζ-function and the Bernoulli-Barnes
polynomials Br(x;a) is given by the relation.

(4) ζN (−k, x;a) =
(−1)Nk!

(N + k)!
BN+k(x;a), k ∈ N.

Also, it is well-known that the Bernoulli-Barnes polynomials generalize
other families of classical polynomials, for instance, when N = 1, a = 1 and the
variable x is real in (1), we obtain Br(x;a) = Br(x), where Br(x) is the r-th
Bernoulli polynomial, r ≥ 0. When a = 1 = (1, 1, . . . , 1) and the variable x is

real in (1), we obtain Br(x;a) = B
(N)
r (x), where B

(N)
r (x) is the r-th Nørlund

polynomial [18], i.e., B
(N)
r (x) is defined by means of the generating function

(5)

(
z

ez − 1

)N

exz =
∞∑
r=0

B(N)
r (x)

zr

r!
, |z| < 2π.
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Recently, the interest for studying and analyzing these polynomials has been
renewed as it is shown in the interesting articles [2, 10, 12, 14, 24, 28].

In this article, we focus our attention on some light perturbations of the
Mittag-Leffler type function (2) by adding new parameters in order to define
some generalizations of the Bernoulli-Barnes polynomials. So, we prove that
such new polynomial classes preserve some similar algebraic and combinatorial
properties as the Bernoulli-Barnes polynomials and as an immediate conse-
quence we recover many known algebraic and combinatorial properties of such
polynomials. Also, several algebraic and combinatorial properties for these
new classes of polynomials involving the Nørlund polynomials, Frobenius-Euler
functions and Stirling numbers of second kind are provided. Furthermore, we
deduce an inversion formula for the Bernoulli-Barnes polynomials which allows
to connect them with certain extensions of generalized Apostol-type polyno-
mials, Jacobi polynomials, generalized Bernoulli polynomials and Genocchi
polynomials. As far as we know, the generalizations expounded here are not
available in the current literature.

The article is organized as follows. Section 2 has an auxiliary character,
however, it provides some (old and new) properties of the Bernoulli-Barnes
polynomials, for instance, to the best of our knowledge, the inversion formula
(9) and the relation (13) (see Theorem 1 below) are new. In Section 3, we define
the generalized Bernoulli-Barnes polynomials and the generalized Apostol-type
Bernoulli Barnes polynomials and prove several algebraic and combinatorial
properties for these new classes of polynomials involving the Nørlund polyno-
mials, Frobenius-Euler functions and Stirling numbers of second kind. This
section also contains some connection formulae between a subclass of general-
ized Apostol-type Bernoulli-Barnes polynomials and the Jacobi polynomials,
generalized Bernoulli polynomials, Genocchi polynomials and Apostol-Euler
polynomials, respectively.

2. IDENTITIES INVOLVING THE BERNOULLI-BARNES
POLYNOMIALS AND NUMBERS

Throughout the article, we will denote by
{
n
m

}
the Stirling numbers of

the second kind, which are defined by

(ex − 1)m

m!
=

∞∑
n=m

{
n

m

}
xn

n!
.(6)

Throughout the article the variable x is real.
The following result summarizes some (old and new) properties of the

Bernoulli-Barnes polynomials and their corresponding numbers.
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Theorem 1. For a fixed N ∈ N and a = (a1, . . . , aN ) ∈ CN \ {0}, let
{Br(x;a)}r≥0 be the sequence of Bernoulli-Barnes polynomials in the variable
x and multi-dimensional parameter a. Then the following identities hold.

(a) Summation formula. For every r ≥ 0,

Br(x;a) =

r∑
k=0

(
r

k

)
Bk(a)x

r−k.(7)

(b) Differential relations (Appell polynomial sequences). For r, j ≥ 0 with
0 ≤ j ≤ r, we have

(8) [Br(x;a)]
(j) =

r!

(r − j)!
Br−j(x;a).

(c) Inversion formula. The Bernoulli-Barnes polynomials satisfy the fol-
lowing inversion formula
(9)

xn =
∑

ℓ1+···+ℓN+1=n

(
n

ℓ1, ℓ2, · · · , ℓN+1

)
aℓ1+1
1

ℓ1+1

aℓ2+1
2

ℓ2+1
· · ·

aℓN+1
N

ℓN+1
BℓN+1

(x;a), n ≥ 0.

(d) Integral formulas.∫ x1

x0

Br(x;a) dx =
1

r + 1
[Br+1(x1;a)− Br+1(x0;a)](10)

=

r∑
k=0

1

r − k + 1

(
r

k

)
Bk(a)(x

r−k+1
1 − xr−k+1

0 ).(11)

Br(x;a) = r

∫ x

0
Br−1(t;a) dt+ Br(a).(12)

(e) Relation with the Stirling numbers. The Bernoulli-Barnes numbers
Bm(a) can be expressed in terms of Stirling numbers of the second kind as
follows

Bm(a) =
∑

i1+···+in=m, iℓ≥0

(
m

i1, . . . , in

) n∏
ℓ=1

iℓ∑
ℓ=0

(−1)ℓℓ!
{
iℓ
ℓ

}
ℓ+ 1

aiℓ−1
ℓ .(13)

Proof. The summation formula (7) is an immediate consequence of the
identities

exz
n∏

j=1

z

eajz − 1
= exz

[ ∞∑
r=0

Br(a)
zr

r!

]
=

[ ∞∑
k=0

xk
zk

k!

][ ∞∑
r=0

Br(a)
zr

r!

]
,
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and the appropriate use of the Cauchy product series.
Using (7) the proof of differential relations (8) is straightforward, so it is

omitted.
From Equation (1) we have

zNexz =

N∏
j=1

(eajz−1)

∞∑
n=0

Bn(x;a)
zn

n!
= zN

N∏
j=1

[ ∞∑
n=0

an+1
j

n+1

zn

n!

][ ∞∑
n=0

Bn(x;a)
zn

n!

]

= zN
∑

ℓ1+···+ℓN+ℓN+1=n

(
n

ℓ1, ℓ2, · · · , ℓN , ℓN+1

)
aℓ1+1
1

ℓ1 + 1

aℓ2+1
2

ℓ2 + 1
· · ·

aℓN+1
N

ℓN + 1

× BℓN+1
(x;a)

zn

n!
.

Comparing the coefficients on both sides, we get the inversion formula.

The integral formulas (10) and (12) are an immediate consequence of (8).
And taking into account (7) the formulae (11) is obtained.

Finally, from (6) we have
∞∑

m=0

Bm(a)
zn

n!
=

n∏
j=1

z

eajz−1
=

n∏
j=1

1

aj

(
ajz

eajz−1

)
=

n∏
j=1

1

aj

(
ln(1 + (eajz−1))

eajz−1

)

=
n∏

j=1

1

aj

∞∑
s=0

(−1)s(eajz−1)s

s+ 1
=

n∏
j=1

1

aj

∞∑
s=0

(−1)s

s+1
s!

∞∑
ℓ=s

{
ℓ

s

}
(ajz)

ℓ

ℓ!

=

n∏
j=1

( ∞∑
ℓ=0

(
ℓ∑

s=0

(−1)ss!
{
ℓ
s

}
s+ 1

aℓ−1
j

)
zℓ

ℓ!

)
.

Comparing the coefficients on both sides, we get (13).

Remark 2.1. Note that (7) and (9) imply that the sequence {Br(x;a)}r≥0

is a linearly independent set such that deg(Br(x;a)) = r, and hence it is a
basis for the linear space of polynomials in the variable x. Consequently, in
this setting, it is possible to consider approaches involving operational matrix
methods (see [21]).

Remark 2.2. For N = 1, i.e., a = a1, the explicit inversion formula is
given by

xn =
1

n+ 1

n∑
ℓ=0

(
n+ 1

ℓ+ 1

)
aℓ+1
1 Bn−ℓ(x;a).

So, for a1 = 1 we recover the familiar inversion formula for the Bernoulli
polynomials [1, 18].
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While for N = 2, 3 the explicit inversion formulas are given by:

xn =
1

(n+ 1)(n+ 2)

n∑
j=0

j∑
ℓ=0

(
j + 2

ℓ+ 1

)(
n+ 2

j + 2

)
aℓ+1
1 aj+1−ℓ

2 Bn−j(x;a),

xn =
1

(n+ 1)(n+ 2)(n+ 3)

n∑
r=0

r∑
s=0

s∑
ℓ=0

(
s+ 2

ℓ+ 1

)(
r + 3

s+ 2

)(
n+ 3

r + 3

)
× aℓ+1

1 as+1−ℓ
2 ar−s+1

3 Bn−r(x;a).

3. GENERALIZED BERNOULLI-BARNES TYPE
POLYNOMIALS

In this section, we will follow a similar methodology to those given in
[9, 11, 13, 15, 17, 19, 20, 26] and the references therein, in order to define
generalizations of the Bernoulli-Barnes polynomials. More precisely, we will
make light perturbations to the Mittag-Leffler type function (2) by adding of
some new parameters. In addition, we will prove that such new polynomial
classes preserve some similar algebraic and combinatorial properties as the
Bernoulli-Barnes polynomials.

Definition 2. For a fixed N ∈ N, a = (a1, . . . , aN ) ∈ CN \ {0} and
b, c, d ∈ R>0, the generalized Bernoulli-Barnes type polynomials Br(x;a, b, c, d)
in the variable x, multi-dimensional parameter a and parameters b, c, d, are
defined by means of the following generating function

(14) E(z;a, b, c)dxz =

∞∑
r=0

Br(x;a, b, c, d)
zr

r!
, |z| < min

1≤j≤N

∣∣∣∣∣∣ 2π

log
(
baj

c

)
∣∣∣∣∣∣ ,

where

E(z;a, b, c) :=

N∏
j=1

z

bajz − cz

is a Mittag-Leffler type function associated to the parameters a, b and c.

Example 3. For N = 2, i.e., a = (a1, a2), the first three generalized
Bernoulli-Barnes type polynomials are

B0(x;a, b, c, d) =
1

(a1 ln(b)− ln(c))(a2 ln(b)− ln(c))
,

B1(x;a, b, c, d) =
2x ln(d)− (a1 + a2) ln(b)− 2 ln(c)

2(a1 ln(b)− ln(c))(a2 ln(b)− ln(c))
,

B2(x;a, b, c, d) =

(
a21 + 3a1a2 + a22

)
ln2(b)+(a1+a2) ln(b)(7 ln(c)−6x ln(d))

6(a1 ln(b)− ln(c))(a2 ln(b)− ln(c))
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+
5 ln2(c)− 12x ln(c) ln(d) + 6x2 ln2(d)

6(a1 ln(b)− ln(c))(a2 ln(b)− ln(c))
.

Definition 4. For a fixed N ∈ N, a = (a1, . . . , aN ) ∈ CN \ {0}, λ ∈ C
and b, c, d ∈ R>0, the generalized Apostol-type Bernoulli-Barnes polynomials
(in short, Apostol-Bernoulli-Barnes polynomials) Br(x;λ;a, b, c, d) in the vari-
able x, multi-dimensional parameter a and parameters λ, b, c, d, are defined by
means of the generating function

(15) E(z;λ;a, b, c)dxz =

∞∑
r=0

Br(x;λ;a, b, c, d)
zr

r!
,

where

(16) E(z;λ;a, b, c) :=
N∏
j=1

z

λbajz − cz
,

is a Mittag-Leffler type function associated to the parameters λ,a, b and c.
Furthermore,

|z| < min
1≤j≤N

∣∣∣∣∣∣ 2π

ln
(
baj

c

)
∣∣∣∣∣∣ , when λ = 1,

and

|z| < min
1≤j≤N

∣∣∣∣∣∣ ln(λ)

ln
(
baj

c

)
∣∣∣∣∣∣ , when λ ∈ C \ {1}.

The numbers given by

Br(a, b, c) := Br(0;a, b, c, d),

Br(λ;a, b, c) := Br(0;λ;a, b, c, d),

denote the corresponding generalized Bernoulli-Barnes numbers of parameters
a, b, c, and the generalized Apostol-type Bernoulli-Barnes numbers of parame-
ters a, λ, b, c, respectively. Note that for N = 1 = a, b = e = d and c = 1 we
obtain the classical Apostol-Bernoulli polynomials.

Example 5. For N = 2 and λ ∈ C\{1}, the first four generalized Apostol-
type Bernoulli-Barnes polynomials are

B0(x;λ;a, b, c, d) = B1(x;λ;a, b, c, d) = 0,

B2(x;λ;a, b, c, d) =
2

(λ− 1)2
,

B3(x;λ;a, b, c, d) =
−6λ(a1 + a2) ln(b) + 12 ln(c) + 6(λ− 1)x ln(d)

(λ− 1)3
.
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3.1. Some basic combinatorial identities

Theorem 6. The Apostol-Bernoulli-Barnes polynomials satisfy the fol-
lowing relation

Br(x;λ;a, b, c, d) =
r∑

i=0

(
r

i

)
Bi(λ;a, b, c)(ln d)

r−ixr−i.

In particular, the generalized Bernoulli-Barnes type polynomials satisfy
the relation

Br(x;a, b, c, d) =
r∑

i=0

(
r

i

)
Bi(a, b, c)(ln d)

r−ixr−i.

Proof. From Equation (15) we have

∞∑
r=0

Br(x;λ;a, b, c, d)
zr

r!
=

N∏
j=1

(
z

λbajz − cz

)
exz ln d

=

( ∞∑
r=0

Br(λ;a, b, c)
zr

r!

)
exz ln d

=
∞∑
r=0

(
r∑

i=0

(
r

i

)
Bi(λ,a, b, c)(ln d)

r−ixr−i

)
zr

r!
.

Comparing the coefficients we obtain the desired result.

In particular, if b = d = e and λ = 1 = c we recover Equation (7).

Theorem 7. The Apostol-Bernoulli-Barnes polynomials satisfy the fol-
lowing relation

Br(x+ 1;λ;a, b, c, d) =

r∑
i=0

(
r

i

)
Bi(x;λ;a, b, c, d)(ln d)

r−i.

In particular, the Bernoulli-Barnes polynomials satisfy the relation

Br(x+ 1;a) =

r∑
i=0

(
r

i

)
Bi(x;a).

Proof. From Equation (15) we have

∞∑
r=0

Br(x+ 1;λ;a, b, c, d)
zr

r!
=

N∏
j=1

(
z

λbajz − cz

)
e(x+1)z ln d

=

( ∞∑
r=0

Br(x;λ;a, b, c, d)
zr

r!

)
ez ln d
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=
∞∑
r=0

(
r∑

i=0

(
r

i

)
Bi(x;λ;a, b, c, d)(ln d)

r−i

)
zr

r!
.

Comparing the coefficients, we obtain the result.

A similar argument to the previous theorem allows to obtain the following
addition formula.

Theorem 8. The Apostol-Bernoulli-Barnes polynomials satisfy the rela-
tion

Br(x+ y;λ;a, b, c, d) =
r∑

i=0

(
r

i

)
Bi(x;λ;a1, b, c, d)Br−i(y;λ;a2, b, c, d),

where a = (a1, . . . , aN+M ),a1 = (a1, . . . , aN ) and a2 = (aN+1, . . . , aN+M ).

From Theorem 6 we obtain the following identities.

Theorem 9. For r, j ≥ 0 with 0 ≤ j ≤ r, we have

[Br(x;λ;a, b, c, d)]
(j) =

r!

(r − j)!
(ln d)jBr−j(x;λ;a, b, c, d),

[Br(x;a, b, c, d)]
(j) =

r!

(r − j)!
(ln d)jBr−j(x;a, b, c, d).

In particular, for b = d = e and λ = 1 = c we obtain (8). If d = e in
the above theorem we obtain that {Br(x;λ;a, b, c, e)}r≥0 is an Appel sequence
[23]. Therefore, we have the following basic relations.

Theorem 10. If r ≥ 0 then

(i) Br(x+ y;λ;a, b, c, e) =

r∑
i=0

(
r

i

)
Bi(x;λ;a, b, c, e)y

r−i.

(ii) Br(mx;λ;a, b, c, e) =
r∑

i=0

(
r

i

)
Bi(x;λ;a, b, c, e)(m−1)r−ixr−i, m ≥ 1.

(iii) Br(x+ 1;λ;a, b, c, e)− Br(x;λ;a, b, c, e) =

r−1∑
i=0

(
r

i

)
Bi(x;λ;a, b, c, e).

If λ = 1 = c and b = e we obtain the following basic relation for the
Bernoulli-Barnes polynomials.

Corollary 11. If r ≥ 0 then

1. Br(x+ y;a) =
r∑

i=0

(
r

i

)
Bi(x;a)y

r−i.
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2. Br(mx;a) =
r∑

i=0

(
r

i

)
Bi(x;a)(m− 1)r−ixr−i, m ≥ 1.

3. Br(x+ 1;a)− Br(x;a) =

r−1∑
i=0

(
r

i

)
Bi(x;a).

Theorem 12. The Apostol-Bernoulli-Barnes polynomials satisfy the re-
lation

Br(x;λ;a, b, c, d) =
r∑

i=0

(
r

i

)
Bi(λ;a)(x ln d−N ln c)r−i.

where a = (a1 ln b− ln c, . . . , aN ln b− ln c) and

(17)

∞∑
r=0

Br(λ;a)
zr

r!
=

N∏
j=1

z

λeajz − 1
.

The polynomials Br(λ;a) are called the Apostol-Bernoulli-Barnes numbers.

In particular,

Br(x;a, b, c, d) =

r∑
i=0

(
r

i

)
Bi(a)(x ln d−N ln c)r−i.

Proof. From Equation (15) we have

∞∑
r=0

Br(x;λ;a, b, c, d)
zr

r!
=

N∏
j=1

(
z

λbajz − cz

)
exz ln d

=
N∏
j=1

(
z

ez ln c (elnλ+aiz ln b−z ln c − 1)

)
exz ln d

=

N∏
j=1

(
z

elnλ+aiz ln b−z ln c − 1

)
e(x ln d−N ln c)z

=

( ∞∑
r=0

Br(a;λ)
zr

r!

)
e(x ln d−N ln c)z

=
∞∑
r=0

(
r∑

i=0

(
r

i

)
Bi(λ;a)(x ln d−N ln c)n−i

)
zr

r!
.

Comparing the coefficients, we obtain the desired result.

If λ = 1 = c and b = e = d we obtain (7).
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3.2. Relations with the Stirling numbers and some special
polynomials

We will show some relations of the Apostol-Bernoulli-Barnes polynomials
with the Stirling numbers and also with certain special polynomials.

Theorem 13. The Apostol-Bernoulli-Barnes polynomials satisfy the re-
lation

Br(x;λ;a, b, c, d) =

∞∑
ℓ=0

r∑
s=ℓ

(
r

s

){
s

ℓ

}
(ln d)sBr−s(−ℓ;λ;a, b, c, d)(x)(ℓ),(18)

where

(x)(m) = x(x+ 1) · · · (x+m− 1) (m ≥ 1) with (x)(0) = 1.

In particular,

Br(x;a, b, c, d) =
∞∑
ℓ=0

r∑
s=ℓ

(
r

s

){
s

ℓ

}
(ln d)sBr−s(−ℓ;a, b, c, d)(x)(ℓ).

Proof. From (15) and (6), by the binomial series

1

(1− x)c
=

∞∑
n=0

(
c+ n− 1

n

)
xn

and by the relation (
x+ ℓ− 1

s

)
=

(x)(ℓ)

s!

we get:

∞∑
r=0

Br(x;λ;a, b, c, d)
zr

r!
=

N∏
j=1

(
z

λbajz − cz

)
exz ln d

=

N∏
j=1

(
z

λbajz − cz

)
(1− (1− e−z ln d))−x

=

N∏
j=1

(
z

λbajz − cz

) ∞∑
ℓ=0

(
x+ ℓ− 1

ℓ

)
(1− e−z ln d)ℓ

=

∞∑
ℓ=0

(x)(ℓ)

ℓ!
(ez ln d − 1)ℓ

N∏
j=1

(
z

λbajz − cz

)
e−ℓz ln d

=

∞∑
ℓ=0

(x)(ℓ)

( ∞∑
r=0

{
r

ℓ

}
(ln d)r

zr

r!

)
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×

( ∞∑
r=0

Br(−ℓ;λ,a, b, c, d)
zr

r!

)

=

∞∑
ℓ=0

(x)(ℓ)
∞∑
r=0

(
r∑

s=0

(
r

s

){
s

ℓ

}
(ln d)sBr−s(−ℓ;λ,a, b, c, d)

)
zr

r!

=
∞∑
r=0

( ∞∑
ℓ=0

r∑
s=0

(
r

s

){
s

ℓ

}
(ln d)sBr−s(−ℓ;λ,a, b, c, d)(x)(ℓ)

)
zr

r!
.

Comparing the coefficients on both sides, we have (18).

If λ = 1 = c and b = e = d we obtain the next corollary.

Corollary 14. The Bernoulli-Barnes polynomials satisfy the relation

Br(x;a) =
∞∑
ℓ=0

r∑
s=ℓ

(
r

s

){
s

ℓ

}
Br−s(−ℓ;a)(x)(ℓ), r ≥ 0.

Theorem 15. For r ≥ 0, the Apostol-Bernoulli-Barnes polynomials sat-
isfy the relation

Br(x;λ;a, b, c, d) =
∞∑
ℓ=0

r∑
i=0

(
r

s

){
s

ℓ

}
(ln d)sBr−s(λ;a, b, c)(x)ℓ.(19)

where

(x)m = x(x− 1) · · · (x−m+ 1) (m ≥ 1) with (x)0 = 1.

In particular,

Br(x;a, b, c, d) =
∞∑
ℓ=0

r∑
i=0

(
r

s

){
s

ℓ

}
(ln d)iBr−s(a, b, c)(x)ℓ.

Proof. From (15) and (6), and by the relation(
x

s

)
=

(x)s
s!

.

The following identities hold:

∞∑
r=0

Br(x;λ;a, b, c, d)
zr

r!
=

N∏
j=1

(
z

λbajz − cz

)
exz ln d

=
N∏
j=1

(
z

λbajz − cz

)
((ez ln d − 1) + 1)x

=

N∏
j=1

(
z

λbajz − cz

) ∞∑
ℓ=0

(
x

ℓ

)
(ez ln d − 1)ℓ
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=

∞∑
ℓ=0

(x)ℓ
ℓ!

(ez ln d − 1)ℓ
N∏
j=1

(
z

λbajz − cz

)

=

∞∑
ℓ=0

(x)ℓ

( ∞∑
r=0

{
r

ℓ

}
(ln d)r

zr

r!

)( ∞∑
r=0

Br(λ;a, b, c)
zr

r!

)

=

∞∑
ℓ=0

(x)ℓ

∞∑
r=0

(
r∑

s=0

(
r

s

){
s

ℓ

}
(ln d)sBr−s(λ;a, b, c)

zr

r!

)

=

∞∑
r=0

( ∞∑
ℓ=0

r∑
s=0

(
r

s

){
s

ℓ

}
(ln d)sBr−s(λ;a, b, c)

zr

r!
(x)ℓ

)
.

Comparing the coefficients on both sides, we have (19).

If λ = 1 = c and b = e = d we obtain the following relation.

Corollary 16. The Bernoulli-Barnes polynomials satisfy the relation

Br(x;a) =
∞∑
ℓ=0

r∑
i=0

(
r

s

){
s

ℓ

}
Br−s(a)(x)ℓ, r ≥ 0.

Next, we will show a relation between the Nørlund polynomials B
(s)
n (x)

and the Apostol-Bernoulli-Barnes polynomials.

Theorem 17. For any positive integer s, the Apostol-Bernoulli-Barnes
polynomials satisfy the relation:

Br(x;λ;a, b, c, d) =

r∑
ℓ=0

(
r

ℓ

){
ℓ+ s

s

} r−ℓ∑
i=0

(
r−ℓ
i

)(
ℓ+s
s

)(ln d)ℓ+iB
(s)
i (x)Br−ℓ−i(λ;a, b, c).

(20)

In particular,

Br(x;a, b, c, d) =

r∑
ℓ=0

(
r

ℓ

){
ℓ+ s

s

} r−ℓ∑
i=0

(
r−ℓ
i

)(
ℓ+s
s

)(ln d)ℓ+iB
(s)
i (x)Br−ℓ−i(a, b, c).

Proof. From (15) and (5) we get

∞∑
r=0

Br(x;λ;a, b, c, d)
zr

r!
=

N∏
j=1

(
z

λbajz − cz

)
exz ln d

=
(ez ln d − 1)s

s!

(
z ln d

ez ln d − 1

)s

exz ln d

( ∞∑
r=0

Br(λ;a, b, c)
zr

r!

)
s!

(z ln d)s
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=

( ∞∑
r=0

{
r + s

s

}
(z ln d)r+s

(r + s)!

)( ∞∑
r=0

B(s)
r (x)

(z ln d)r

r!

)

×

( ∞∑
r=0

Br(λ;a, b, c)
zr

r!

)
s!

(z ln d)s

=

( ∞∑
r=0

{
r + s

s

}
(z ln d)r+s

(r + s)!

)

×

( ∞∑
r=0

(
r∑

i=0

(
r

i

)
(ln d)iB

(s)
i (x)Br−i(λ;a, b, c)

)
zr

r!

)
s!

(z ln d)s

=
∞∑
r=0

(
r∑

ℓ=0

{
ℓ+ s

s

}
(ln d)ℓ+szℓ+s

(ℓ+ s)!

×
r−ℓ∑
i=0

(
r − ℓ

i

)
(ln d)iB

(s)
i (x)Br−ℓ−i(λ;a, b, c)

zr−ℓ

(r − ℓ)!

)
s!

(z ln d)s

=

∞∑
r=0

(
r∑

ℓ=0

(
r

ℓ

){
ℓ+ s

s

} r−ℓ∑
i=0

(
r−ℓ
i

)(
ℓ+s
s

)(ln d)ℓ+iB
(s)
i (x)Br−ℓ−i(λ;a, b, c)

)
zr

r!
.

Comparing the coefficients on both sides, we have (20).

If λ = 1 = c and b = e = d we obtain the following relation.

Corollary 18. The Bernoulli-Barnes polynomials satisfy the relation

Br(x;a) =
r∑

ℓ=0

(
r

ℓ

){
ℓ+ s

s

} r−ℓ∑
i=0

(
r−ℓ
i

)(
ℓ+s
s

)B(s)
i (x)Br−ℓ−i(a).

The Frobenius-Euler functions H
(s)
n (x;u) are defined by the generating

function (cf. [25]): (
1− u

et − u

)s

exz =
∞∑
n=0

H(s)
n (x;u)

zn

n!
.(21)

Theorem 19. The Apostol-Bernoulli-Barnes polynomials satisfy the re-
lation

Br(x;λ;a, b, c, d) =
1

(1− u)s

r∑
ℓ=0

(
r

ℓ

) s∑
i=0

(
s

i

)
(−u)s−iH

(s)
ℓ (x;u)(22)

× (ln d)ℓBr−ℓ(i;λ;a, b, c, d).
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In particular,

Br(x;a, b, c, d) =
1

(1− u)s

r∑
ℓ=0

(
r

ℓ

) s∑
i=0

(
s

i

)
(−u)s−iH

(s)
ℓ (x;u)

× (ln d)ℓBr−ℓ(i;a, b, c, d).

Proof. From (15) and (21) we get

∞∑
r=0

Br(x;λ;a, b, c, d)
zr

r!
=

N∏
j=1

(
z

λbajz − cz

)
exz ln d

=
(1− u)s

(ez ln d − u)s
exz ln d (e

z ln d − u)s

(1− u)s

N∏
j=1

(
z

λbajz − cz

)

=
1

(1−u)s

( ∞∑
r=0

H(s)
r (x;u)

(z ln d)r

r!

)
s∑

i=0

(
s

i

)
eiz ln d(−u)s−i

N∏
j=1

(
z

λbajz − cz

)

=
1

(1−u)s

( ∞∑
r=0

H(s)
r (x;u)(ln d)r

zr

r!

)
s∑

i=0

(
s

i

)
(−u)s−i

∞∑
r=0

Br(i;λ;a, b, c, d)
zr

r!

=
1

(1− u)s

s∑
i=0

(
s

i

)
(−u)s−i

∞∑
r=0

(
r∑

ℓ=0

(
r

ℓ

)
H

(s)
ℓ (x;u)

×(ln d)ℓBr−ℓ(i;λ;a, b, c, d)

)
zr

r!

=

∞∑
r=0

(
1

(1− u)s

r∑
ℓ=0

(
r

ℓ

) s∑
i=0

(
s

i

)
(−u)s−iH

(s)
ℓ (x;u)

×(ln d)ℓBr−ℓ(i;λ;a, b, c, d)

)
zr

r!
.

Comparing the coefficients on both sides, we have (22).

If λ = 1 = c and b = e = d we obtain the following relation.

Corollary 20. The Bernoulli-Barnes polynomials satisfy the relation

Br(x;a) =
1

(1− u)s

r∑
ℓ=0

(
r

ℓ

) s∑
i=0

(
s

i

)
(−u)s−iH

(s)
ℓ (x;u)Br−ℓ(i;a).

It is worthwhile to mention that the above results strongly depend on the
use of the umbral calculus derived from exponential generating functions (cf.
[23]).
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3.3. The Barnes-type ζ-function with parameters

The connection between the Barnes ζ-function and the Bernoulli-Barnes
polynomials Br(x;a) can be generalized by using the following ζ-function. The
Barnes ζ-function with parameters a, b, c, d is defined by (cf. [3])

ζN (s, t;a, b, c, d) :=
∞∑

m1,m2,...,mN=0

1

(t ln d+N ln c+m1a1 + · · ·+mNaN )s
,

where ai = ai ln b+ ln c. It is clear that if b = e = d and c = 1 we recover the
Barnes ζ-function ζN (s, t;a). Moreover, the following relation is clear.

ζN (s, t;a, b, c, d) = ζN (s, t ln d+N ln c;a).

Since
Br(x ln d+ ln c;a) = Br(x;a, b, c, d)

then we have the following relation

(−1)Nk!

(N + k)!
BN+k(x;a, b, c, d) = ζN (−k, x ln d+N ln c;a) = ζN (−k, x;a, b, c, d).

Additionally, the Barnes ζ-function with parameters a, b, c, d has the fol-
lowing integral representation:

ζN (s, t;a, b, c, d) =
1

Γ(s)

∫ ∞

0
zs−1 d−tz

(c−z−b−a1z)(c−z−b−a2z) · · · (c−z−b−aNz)
dz.

For b = d = e and c = 1 we obtain the integral representation given in
[1, pp. 210]. Note that the above integral representation is a kind of Laplace-
Mellin transform.

In Figure 1, we show the phase plot for complex functions (cf. [27]) of
the classical Zeta function (left) and of the particular Barnes ζ-function

ζ2(s, 1; (1, 1)) =

∞∑
i=0

∞∑
j=0

1

(1 + i+ j)s
.

3.4. Some connection formulas for the generalized Apostol-type
Bernoulli-Barnes polynomials

From Theorem 10, it is possible to deduce some interesting algebraic
relations connecting the generalized Apostol-type Bernoulli-Barnes polynomi-
als with other families of polynomials such as Jacobi polynomials, generalized
Bernoulli polynomials of level m, Genocchi polynomials and Apostol-Euler
polynomials.

Recall the connection between the n-th monomial xn and the following
families of polynomials:



17 On generalized Bernoulli-Barnes polynomials 633

Figure 1 – Phase plot for Zeta functions ζ and ζ2(s, 1; (1, 1)) (Re(s)> 2).

• Jacobi polynomials [22, Equation (2), p. 262]:

xn = n!
n∑

k=0

(
n+ κ

n− k

)
(−1)k

(1 + κ+ β + 2k)

(1 + κ+ β + k)n+1
P

(κ,β)
k (1− 2x),

where P
(κ,β)
n (x) are de Jacobi polynomials defined by

P (κ,β)
n (x) =

1

2n

n∑
k=0

(
κ+ n

k

)(
β + n

n− k

)
(x− 1)n−k(x+ 1)k,

with κ, β > −1.

• Generalized Bernoulli polynomials of level m [17, Equation (2.6)]:

xn =

n∑
k=0

(
n

k

)
k!

(k +m)!
B

[m−1]
n−k (x),

where B
[m−1]
n (x) are defined by the generating function

∞∑
n=0

B[m−1]
n (x)

zn

n!
=

zmexz

ez −
∑m−1

i=0
zi

i!

.

• Genocchi polynomials:

xn =
1

2(n+ 1)

[
n+1∑
k=0

(
n+ 1

k

)
Gk(x) +Gn+1(x)

]
,
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where Gn(x) are defined by the generating function
∞∑
n=0

Gn(x)
zn

n!
=

2zexz

ez + 1
.

• Apostol-Euler polynomials [16, Equation (32)]:

xn =
1

2

[
λ

n∑
k=0

(
n

k

)
Ek(x;λ) + En(x;λ)

]
,

where En(x;λ) are defined by the generating function
∞∑
n=0

En(x;λ)
zn

n!
=

2exz

λez + 1
.

Theorem 21. The Apostol-Bernoulli-Barnes polynomials are related with
the Jacobi polynomials, generalized Bernoulli polynomials of level m, Genocchi
polynomials and Apostol-Euler polynomials by means of the identities:

(a) Br(x;λ;a, b, c, e)

=
r∑

i=0

r−i∑
k=0

r!

i!

(
r − i+ k

r − i− k

)
(−1)k

(1 + κ+ β + 2k)

(1 + κ+ β + k)r−i+1

× Bi(x;λ;a, b, c, e)P
(κ,β)
k (1− 2x).

(b) Br(x;λ;a, b, c, e) =

r∑
i=0

r−i∑
k=0

(
r

k

)(
r − k

r − i− k

)
k!

(k +m)!

× Bi(x;λ;a, b, c, e)B
[m−1]
r−i−k(x).

(c) Br(x;λ;a, b, c, e) =
r∑

i=0

Bi(x;λ;a, b, c, e)

2

×

[
r−i+1∑
k=0

(
r

k

)(
r − i

r − i− k

)
Gk(y)

r − i+ 1− k
+

(
r

i

)
Gr−i+1(y)

]
.

(d) Br(x;λ;a, b,c, e) =
1

2

r∑
i=0

Bi(x;λ;a, b, c, e)

×

[
λ

r−i∑
k=0

(
r

k

)(
r − k

r − k − i

)
Ek(x;λ) +

(
r

i

)
Er−i(x;λ)

]
.
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