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Recent results interpret Bernoulli and Euler numbers as moments of certain
random variables. When considering the moments and cumulants related to
Bernoulli and Euler numbers, Faá di Bruno’s formulas lead to several identities,
through the Bell polynomials.
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1. INTRODUCTION

We begin with two identities:

(1) Yk

(
−B2 · 1!

2 · 2!
,−B4 · 2!

4 · 4!
, . . . ,− B2k · k!

2k · (2k)!

)
=

k!(21−2k − 1)B2k

(2k)!
,

and

(2) Yk

(
B2 · 1!
2 · 2!

,
B4 · 2!
4 · 4!

, . . . ,
B2k · k!
2k · (2k)!

)
=

k!

22k(2k + 1)!
,

where Bk is the k-th Bernoulli numbers and Yk is the k-th complete Bell poly-
nomial, defined as follows.

Definition 1. The Bernoulli and Euler polynomials, denoted by Bn(x)
and En(x), respectively, are defined via their exponential generating functions:

(3)
zezx

ez − 1
=

∞∑
n=0

Bn(x)
zn

n!
, (|z| < 2π) ,

and

(4)
2ezx

ez + 1
=

∞∑
n=0

En(x)
zn

n!
, (|z| < π) .

The Bernoulli and Euler numbers are Bn = Bn(0) and En = 2nEn (1/2),
respectively. (See, e.g., entries 24.2.3, 24.2.4, 24.2.8 and 24.2.9 in [8]).
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The definition of Bell polynomials can be found in, e.g., [2, p. 134].

Definition 2. The partial or incomplete exponential Bell polynomial is
defined by

Yn,ℓ(x1, . . . , xn−ℓ+1)

:=
∑

a1+···+an−ℓ+1=ℓ

a1+2a2+···+(n−ℓ+1)an−ℓ+1=n

n!

a1! · · · an−ℓ+1!

(x1
1!

)a1
· · ·
(

xn−ℓ+1

(n− ℓ+ 1)!

)an−ℓ+1

,

and the n-th complete exponential Bell polynomial is defined by

Yn(x1, . . . , xn) : =
n∑

ℓ=1

Yn,ℓ(x1, . . . , xn−ℓ+1)

=
∑

a1+2a2+···+nan=n

n!

a1! · · · an!

(x1
1!

)a1
· · ·
(xn
n!

)an
.(5)

Recall the two identities (1) and (2) at the very beginning. The first one is
a special case of a result obtained by Rubinstein [9, eq. 9] (with m = d = 1 and
s = 1/2); while the second is due to Hoffman [4, Prop. 2.4]. It is surprising that
Rubinstein’s work [9] is on arXiv since 2009, but we failed to find it published
in any journal.

Inspired by the probabilistic methods, e.g., Adell and Lekuona [1] recently
consider binomial identities through moments of random variables, we shall
reveal that both (1) and (2) can be similarly derived by considering certain
random variables and applying the Faá di Bruno’s formulas on corresponding
moment-cumulant pairs. More specifically, we shall prove the following eight
identities.

Proposition 3. Let n be a positive integer such that n > 1. Then, we
have

(6) Yn

(
0,−B2

2
,−B3

3
, . . . ,−Bn

n

)
= Bn

(
1

2

)
,

(7) Yn

(
0,

B2

2
, . . . ,

Bn

n

)
=

1 + (−1)n

2n+1(n+ 1)
=

{
1

2n(n+1) , if n is even;

0, if n is odd,

Yn

(
0,−6B2,−

56

3
B3, . . . ,

2n(1− 2n)

n
Bn

)
= En,

Yn

(
0, 6B2,

56

3
B3, . . . ,

2n(2n − 1)

n
Bn

)
=

1 + (−1)n

2
=

{
1, if n is even;

0, if n is odd,
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and

Bn = −n

n∑
ℓ=1

(−1)ℓ−1(ℓ− 1)!Yn,ℓ

(
B1

(
1

2

)
, . . . , Bn−ℓ+1

(
1

2

))

= n

n∑
ℓ=1

(−1)ℓ−1(ℓ− 1)!Yn,ℓ

(
0,

1

4 · 3
, 0, . . . ,

1 + (−1)n−ℓ+1

2n−ℓ+2(n− ℓ+ 2)

)

=
n

2n(1− 2n)

n∑
ℓ=1

(−1)ℓ−1(ℓ− 1)!Yn,ℓ(E1, . . . , En−ℓ+1)

=
n

2n(2n − 1)

n∑
ℓ=1

(−1)ℓ−1(ℓ− 1)!Yn,ℓ

(
0, 1, . . . ,

(−1)n−ℓ+1 + 1

2

)
,

where (6) is equivalent to (1) and (7) is equivalent to (2).

In order to prove Proposition 3 by probabilistic method, we shall first re-
view basic definition of random variables, moments, cumulants, Faá di Bruno’s
formulas, and the probabilistic interpretations of Bernoulli and Euler polyno-
mials in Section 2. Then, in Section 3, we shall find four pairs of moments and
cumulants, listed as Table 1, which imply all the identities of Proposition 3 via
Faá di Bruno’s formulas.

2. PRELIMINARIES

First of all, we recall the moments and cumulants for a random variable.
(See, e.g., [7, Chpt. 3].)

Let X be an arbitrary random variable on R, with probability density
function p(t) and moments mn, namely,

mn = E[Xn] =

∫
R
tnp(t)dt.

The moment generating function of X is the exponential generating function
of mn, denoted by

(8) E[ezX ] =

∫
R
eztp(t)dt =

∞∑
n=0

mn
zn

n!
.

The cumulants κn are defined via the cumulant generating function K(z),
which is the natural logarithm of the moment generating function (8):

K(z) :=
∞∑
n=1

κn
zn

n!
= log

(
E[ezX ]

)
= log

( ∞∑
n=0

mn
zn

n!

)
.
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The “logarithmic-exponential” relation between the moment generating
function and the cumulant generating function allows us to apply the Faá di
Bruno’s formulas (see, e.g., [5, eq. 1]) to obtain

(9) mn = Yn(κ1, . . . , κn)

and its inverse relation

(10) κn =

n∑
ℓ=1

(−1)ℓ−1(ℓ− 1)!Yn,ℓ(m1, . . . ,mn−ℓ+1),

Note that (9) and (10) are our key formulas in our proof of Proposition 3.
Now, recall the definition of Bernoulli and Euler polynomials, in Defini-

tion 1. From (3) and (4), we see an important property that for positive integer
k

(11) B2k−1

(
1

2

)
= B2k+1 = E2k−1 = 0 and B1 = −1

2
.

Next, we give the probabilistic interpretations of Bn(x) and En(x) as follows.
Letting

pB(t) :=
π

2
sech2(πt) and pE(t) := sech(πt), (t ∈ R)

we define two random variables LB and LE with density functions pB and pE ,
respectively. Then, with i2 = −1,

(12) Bn(x) = E
[(

iLB + x− 1

2

)n]
=

∫
R

(
it+ x− 1

2

)n

pB(t)dt,

(13) En(x) = E
[(

iLE + x− 1

2

)n]
=

∫
R

(
it+ x− 1

2

)n

pE(t)dt.

See, e.g., [3, eq. 2.14] and [6, eq. 2.3] for the two expectations above.

Remark. For both random variables LB and LE , the moments are
|Bn(1/2)| = E[Ln

B] and |En(1/2)| = E[Ln
E ]. Given a random variable X with

moments mn and density p(t), the uniqueness of p(t) with respect to mn is
of importance and is not always guaranteed. To prove this uniqueness, one
sufficient condition is the general Carleman’s condition, (see e.g., [10, p. 59])

(14)

∞∑
n=1

m
1
n
n = ∞.

Note that |B2n (1/2)| ∼ 4
(
1− 21−2n

)√
πn (n/ (πe))2n, i.e., |B2n(1/2)|−

1
2n ∼

eπ/n, and (−1)nE2n ∼ 8
√

n/π (4n/ (πe))2n, from entries 24.4.27, 24.11.2 and
24.11.4 in [8]. By comparison test with harmonic series, for both LB and LE ,
(14) is guaranteed, implying the uniqueness of pB and pE .
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3. PROOF OF PROPOSITION 3

In this section, we shall prove Proposition 3 by applying (9) and (10)
on certain pairs of moments and cumulants, which are listed in the following
table.

Moments Cumulants

m̄n = Bn

(
1
2

)
κ̄n =

{
−Bn/n, if n > 1;

0, if n = 1.

m̃n =

{
1

2n(n+1) , if n is even;

0, if n is odd.
κ̃n = −κ̄n =

{
Bn/n, if n > 1;

0, if n = 1.

m′
n = En κ′n =

{
2n(1− 2n)Bn/n if n > 1;

0, if n = 1.

m′′
n :=

{
1, if n is even;

0, if n is odd.
κ′′n = −κ′n =

{
2n(2n − 1)Bn/n if n > 1;

0, if n = 1.

Table 1 – List of pairs of moment and cumulant

Proof of Proposition 3. First of all, we verify the four pairs of moments
and cumulants in Table 1.

(i) Consider the random variable X̄ := iLB and we denote its moments by m̄n

and its cumulants by κ̄n. From (3), (8), and (12), we see

E[ezX̄ ] = E[eziLB ] =

∞∑
n=0

Bn

(
1

2

)
zn

n!
=

z/2

sinh(z/2)
,

i.e., m̄n := Bn(1/2). Meanwhile, note the cumulant generating function

K̄(z) :=

∞∑
n=1

κ̄n
zn

n!
= log

(
z/2

sinh(z/2)

)
.

Hoffman [4, pp. 279–280] verified that

(15) −K̄(z) = log

(
sinh(z/2)

z/2

)
=

∞∑
n=1

B2nz
2n

2n(2n)!
,

which, by (11), implies κ̄n = −Bn/n if n > 1; and κ̄1 = 0.

(ii) Define a random variable X̃ by its moment generating function

MX̃(z) = E[ezX̃ ] =
sinh(z/2)

z/2
=

∞∑
k=0

z2k

22k(2k + 1)!
.
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Denote the moments of X̃ by m̃n and cumulants by κ̃n. We see that

m̃n := E[X̃] =
1 + (−1)n

2n+1(n+ 1)
=

{
0, if n is odd;

1
22k(2k+1)

, if n = 2k is even.

Meanwhile, by (15), κ̃n = Bn/n for n > 1 and κ̃1 = 0.
(iii) By replacement z 7→ iz in [2, p. 88], we have

log(cosh(z)) =
∞∑
k=1

22k−1(22k − 1)B2k

k
· z2k

(2k)!
.

Also, recall the following two generating functions [8, entry 24.2.6]

1

cosh(z)
=

∞∑
n=0

En
zn

n!
,
(
|z| < π

2

)
,

and [8, entry 4.33.2]

cosh(z) =

∞∑
n=0

z2n

(2n)!
.

Then, we have, for random variable X ′ := 2iLE , by (13), its moments are
m′

n = E[(X ′)n] = En and cumulants are given by

κ′n =

{
2n(1−2n)

n Bn if n is even;

0, if n is odd.
=

{
2n(1− 2n)Bn/n if n > 1;

0, if n = 1.

(iv) Similarly, define a random variable X ′′, such that its moments are

m′′
n := E

[(
X ′′)n] = 1 + (−1)n

2
=

{
1, if n is even;

0, if n is odd,

then the corresponding cumulants of X ′′ are κ′′n = −κ′n.
Now, it is obvious that applying (9) to the four pairs in Table 1 yields

the first four identities of Proposition 3 and (10) gives the last four different
expressions of Bn in terms of incomplete Bell polynomials. The remaining is
to identify (6) with (1) and to identify (7) with (2).

For (6), if n is odd, by (11) that Bn(1/2) = 0, it is a zero identity.
Therefore, we can assume n = 2k is even. From the definition (5), we see that
nonzero terms on the right-hand side of (6) are of the form

(2k)!

a2!a4! · · · a2k!

(
− B2

2 · 2!

)a2

· · ·
(
− B2k

2k · (2k)!

)a2k

,

where 2k = n = 2a2 + 4a4 + · · ·+ (2k)a2k. Let bj = a2j , for j = 1, . . . , k to see

Yn

(
0,−B2

2
,−B3

3
, . . . ,−Bn

n

)
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=
∑

2a2+···+(2k)a2k=2k

(2k)!

a2!a4! · · · a2k!

(
− B2

2 · 2!

)a2

· · ·
(
− B2k

2k · (2k)!

)a2k

=
∑

b1+2b2+···+kbk=k

(2k)!

b1! · · · bk!

(
−B2·1!

2·2!
1!

)b1

· · ·

(
− B2k·k!

2k·(2k)!

k!

)bk

=
(2k)!

k!
Yk

(
−B2 · 1!

2 · 2!
,−B4 · 2!

4 · 4!
, . . . ,− B2k · k!

2k · (2k)!

)
.

Finally, by entry 24.4.27 in [8], we obtain (1).

Similar simplification on (7) yields (2).
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