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We introduce pretty k-clean monomial ideals and k-decomposable multicom-
plexes, respectively, as the extensions of the notions of k-clean monomial ideals
and k-decomposable simplicial complexes. We show that a multicomplex Γ is k-
decomposable if and only if its associated monomial ideal I(Γ) is pretty k-clean.
Also, we prove that an arbitrary monomial ideal I is pretty k-clean if and only
if its polarization Ip is k-clean. Our results extend and generalize some results
due to Herzog-Popescu, Soleyman Jahan and the first author.
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1. INTRODUCTION

Let R be a Noetherian ring and M be a finitely generated R-module. It
is well-known that there exists a so-called prime filtration

F : 0 = M0 ⊂ M1 ⊂ . . . ⊂ Mr−1 ⊂ Mr = M

that is such thatMi/Mi−1
∼= R/Pi for some Pi ∈ Supp(M). The set {P1,. . . ,Pr}

is called the support of M and denoted by Supp(F). Let Min(M) denote the
set of minimal prime ideals in Supp(M). Dress [3] calls a prime filtration F of
M clean if Supp(F) = Min(M). The module M is called clean, if M admits a
clean filtration and R is clean if it is a clean module over itself.

Herzog and Popescu [6] introduced the concept of pretty clean modules.
A prime filtration

F : 0 = M0 ⊂ M1 ⊂ . . . ⊂ Mr−1 ⊂ Mr = M

of M with Mi/Mi−1
∼= R/Pi is called pretty clean, if for all i < j for which

Pi ⊆ Pj it follows that Pi = Pj . The module M is called pretty clean, if it has
a pretty clean filtration. We say an ideal I ⊂ R is clean (or pretty clean) if
R/I is clean (or pretty clean).
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Dress showed [3] that a simplicial complex is shellable if and only if its
Stanley-Reisner ideal is clean. This result was extended in two different forms
by Herzog and Popescu in [6] and, also, by the current author in [8]. Herzog
and Popescu showed that a multicomplex is shellable if and only if its associ-
ated monomial ideal is pretty clean (see [6, Theorem 10.5.]) and we proved that
a simplicial complex is k-decomposable if and only if its Stanley-Reisner ideal
is k-clean (see [8, Theorem 4.1.]). Pretty cleanness and k-cleanness are, respec-
tively, the algebraic counterpart of shellability for multicomplexes due to [6]
and k-decomposability for simplicial complexes due to Billera-Provan [1] and
Woodroofe [12]. Soleyman Jahan proved that a monomial ideal is pretty clean
if and only if its polarization is clean (see [10, Theorem 3.10.]). This yields
a characterization of pretty clean monomial ideals, and it also implies that a
multicomplex is shellable if and only the simplicial complex corresponding to
its polarization is (non-pure) shellable. The purpose of this paper is to improve
and generalize these results. To this end, we introduce two notions: pretty k-
clean monomial ideal and k-decomposable multicomplex. The first notion is
as an extension of pretty clean monomial ideals as well as k-clean monomial
ideals and the second one extends two notions shellable multicomplexes and
k-decomposable simplicial complexes. The new constructions introduced here
imply that pretty clean monomial ideals and shellable multicomplexes have re-
cursive structures and, moreover, determine more details of their combinatorial
properties.

The paper is organized as follows. In the first section, we review some
preliminaries which are needed in the sequel. In the second section, we define
pretty cleaner monomials, which naturally leads us to define pretty k-clean
monomial ideals. We show that

Theorem 3.6. A pretty k-clean monomial ideal is pretty clean and, also,
every pretty clean monomial ideal is pretty k-clean for some k ≥ 0.

The above theorem implies that pretty k-cleanness is an extension of
pretty cleanness and, moreover, since pretty k-clean monomial ideals have a
recursive structure it follows that pretty clean ideals have such a property.

In the third section we define a class of multicomplexes, called
k-decomposable multicomplexes and discuss some structural properties of them.
As a main result of this section, we prove that

Theorem 4.8. Every k-decomposable multicomplex is shellable and every
shellable multicomplex is k-decomposable for some k ≥ 0.

In Proposition 4.9 we show that our definition of k-decomposable mul-
ticomplexes extends the corresponding notion known for simplicial complexes
due to Billera and Provan [1] or Woodroofe [12].

The final section is devoted to the main results of the paper. As the first
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main result, we show that

Theorem 5.2. A multicomplex Γ is k-decomposable if and only if its
associated monomial ideal I(Γ) is pretty k-clean.

This result generalizes Theorem 10.5 of [6] and also Theorem 4.1 of [8]
and, moreover, it implies that Theorem 4.8 is a combinatorial translation of
Theorem 3.6. As the second main result of Section 5, we first prove that

Theorem 5.6. A multicomplex is k-decomposable if and only if its po-
larization is k-decomposable.

This leads us to prove that a monomial ideal I is pretty k-clean if and
only if its polarization Ip is k-clean (see Corollary 5.7) and, moreover, extends
Theorem 3.10. of [10] which says that an arbitrary monomial ideal I is pretty
clean if and only if its polarization is clean.

Our proofs here are often combinatorial and in this way, we introduce the
new features of the structure of pretty clean monomial ideals.

2. PRELIMINARIES

Let S = K[x1, . . . , xn] be the polynomial ring over a field K. Let I ⊂ S
be a monomial ideal. Set ass(I) = Ass(S/I) and min(I) = Min(S/I). A prime
filtration of I is of the form

F : I = I0 ⊂ I1 ⊂ . . . ⊂ Ir = S

with Ij/Ij−1
∼= S/Pj , for j = 1, . . . , r such that all Ij are monomial ideals.

The prime filtration F is called clean, if Supp(F) = min(I). Also, F is
called pretty clean, if for all i < j which Pi ⊆ Pj it follows that Pi = Pj . The
monomial ideal I is called clean (or pretty clean), if it has a clean (or pretty
clean) filtration. It was shown in [6] that if F is a pretty clean filtration of I
then Supp(F) = ass(I).

Let ∆ be a simplicial complex on the vertex set [n] := {x1, . . . , xn}.
The set of facets (maximal faces) of ∆ is denoted by F(∆) and if F(∆) =
{F1, . . . , Fr}, we write ∆ = ⟨F1, . . . , Fr⟩. For a monomial ideal I of S, the set
of minimal generators of I is denoted by G(I).

Definition 2.1. A simplicial complex ∆ is called shellable if there exists
an ordering F1, . . . , Fm on the facets of ∆ such that for any i < j, there exists
a vertex v ∈ Fj \Fi and ℓ < j with Fj \Fℓ = {v}. We call F1, . . . , Fm a shelling
for ∆.

Theorem 2.2 ([3]). The simplicial complex ∆ is shellable if and only if
its Stanley-Reisner ideal I∆ is a clean monomial ideal.
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For a simplicial complex ∆ and F ∈ ∆, the link of F in ∆ is defined as

link∆(F ) = {G ∈ ∆ : G ∩ F = ∅, G ∪ F ∈ ∆},

and the deletion of F is the simplicial complex

∆ \ F = {G ∈ ∆ : F ⊈ G}.

Woodroofe in [12] extended the definition of k-decomposability to non-
pure complexes as follows.

Let ∆ be a simplicial complex on vertex set X. Then a face σ is called
a shedding face if every face τ containing σ satisfies the following exchange
property: for every v ∈ σ there is w ∈ X \ τ such that (τ ∪ {w}) \ {v} is a face
of ∆.

Definition 2.3 ([12]). A simplicial complex ∆ is recursively defined to be
k-decomposable if either ∆ is a simplex or else has a shedding face σ with
dim(σ) ≤ k such that both ∆ \ σ and link∆(σ) are k-decomposable. The
complexes {} and {∅} are considered to be k-decomposable for all k ≥ −1.

Definition 2.4 ([8]). Let I ⊂ S be a monomial ideal. A non-unit monomial
u ̸∈ I is called a cleaner monomial of I if min(ass(I + Su)) ⊆ min(ass(I)).

Definition 2.5 ([8]). Let I ⊂ S be a monomial ideal. We say that I is
k-clean whenever I is a prime ideal or I has no embedded prime ideals and
there exists a cleaner monomial u ̸∈ I with |supp(u)| ≤ k + 1 such that both
I : u and I + Su are k-clean.

Theorem 2.6 ([8, Theorem 4.1.]). Let ∆ be a (d − 1)-dimensional sim-
plicial complex. Then ∆ is k-decomposable if and only if I∆ is k-clean, where
0 ≤ k ≤ d− 1.

The concept of multicomplex was first defined by Stanley [11]. Then
Herzog and Popescu [6] gave a modification of Stanley’s definition which will
be used in this paper.

Let N be the set of non-negative integers. Define on Nn the partial order
given by

a ⪯ b if a(i) ≤ b(i) for all i.

Set N∞ = N ∪ {∞}. For a ∈ Nn
∞ we define fpt(a) = {i : a(i) ̸= ∞} and

infpt(a) = {i : a(i) = ∞} and fpt∗(a) = {i : 0 < a(i) < ∞}.
Let Γ be a subset of Nn

∞. An element m ∈ Γ is called maximal if there is
no a ∈ Γ with a ≻ m. We denote by M(Γ) the set of maximal elements of Γ.
It was shown in [6, Lemma 9.1] that M(Γ) is finite.

Definition 2.7. A subset Γ ⊂ Nn
∞ is called a multicomplex if
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(1) for all a ∈ Γ and all b ∈ Nn
∞ with b ⪯ a it follows that b ∈ Γ;

(2) for all a ∈ Γ there exists an element m ∈ M(Γ) such that a ⪯ m.

The elements of a multicomplex are called faces. An element a ∈ Γ is
called a facet of Γ if for all m ∈ M(Γ) with a ⪯ m one has infpt(a) = infpt(m).
Let F(Γ) denote the set of facets of Γ. The facets in M(Γ) are called maximal
facets.

It is clear that the set of facets and, also, the set of maximal facets of
a multicomplex Γ determine Γ. The monomial ideal associated to Γ is the
ideal I(Γ) generated by all monomials xa such that a ̸∈ Γ. Also, if I ⊂ S
is any monomial ideal then the multicomplex associated to I is defined to be
Γ(I) = {a ∈ Nn

∞ : xa ̸∈ I}. Note that I(Γ(I)) = I and, moreover, Γ(I)
is unique with this property. For A = {a1, . . . ,ar} ⊂ Nn

∞, we denote by
⟨a1, . . . ,ar⟩ the unique smallest multicomplex containing A.

For a ∈ Γ, define dim(a) = |infpt(a)| − 1 and

dim(Γ) = max{dim(a) : a ∈ Γ}.
We call S ⊂ Nn

∞ a Stanley set of degree a if there exist a ∈ Nn and
m ∈ Nn

∞ with m(i) ∈ {0,∞} such that S = a + S∗, where S∗ = ⟨m⟩. The
dimension of S is defined to be dim(⟨m⟩).

Definition 2.8 ([6]). A multicomplex Γ is shellable if the facets of Γ can
be ordered a1, . . . ,ar such that

(1) Si = ⟨ai⟩\⟨a1, . . . ,ai−1⟩ is a Stanley set for i = 1, . . . , r;

(2) If S∗
i ⊂ S∗

j then S∗
i = S∗

j or i > j.

An ordering of the facets satisfying (1) and (2) is called a shelling of Γ.

Theorem 2.9 ([6, Proposition 10.3.]). Let ∆ be a simplicial complex with
facets F1, . . . , Fr, and Γ be the multicomplex with facets aF1 , . . . ,aFr . Then ∆
is shellable if and only if Γ is shellable.

Theorem 2.10 ([6, Theorem 10.5]). The multicomplex Γ is shellable if
and only if I(Γ) is a pretty clean monomial ideal.

Let I ⊆ S be a monomial ideal generated by the set G(I) = {u1, . . . , ur}.
Let for each i, ui =

∏n
j=1 x

tij
j and for each j, tj = max{tij : i = 1, . . . , r}. Let

T = K[x1,1, x1,2, . . . , x1,t1 , x2,1, x2,2, . . . , x2,t2 , . . . , xn,1, xn,2, . . . , xn,tn ]

be a polynomial ring over K. For each i = 1, . . . , r set

vi :=

n∏
j=1

tij∏
k=1

xjk.
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The monomial vi is squarefree and is called the polarization of ui. Also, we de-
note the polarization of I by Ip and it is a squarefree monomial ideal generated
by {v1, . . . , vr}.

Theorem 2.11 ([10, Theorem 3.10.]). The monomial ideal I is pretty
clean if and only if Ip is clean.

3. PRETTY k-CLEAN MONOMIAL IDEALS

Let I ⊂ S be a monomial ideal. A prime filtration

F : (0) = M0 ⊂ M1 ⊂ . . . ⊂ Mr−1 ⊂ Mr = S/I

of S/I is called multigraded, if all Mi are multigraded submodules of M , and if
there are multigraded isomorphisms Mi/Mi−1

∼= S/Pi(−ai) with some ai ∈ Zn

and some multigraded prime ideals Pi.

Definition 3.1. Let I ⊂ S be a monomial ideal. A non-unit monomial
u ̸∈ I is called pretty cleaner if for P ∈ ass(I : u) and Q ∈ ass(I + Su) which
P ⊆ Q it follows that P = Q.

Definition 3.2. A monomial ideal I ⊂ S is called pretty k-clean if it is a
prime ideal or there exists a pretty cleaner monomial u ̸∈ I with |supp(u)| ≤
k + 1 such that both I : u and I + Su are pretty k-clean.

Note that pretty k-cleanness implies pretty k′-cleanness for 0 ≤ k ≤ k′.
But the converse implication is not true in general. To see an example of pretty
k-clean ideals which are not pretty 0-clean, refer to Remark 5.5.

Remark 3.3. It is clear that every k-clean monomial ideal is pretty
k-clean. But a cleaner monomial need not be pretty cleaner. To see this,
consider the monomial ideal

I = (x1x
2
2, x2x

2
3, x

2
1x3) ⊂ S′ = K[x1, x2, x3].

Then
ass(I) = {(x1, x2), (x1, x3), (x2, x3), (x1, x2, x3)},
ass(I + S′x21) = {(x1, x2), (x1, x3), (x1, x2, x3)},
ass(I : x21) = {(x2, x3)}.

Notice that x21 is cleaner but not pretty cleaner.

It follows from the definition that the construction of a pretty k-clean
monomial ideal is similar to that of a k-clean monomial ideal (c.f. [8]). In
other words, for a pretty k-clean monomial ideal I ⊂ S there is a rooted, finite,
directed and binary tree T whose root is I and every node n is labeled by a
pretty k-clean monomial ideal In containing I. Also, every nonterminal node
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n is labeled by a monomial un which is a pretty cleaner monomial of In. T is
depicted in the following:

In1 := I

un1

In2 := I : un1 In3 := I + Sun1

In4 := In2 : un2 In5 := In2 + Sun2 In6 := In3 : un3 In7 := In3 + Sun3

un2 un3

un4 un5 un6 un7
...

...
...

...
...

...
...

...

T is called the ideal tree of I and the number of all pretty cleaner monomials
un1 , un2 , . . . appeared in T is called the length of T . We denote the length of
T by l(T ).

We define the pretty k-cleanness length of the pretty k-clean monomial
ideal I by

l(I) = min{l(T ) : T is an ideal tree of I}.
The following proposition gives an useful description of the structure of

pretty clean filtrations.

Proposition 3.4 ([6, Proposition 10.1.]). Let S = K[x1, . . . , xn] be the
polynomial ring, and I ⊂ S a monomial ideal. The following conditions are
equivalent:

(a) S/I admits a multigraded prime filtration F : (0) = M0 ⊂ M1 ⊂
. . . ⊂ Mr−1 ⊂ Mr = S/I such that Mi/Mi−1

∼= S/Pi(−ai) for all i;

(b) there exists a chain of monomial ideals I = I0 ⊂ I1 ⊂ . . . ⊂ Ir = S
and monomials ui of multidegree ai such that Ii = Ii−1+Sui and Ii−1 : ui = Pi.

As an immediate consequence of the previous proposition we get

Corollary 3.5. Let S = K[x1, . . . , xn] be the polynomial ring, and
I ⊂ S a monomial ideal. Let S/I be pretty clean with the multigraded prime
filtration F : I = I0 ⊂ I1 ⊂ . . . ⊂ Ir = S such that Ii/Ii−1

∼= S/Pi(−ai) for
all i. Set Ii =

⋂r
j=i+1 Jj for i = 0, . . . , r. Then ass(Ii) = {Pi+1, . . . , Pr} for all

i = 0, . . . , r.

Now we want to prove the main result of this section.

Theorem 3.6. Every pretty k-clean monomial ideal is pretty clean. Also,
a pretty clean monomial ideal is pretty k-clean, for some k ≥ 0.
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Proof. Suppose that I is a pretty k-clean monomial ideal. We use induc-
tion on the pretty k-cleanness length of I. Assume that I is not prime and
there exists a pretty cleaner monomial u ̸∈ I with |supp(u)| ≤ k + 1 such that
both I : u and I + Su are pretty k-clean. By induction, I : u and I + Su are
pretty clean and there are pretty clean filtrations

F1 : I + Su = J0 ⊂ J1 ⊂ . . . ⊂ Jr = S

and

F2 : 0 =
L0

I : u
⊂ L1

I : u
⊂ . . . ⊂ Ls

I : u
=

S

I : u

with (Li/I : u)/(Li−1/I : u) ∼= S/Qi(−ai) where Qi are prime ideals. It
is known that the multiplication map φ : S/I : u(−a)

.u−→ I + Su/I is an
isomorphism. Restricting φ to Li/I : u yields a monomorphism φi : Li/I :
u

.u−→ I + Su/I. Set Hi/I := φi(Li/I : u). Hence Hi/I ∼= (Li/I : u)(−a). It
follows that

Hi

Hi−1

∼=
Hi/I

Hi−1/I
∼=

(Li/I : u)(−a)

(Li−1/I : u)(−a)
∼=

S

Qi
(−a− ai).

Therefore, we obtain the following prime filtration induced from F2:

F3 : I = H0 ⊂ H1 ⊂ . . . ⊂ Hs = I + Su.

By adding F1 to F3 we get the prime filtration

F : I = H0 ⊂ H1 ⊂ . . . ⊂ Hs = I + Su ⊂ J1 ⊂ . . . ⊂ Jr = S.

Let Qi ∈ Supp(F1) and Pj ∈ Supp(F2) with Pj ⊆ Qi. By [6, Corollary 3.6],
Qi ∈ ass(I + Su) and Pj ∈ ass(I : u). Since u is a pretty cleaner we have
Pj = Qi. Therefore, I is pretty clean.

Conversely, let I be a pretty clean monomial ideal. Then there is a pretty
clean filtration

F : (0) = M0 ⊂ M1 ⊂ . . . ⊂ Mr−1 ⊂ Mr = S/I

of S/I with Mi/Mi−1
∼= S/Pi(−ai). If I is a prime ideal then we have nothing

to prove. Assume that I is not a prime ideal. Since I is pretty clean, by
Proposition 3.4, there exists a chain of monomial ideals I = I0 ⊂ I1 ⊂ . . . ⊂
Ir = S and monomials ui of multidegree ai such that Ii = Ii−1 + Sui and
Ii−1 : ui = Pi. It is clear that I1 is pretty k-clean, where |supp(u1)| ≤ k + 1.
By Corollary 3.5, ass(I1) = {P2, . . . , Pr}. It follows from P1 ⊂ Pi ∈ ass(I1)
that P1 = Pi. Hence, since u1 is pretty cleaner, we obtain that I is pretty
k-clean.

The following result is an improvement of [6, Corollary 3.5.] in the special
case where M is the quotient ring S/I.
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Theorem 3.7. Let I ⊂ S be a pretty k-clean monomial ideal. Then I is
k-clean if and only if ass(I) = min(I).

Proof. It follows from the definition.

Theorem 3.8. Let I ⊂ S be pretty k-clean. Then for all monomial u ∈ S,
I : u is pretty k-clean.

Proof. See the proof of Theorem 3.1. of [8].

Theorem 3.9. The radical of each pretty k-clean monomial ideal is pretty
k-clean and so is k-clean.

Proof. See the proof of Theorem 3.2. of [8].

Remark 3.10. For some examples of pretty k-clean monomial ideals see
[8].

Remark 3.11. Note that for a multicomplex Γ with F(Γ) = {a} one has
a ∈ {0,∞}n (see [6, Corollary 9.11]).

4. k-DECOMPOSABLE MULTICOMPLEXES

The aim of this section is to extend the concept of k-decomposability to
multicomplexes. We first define some notions.

Recall the concept of multicomplex from Section 2. Let Γ be a subset of
Nn
∞. An element m ∈ Γ is called maximal if there is no a ∈ Γ with a ≻ m. We

denote by M(Γ) the set of maximal elements of Γ. A subset Γ ⊂ Nn
∞ is called

multicomplex if

(1) for all a ∈ Γ and all b ∈ Nn
∞ with b ⪯ a it follows that b ∈ Γ;

(2) for all a ∈ Γ there exists an element m ∈ M(Γ) such that a ⪯ m.

Let Γ be a multicomplex and a ∈ Γ. We define the star, deletion and link
of a in Γ, respectively, as follows:

starΓa = ⟨b ∈ F(Γ)|a ⪯ b⟩,
Γ\a = ⟨b ∈ F(Γ)|a ⪯̸ b⟩,
linkΓa = ⟨b− a : b ∈ F(Γ) and a ⪯ b⟩.

For the multicomplexes Γ1,Γ2 ⊂ Nn
∞, the join of Γ1 and Γ2 is defined to

be

Γ1 · Γ2 = {a+ b : a ∈ Γ1,b ∈ Γ2}.
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One can easily check that

starΓa = ⟨a⟩ · linkΓa,
starΓa = {b ∈ Γ|a ∨ b ∈ Γ} and
linkΓa = {a ∨ b− a : a ∨ b ∈ Γ}.

If {a1, . . . ,ar} ⊂ Nn
∞, then

Γ\{a1, . . . ,ar} = ⟨b ∈ F(Γ) : ai ⪯̸ b for all i⟩ =
r⋂

i=1

Γ\ai.

Example 4.1. Let Γ = ⟨(2,∞), (3, 0)⟩. Then
F(Γ) = {(0,∞), (1,∞), (2,∞), (3, 0)}.

For a = (2, 1) we have

starΓa = ⟨(2,∞)⟩,
Γ\a = ⟨(0,∞), (1,∞), (3, 0)⟩,
linkΓa = ⟨(0,∞)⟩.

Definition 4.2. Let Γ be a (d− 1)-dimensional multicomplex and let 0 ≤
k ≤ d− 1. An element a ∈ Γ∩Nn with |fpt∗(a)| ≤ k+1 is called shedding face
if it satisfies the following conditions:

(i) for all b ∈ F(starΓ(a)), ⟨b⟩\(Γ\a) is a Stanley set of degree a;

(ii) for every b ∈ F(starΓ(a)) and every c ∈ F(Γ\a) if fpt(b) ⊆ fpt(c)
then fpt(b) = fpt(c).

Definition 4.3. Let Γ be a (d− 1)-dimensional multicomplex and let 0 ≤
k ≤ d − 1. We say that Γ is k-decomposable if it has only one facet or there
exists a shedding face a ∈ Γ with |fpt∗(a)| ≤ k+1 such that both linkΓ(a) and
Γ\a are k-decomposable.

Remark 4.4. Note that for a multicomplex Γ with F(Γ) = {a} one has
a ∈ {0,∞}n (see [6, Corollary 9.11]).

Now we discuss some structural properties of k-decomposable multicom-
plexes.

Theorem 4.5. Let Γ be a k-decomposable multicomplex. Then for all
a ∈ Γ, linkΓa is k-decomposable.

Proof. If Γ has just one facet then we have nothing to prove. Suppose
that |F(Γ)| > 1 and there is a shedding face b ∈ Γ with |fpt∗(b)| ≤ k + 1.

Case 1. Let b ⪯ a and a∨ b ∈ Γ. Then linkΓa = linklinkΓb(a− b). Since
|F(linkΓb)| ≤ |F(Γ)|, it follows from induction hypothesis that linklinkΓb(a−b)
is k-decomposable.
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Case 2. Let b ⪯̸ a and a ∨ b ∈ Γ. Then

linkΓa\(a ∨ b− a) = linkΓ\ba,

linklinkΓa(a ∨ b− a) = linkΓ(a ∨ b) = linklinkΓb(a ∨ b− b).

Now, since |F(linkΓb)| ≤ F(Γ)| and |F(Γ\b)| ≤ |F(Γ)| we conclude that
linklinkΓa(a ∨ b− a) and linkΓa\(a ∨ b− a) are k-decomposable, by induction
hypothesis. Now we show that a ∨ b− a is a shedding face of linkΓa.

Let c ∈ F(starlinkΓa(a ∨ b − a)). Hence, since starlinkΓa(a ∨ b − a) =
linkstarΓb(a) we get c + a ∈ F(starstarΓb(a)). Thus c + a ∈ F(starΓb). It
follows that there is m ∈ {0,∞}n such that ⟨c + a⟩\(Γ\b) = b + ⟨m⟩. This
implies that

⟨c⟩\(linkΓa\(a ∨ b− a)) = ⟨c⟩\(linkΓ\ba) = a ∨ b− a+ ⟨m⟩.

Let u ∈ F(starlinkΓa(a ∨ b − a)) and v ∈ F((linkΓa)\(a ∨ b − a)) with
fpt(u) ⊆ fpt(v). Then we have u + a ∈ F(starΓb), v + a ∈ F(Γ\b) and
fpt(u+ a) ⊆ fpt(v+ a). Because b is a shedding face of Γ we get fpt(u+ a) =
fpt(v + a). It follows that fpt(u) = fpt(v).

Case 3. Let a∨b ̸∈ Γ. Then linkΓa = linkΓ\ba. Since |F(Γ\b)| ≤ |F(Γ)|,
it follows from induction hypothesis that linkΓa is k-decomposable.

Theorem 4.6. Let Γ ∈ Nn
∞ be a multicomplex which has just one maximal

facet b. Then Γ is k-decomposable if and only if |fpt∗(b)| ≤ k + 1.

Proof. “Only if part”: Let Γ be k-decomposable. If Γ has only one facet
then the assertion follows from Remark 4.4. Suppose that |F(Γ)| > 1 and let
a be a shedding face of Γ with |fpt∗(a)| ≤ k + 1 such that linkΓa and Γ\a
are k-decomposable. Since b ∈ F(starΓa), there exists m ∈ {0,∞}n such that
⟨b⟩\(Γ\a) = a+ ⟨m⟩. Note that infpt(b) = infpt(m).

Let 0 < b(i) < ∞ for some i. If a(i) = 0 then since b ∈ a + ⟨m⟩ we
have 0 < m(i) < ∞, a contradiction. Therefore, a(i) ̸= 0. This implies that
fpt∗(b) ⊆ fpt∗(a). Hence |fpt∗(b)| ≤ k + 1.

“If part”: If |fpt∗(b)| = 0 then b ∈ {0,∞}n and so Γ has just one facet.
Hence Γ is k-decomposable. Suppose that |fpt∗(b)| > 0. We show that a with

a(i) =

{
b(i), b(i) ̸= ∞
0, otherwise

is a shedding face of Γ.
Since F(linkΓ(a)) = {b−a}, it follows that linkΓa is k-decomposable. We

have ⟨b⟩\(Γ\a) = a+ ⟨m⟩ where infpt(m) = infpt(b). Since for all c ∈ F(Γ),
infpt(c) = infpt(b) it follows that fpt(c) = fpt(b) and so the condition (ii) of
Definition 4.2 holds. It remains to show that Γ\a is k-decomposable.
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Let 0 < b(i) < ∞. Set

c(j) =

{
b(j), j ̸= i
b(i)− 1, j = i

In a similar way to a for Γ, we show that c is a shedding face of Γ\a. The
proof is completed inductively.

Consequently, Γ is k-decomposable.

Two multicomplexes Γ1,Γ2 ⊂ Nn
∞ are called disjoint if

(
⋃
a∈Γ1

{i : a(i) ̸= 0}) ∩ (
⋃
a∈Γ2

{i : a(i) ̸= 0})) = ∅.

Theorem 4.7. Let Γ1 and Γ2 be two disjoint multicomplexes. If Γ1 · Γ2

is k-decomposable then Γ1 and Γ2 are k-decomposable. The converse holds, if
in addition, F(Γ2) ⊂ {0,∞}n.

Proof. Note that Γ = Γ1 · Γ2 has one facet if and only if Γ1 and Γ2 have
one facet. So assume that |F(Γ1)| > 1 or |F(Γ2)| > 1.

For every face a ∈ Γ we have

(1) linkΓ(a) = linkΓ1(a1) · linkΓ2(a2)

and

(2) Γ\a = (Γ1\a1) · Γ2 ∪ Γ1 · (Γ2\a2)

where a1 ∈ Γ1, a2 ∈ Γ2 and a = a1 + a2.

“Only if part”: Let Γ1 · Γ2 be k-decomposable with shedding face a =
a1 + a2 where ai ∈ Γi. We want to show that Γi is k-decomposable with
shedding face ai and both lkΓi(ai) and Γi\ai are k-decomposable for i = 1, 2.
We may assume that starΓ1a1 ̸= Γ1. Since linkΓa1 = linkΓ1a1 · Γ2, we get
linkΓ1a1 and Γ2 are k-decomposable, by induction. On the other hand, Γ\a
is k-decomposable. Hence linkΓ\aa2 = Γ1\a1 · linkΓ2a2 is k-decomposable, by
Theorem 4.5. Thus Γ1\a1 is k-decomposable, by induction.

Let b1 ∈ F(starΓ1a1). Choose a facet b2 ∈ F(starΓ2a2) and set b =
b1 + b2. Then b ∈ F(starΓa) and

(3)
⟨b⟩\(Γ\a) = [⟨b⟩\(Γ1\a1 · Γ2)] ∩ [⟨b⟩\(Γ1 · Γ2\a2)]

= [⟨b1⟩\(Γ1\a1) · ⟨b2⟩] ∩ [⟨b1⟩ · ⟨b2⟩\(Γ2\a2)]
= ⟨b1⟩\(Γ1\a1) · ⟨b2⟩\(Γ2\a2).

On the other hand, ⟨b⟩\(Γ\a) = a + ⟨m⟩ where m(i) ∈ {0,∞}. Let a =
a1 + a2 and m = m1 + m2 where ai,mi ∈ Γi. We conclude from (3) that
⟨b1⟩\(Γ1\a1) = a1 + ⟨m1⟩.
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Let b1 ∈ F(starΓ1a1) and c2 ∈ F(Γ1\a1) with fpt(b1) ⊆ fpt(c1). Choose
b2 ∈ F(starΓ2a2) and c2 ∈ F(Γ2\a2) with fpt(b2) ⊆ fpt(c2). Then there is
c′2 ∈ M(Γ2) such that c2 ⪯ c′2. It follows that b1+b2 ∈ F(starΓa) and c1+c′2 ∈
F(Γ\a). Note that fpt(c2) = fpt(c′2). Therefore, fpt(b1 + b2) = fpt(c1 + c′2).
In particular, fpt(b1 + b2) = fpt(c1 + c2). It follows that fpt(b1) = fpt(c1).
Therefore, a1 is a shedding face of Γ1.

“If part”: Let Γ1 and Γ2 be k-decomposable with shedding faces a1 and
a2, respectively, and let F(Γ2) ⊂ {0,∞}n. We claim that a1 is a shedding face
of Γ.

It follows from relations (1) and (2) that

linkΓ(a1) = linkΓ1(a1) · Γ2, Γ\a1 = (Γ1\a1) · Γ2.

By induction hypothesis, linkΓ(a1) and Γ\a1 are k-decomposable.
Let b = b1 + b2 ∈ F(starΓ(a1)) where bi ∈ Γi. Then

⟨b⟩\(Γ\a1) = [⟨b1⟩\(Γ1\a1)] · ⟨b2⟩ = (a1 + ⟨m⟩) · ⟨b2⟩ = a1 + ⟨m+ b2⟩

is a Stanley set.
Let b = b1+b2 ∈ F(starΓa1) and c = c1+c2 ∈ F(Γ\a1) with bi, ci ∈ Γi.

Suppose that fpt(b) ⊆ fpt(c). Then fpt(bi) ⊆ fpt(ci), for i = 1, 2. Since b2

and c2 are facets of Γ2 and, moreover, F(Γ2) ⊂ {0,∞}n, we have infpt(c2) =
infpt(b2), by definition. Thus fpt(b2) = fpt(c2). On the other hand, by
k-decomposability of Γ1, fpt(b1) = fpt(c1). Therefore, fpt(b) = fpt(c), as
desired.

Now we come to the main result of this section.

Theorem 4.8. Every k-decomposable multicomplex Γ is shellable. Also,
every shellable multicomplex is k-decomposable for some k ≥ 0.

Proof. Let Γ be k-decomposable. If Γ has only one facet then we are done.
Suppose that |F(Γ)| > 1. Let a ∈ Γ be a shedding face of Γ with |fpt∗(a)| ≤
k + 1 such that linkΓa and Γ\a are k-decomposable. By induction, linkΓ(a)
and Γ\a are shellable. Let a1, . . . ,at and at+1 − a, . . . ,ar − a be, respectively,
shelling orders of Γ\a and linkΓa. It is easy to check that at+1, . . . ,ar is a
shelling order of starΓa. We claim that a1, . . . ,ar is a shelling order of Γ.

We want to show that Si = ⟨ai⟩\⟨a1, . . . ,ai−1⟩ is a Stanley set, for al i.
The case i ≤ t is clear. Suppose that i > t. Clearly,

⟨ai⟩\⟨a1, . . . ,ai−1⟩ = (⟨ai⟩\⟨a1, . . . ,at⟩) ∩ (⟨ai⟩\⟨at+1, . . . ,ai−1⟩).

Because Γ is k-decomposable we have ⟨ai⟩\⟨a1, . . . ,at⟩ = a + ⟨m⟩ where m ∈
{0,∞}n. Moreover, starΓ(a) is shellable and hence there exist a′ ∈ Nn with
|fpt∗(a′)| ≤ k + 1 and m′ ∈ {0,∞}n such that
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⟨ai⟩\⟨at+1, . . . ,ai−1⟩ = a′ + ⟨m′⟩.

It is clear that m = m′. Therefore, ⟨ai⟩\⟨a1, . . . ,ai−1⟩ = a ∨ a′ + ⟨m⟩.
Let S∗

i ⊆ S∗
j . If i, j ≤ t or t ≤ i, j then we are done, because starΓ(a) and

Γ\a are shellable. Suppose that i ≤ t < j. Since infpt(aj) = infpt(S∗
j ) and

infpt(ai) = infpt(S∗
i ) we have fpt(aj) ⊆ fpt(ai). But fpt(aj) = fpt(ai), because

aj ∈ F(starΓ(a)) and ai ∈ F(Γ\a). Consequently, infpt(aj) = infpt(ai) and so
S∗
i = S∗

j , as desired.

For the second part of theorem, suppose that Γ is shellable with the
shelling a1, . . . ,ar. If r = 1 then Γ is k-decomposable for some k ≥ 0. So
assume that r > 1. We proceed by induction on the number of facets of
Γ. Since Sr = ⟨ar⟩\⟨a1, . . . ,ar−1⟩ is a Stanley set, so there exists a ∈ Nn and
m ∈ {0,∞}n such that Sr = a+⟨m⟩. Let |fpt∗(a)| ≤ k+1 for some k ≥ 0. It is
clear that starΓ(a) = ⟨ar⟩ and Γ\a = ⟨a1, . . . ,ar−1⟩. By induction hypothesis,
Γ\a is k′-decomposable for some k′ ≥ 0. Assume that k ≥ k′. If we show that
a satisfies the condition (ii) of Definition 4.2 then we have shown that a is a
shedding face of Γ.

Let i < r and fpt(ar) ⊆ fpt(ai). Then infpt(ai) ⊆ infpt(ar) and so
S∗
i ⊆ S∗

r . It follows that S∗
i = S∗

r . This implies that fpt(ar) = fpt(ai), as the
desired.

For F ⊂ [n] define aF ∈ Nn
∞ by aF (i) = ∞ if i ∈ F and aF (i) = 0,

otherwise. Also, for a ∈ {0,∞}n set Fa = {i ∈ [n] : a(i) = ∞}. The next
result shows that our definition of k-decomposability of multicomplexes extends
the concept of k-decomposability of simplicial complexes defined in [1, 12].

Proposition 4.9. Let ∆ be a simplicial complex with facets
F1, . . . , Fr, and Γ be the multicomplex with the facets aF1 , . . . ,aFr . Then ∆
is k-decomposable if and only if Γ is k-decomposable.

Proof. “Only if part”: We use induction on the number of the facets
of ∆. Let ∆ be k-decomposable with shedding face σ ∈ ∆. We claim that
eσ =

∑
i∈F ei is a shedding face of Γ where ei denotes the ith standard unit

vector in Nn. Clearly, |fpt∗(eσ)| ≤ k + 1. Note that

linkΓeσ = ⟨aF : F ∈ F(link∆σ)⟩

and

Γ\eσ = ⟨aF : F ∈ F(∆\σ)⟩.
By induction, linkΓeσ and Γ\eσ are k-decomposable.

Let aF ∈ F(starΓeσ). Then

⟨aF ⟩\(Γ\eσ) = {u ∈ Γ : eσ ⪯ u ⪯ aF } = eσ + ⟨aF ⟩.
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Therefore, ⟨aF ⟩\(Γ\eσ) is a Stanley set of degree eσ.
Consider b ∈ F(starΓeσ) and c ∈ F(Γ\eσ) with fpt(b) ⊆ fpt(c). If

fpt(b) ̸= fpt(c) then Fc ⫋ Fb and so there exists x ∈ σ such that x ∈ Fb\Fc.
Particularly, Fb\x is a facet of star∆σ\σ and ∆\σ. This contradicts the as-
sumption that σ is a shedding face of ∆. Therefore, fpt(b) = fpt(c).

“If part”: If r = 1 then we are done. Assume that r > 1 and suppose that
Γ is k-decomposable and a ∈ Nn is a shedding face of Γ with |fpt∗(a)| ≤ k+1.

Set σ = fpt∗(a). Since linkΓeσ = linkΓa and Γ\ eσ = Γ\a thus linkΓeσ and
Γ\eσ are k-decomposable. Hence by induction hypothesis, link∆σ and ∆\σ are
k-decomposable. It remains to show that σ satisfies the exchange property. Let
F be a facet of both star∆σ\σ and ∆\σ. Then there exists a facet G ∈ star∆σ
and x ∈ σ such that F = G\x. Clearly, infpt(aF ) ⫋ infpt(aG). It follows
that fpt(aG) ⫋ fpt(aF ). This is a contradiction, because aG ∈ F(starΓeσ) and
aF ∈ F(Γ\eσ). Therefore, σ is a shedding face of ∆.

For the simplicial complexes ∆1 and ∆2 defined on disjoint vertex sets,
the join of ∆1 and ∆2 is ∆1.∆2 = {σ ∪ τ : σ ∈ ∆1, τ ∈ ∆2}.

Theorem 4.7 together with Proposition 4.9 now yields the following corol-
lary which is known for shellability [2] and vertex decomposability [12].

Corollary 4.10. Let ∆1 and ∆2 be simplicial complexes on disjoint
vertex sets. Then ∆1 and ∆2 are k-decomposable if and only if ∆1 · ∆2 is
k-decomposable.

5. THE RELATIONSHIP BETWEEN k-DECOMPOSABILITY
AND PRETTY k-CLEANNESS

In this section, we present the main results of the paper. For the proof of
the first main theorem, we need the following lemma whose proof is easy and
we leave without proof.

Lemma 5.1. Let Γ be a multicomplex and a ∈ Γ. Then

I(Γ\a) = I(Γ) + Sxa and I(linkΓa) = I(Γ) : xa.

It follows that for a monomial ideal I and a monomial xa ∈ I we have

Γ(I : xa) = linkΓ(I)a and Γ(I + Sxa) = Γ(I)\a.

We are prepare to prove the first main result of this section which is an
improvement of [6, Theorem 10.5.].

Theorem 5.2. Let Γ be a multicomplex. Then Γ is k-decomposable if
and only if I(Γ) is pretty k-clean.
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Proof. “Only if part”: Let F(Γ) = {a1, . . . ,ar}. If r = 1, then I(Γ) is a
prime ideal and so we have nothing to prove. So suppose that r > 1. Let Γ
be k-decomposable with shedding face a. It follows from induction hypothesis
and Lemma 5.1 that I(Γ) : xa and I(Γ) + Sxa are pretty k-clean.

Let P ∈ ass(I(linkΓa)) and Q ∈ ass(I(Γ\a)) with P ⊆ Q. Hence there
exist b ∈ F(linkΓa) and c ∈ F(Γ\a) such that P =

√
I(⟨b⟩) and Q =

√
I(⟨c⟩)

(see the proof of [6, Theorem 10.1]). Then fpt(b+ a) ⊆ fpt(b) ⊆ fpt(c) where
b + a is a facet of starΓa. By k-decomposability of Γ, we have fpt(b + a) =
fpt(c). In particular, fpt(b) = fpt(c) and so P = Q. Therefore, xa is a pretty
cleaner of I(Γ), as desired.

“If part”: Let I(Γ) be pretty k-clean. If Γ has just one facet then we are
done. Suppose that Γ has more than one facet. Then I(Γ) is not prime. Thus
there exists a pretty cleaner monomial xa ̸∈ I(Γ) with |supp(xa)| ≤ k+1 such
that I(Γ) : xa and I(Γ) + Sxa are pretty k-clean. It follows from Lemma 5.1
and induction hypothesis that linkΓa and Γ\a are k-decomposable.

Let b ∈ F(starΓa). We want to show that ⟨b⟩\(Γ\a) is a Stanley set.
By the proof of Theorem 10.6 and the discussion at the end of Section 6 from
[6], ⟨b⟩\(Γ\a) is a Stanley set if and only if I(Γ\a)/I(⟨Γ\a,b⟩) is a cyclic
quotient. Therefore, it is enough to show that I(Γ\a)/I(⟨Γ\a,b⟩) is a cyclic
quotient. It is easy to check that ⟨Γ\a,b⟩ is k-decomposable with shedding
face a and so by the only if part, I(⟨Γ\a,b⟩) is pretty k-clean. It follows from
Theorem 3.6 that I(⟨Γ\a,b⟩) is pretty clean and so by [6, Theorem 10.5.],
I(Γ\a)/I(⟨Γ\a,b⟩) ∼= S/P is a cyclic quotient where P = (xi : i ∈ fpt(b)), as
desired.

Let b ∈ F(starΓa) and c ∈ F(Γ\a) with fpt(b) ⊂ fpt(c). Set

b′(i) =

{
0 i ∈ fpt(b)
∞ otherwise

and c′(i) =

{
0 i ∈ fpt(c)
∞ otherwise.

Clearly, b′ ∈ F(starΓa) and c′ ∈ F(Γ\a) with fpt(b′) ⊂ fpt(c′). We have
b′∨a−a ∈ F(linkΓa). Let P =

√
I(⟨b′ ∨ a− a⟩) and Q =

√
I(⟨c′⟩). Then P ∈

ass(I(linkΓa)) andQ ∈ ass(I(Γ\a)). Since fpt(b′∨a−a) = fpt(b′) ⊂ fpt(c′), we
have P ⊆ Q. It follows that P = Q and so fpt(b) = fpt(b′) = fpt(c′) = fpt(c).

Therefore, a is a shedding face of Γ.

Remark 5.3. It follows from the proof of Theorem 5.2 that for a multi-
complex Γ, an element a ∈ Γ ∩ Nn satisfies the condition (ii) of Definition 4.2
if and only if xa is a pretty cleaner monomial of I(Γ). The condition (i) of
Definition 4.2 is equivalent to the existence of a prime filtration for I(Γ).

Remark 5.4. Note that Theorems 4.5 and 4.8 are, respectively, combina-
torial translations of Theorems 3.8 and 3.6.
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Remark 5.5. Consider the simplicial complex

∆ = ⟨124, 125, 126, 135, 136, 145, 236, 245, 256, 345, 346⟩

on [6]. It was shown in [9] that ∆ is shellable but not vertex-decomposable. It
follows from Proposition 4.9 that the multicomplex Γ with F(Γ) = {aF : F ∈
F(∆)} is shellable but not 0-decomposable. This means that a pretty k-clean
ideal need not be pretty k′-clean for k > k′. To see more examples of shellable
simplicial complexes which are not vertex-decomposable, we refer the reader
to [4, 7].

Now we want to prove the second main theorem of the current section.
We need some notions.

Recall the concept of polarization. Let I ⊂ S be a monomial ideal gen-
erated by the set G(I) = {u1, . . . , ur}. Let for each i, ui =

∏n
j=1 x

tij
j and for

each j, tj = max{tij : i = 1, . . . , r}. Let

T = K[x1,1, x1,2, . . . , x1,t1 , x2,1, x2,2, . . . , x2,t2 , . . . , xn,1, xn,2, . . . , xn,tn ]

be a polynomial ring over K. For each i = 1, . . . , r set

vi :=

n∏
j=1

tij∏
k=1

xjk.

We denote the polarization of I by Ip and it is a square free monomial
ideal generated by {v1, . . . , vr}.

Let I ⊂ S be a monomial ideal. We denote by Γ and Γp the multicom-
plexes associated to I and Ip, respectively. Soleyman Jahan [10] showed that
there is a bijection between the facets of Γ and the facets of Γp. We recall some
notions of the construction of Γp from [10]. Let I ⊂ S be minimally generated
by u1, . . . , ur and let D ⊂ [n] be the set of elements i ∈ [n] such that xi divides
uj for at least one j = 1, . . . , r. Then we set

ti = max{s : xsi divides uj at least for one j ∈ [m]}

if i ∈ D and ti = 1, otherwise. Moreover, we set t =
∑n

i=1 ti. For every
a ∈ F(Γ), the facet ā ∈ F(Γp) is defined as follows: if a(i) = ∞ then set
ā(ij) = ∞ for all 1 ≤ j ≤ ti, and if a(i) < ti then set

ā(ij) =

{
0 if j = a(i) + 1
∞ otherwise.

It was shown in [10, Proposition 3.8.] that the map

β : F(Γ) −→ F(Γp)
a 7−→ ā

is a bijection.
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Theorem 5.6. Let Γ be the multicomplex associated to a monomial ideal
I. Then Γ is k-decomposable if and only if Γp is k-decomposable.

Proof. “Only if part”: If |F(Γ)| = 1 then we have nothing to prove.
Assume that |F(Γ)| > 1. Hence there exists a shedding face a ∈ Γ such that
linkΓa and Γ\a are k-decomposable. We define a′ ∈ Γp as follows: if a(i) = 0
then we set a′(ij) = 0 for all 1 ≤ j ≤ ti and if a(i) ̸= 0 then we set

a′(ij) =

{
1 if 1 ≤ j ≤ a(i)
0 otherwise.

It is easy to check that

linkΓpa′ = (linkΓa)
p and Γp\a′ = (Γ\a)p.

By induction hypothesis, linkΓpa′ and Γp\a′ are k-decomposable. Now we show
that a′ is a shedding face of Γp.

Let b̄ ∈ F(starΓpa′). Then

⟨b̄⟩\(Γp\a′) = {u ∈ Γp : a′ ⪯ u ⪯ b̄} = a′ + ⟨b̄⟩.

Let b̄ ∈ F(starΓpa′) and c̄ ∈ Γp\a′ such that fpt(b̄) ⊆ fpt(c̄). Hence
c̄ ⪯ b̄. Since both b̄ and c̄ are facets of Γp, we have b̄ = c̄ and, moreover,
fpt(b̄) = fpt(c̄).

“If part”: Let Γp be k-decomposable with the shedding face a′ ∈ Nt.
Define a ∈ Nn by a(i) =

∑ti
j=1 a

′(ij). In a similar argument to only if part, we
can show that Γ is k-decomposable with the shedding face a.

Let Γ ⊂ Nn
∞ be a multicomplex with facets F(Γ) = {a1, . . . ,ar} where

ai ∈ {0,∞}n. For all i, set Fi = {xj : ai(j) = ∞}. We call ∆ = ⟨F1, . . . , Fr⟩
the simplicial complex associated to Γ.

We come to the second main result of the paper which improves Theorem
3.10. of [10].

Corollary 5.7. The monomial ideal I is pretty k-clean if and only if Ip

is k-clean.

Proof. I is pretty k-clean if and only if Γ(I) is k-decomposable (by Theo-
rem 5.2) if and only if Γ(I)p is k-decomposable (by Theorem 5.6) if and only if
the simplicial complex ∆ associated to Γ(I)p is k-decomposable (by Proposition
4.9) if and only if I∆ = I(Γ(I)p) = Ip is k-clean (by Theorem 2.6).

Combining Theorem 3.7 and Corollary 5.7 we immediately obtain the
following result which implies that the converse of Theorem 3.3 of [8] holds.
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Corollary 5.8. If I ⊂ S is a monomial ideal which has no embedded
prime ideal. Then I is k-clean if and only if Ip is k-clean.

Corollary 5.9. Let I ⊂ K[X] and J ⊂ K[Y ] be two monomial ideals.
Then I and J are pretty k-clean if and only if IJ is pretty k-clean.

Proof. Let I∆1 = Ip and I∆2 = Jp for some disjoint simplicial complexes
∆1 and ∆2. I and J are pretty k-clean if and only if Ip and Jp are k-clean
(by Corollary 5.7) if and only if ∆1 and ∆2 are k-decomposable (by Theorem
2.6) if and only if ∆1.∆2 is k-decomposable (by Theorem 4.10) if and only if
I∆1.∆2 = IpJp = (IJ)p is k-clean (by Corollary 4.10) if and only if IJ is pretty
k-clean (by Theorem 5.7).
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