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In this paper, we introduce a new condition to obtain a new compact embedding
theorem. Moreover, under this theorem, we study the existence and multiplicity
of nontrivial solutions for the following fractional Hamiltonian systems:{

−tD
α
∞(−∞Dα

t x(t))− L(t).x(t) +∇W (t, x(t)) = 0,

x ∈ Hα(R,RN ),

where α ∈
(
1
2
, 1
]
, t ∈ R, x ∈ RN , −∞Dα

t and tD
α
∞ are left and right Liouville-

Weyl fractional derivatives of order α on the whole axis R, respectively.
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1. INTRODUCTION AND MAIN RESULTS

Fractional differential equations including both ordinary and partial ones
are applied in mathematical modeling of some processes in physics, mechan-
ics, chemistry, economics and bioengineering; see [1, 17, 22] and the references
therein. Indeed, the associated fractional-order differential operators of these
equations admit the characteristic of nonlocal behavior, which can provide
a more realistic and practical description of these processes than the usual
integer-order differential operators. Therefore, the theory of fractional differ-
ential equations is an area intensively developed during the last decades.

In recent years, fractional differential equations including both left and
right fractional derivatives are also gradually investigated. Apart from their
possible applications, the research of these equations is a relatively new and
interesting field in the theory of fractional differential equations. Some early
works on this topic can be found in papers [4, 7] and their references.

In 2012, Jiao and Zhou [20] showed the existence of solutions for the
fractional boundary value problem

tD
α
T (0D

α
t x(t)) = ∇W (t, x(t)), a.e.t ∈ [0, T ],
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x(0) = x(T ) = 0,

where tD
α
T and 0D

α
t are the right and left Riemann-Liouville fractional deriva-

tives of order α ∈ [12 , 1]. Inspired by this work, in [27], Torres considered the
fractional Hamiltonian system

(1.1)
tD

α
∞(−∞Dα

t x(t)) + L(t)x(t) = ∇W (t, x(t)),

x ∈ Hα(R,RN ),

where tD
α
∞ and −∞Dα

t are the Liouville-Weyl fractional derivatives of order
1
2 < α < 1, L ∈ C(R,RN×N ) is a symmetric matrix-valued function, W ∈
C1(R×RN ,R), and ∇W (t, u) denotes the gradient of W (t, u) with respect to
u. To be more precise, he showed that the fractional Hamiltonian system (1.1)
possesses at least one nontrivial solution under the following assumptions:

(A1) There exists an l ∈ C(R, (0,∞)) such that l(t) → +∞ as t → ∞
and

(L(t)x, x) ≥ l(t)|x|2, ∀t ∈ R, x ∈ RN .

(A2) There exists a constant µ > 2 such that

0 < µW (t, x) ≤ (∇W (t, x), x), ∀t ∈ R, x ∈ RN\{0}.

(A3) |∇W (t, x)| = o(|x|) as x → 0 uniformly with respect to t ∈ R.

(A4) There exists W ∈ C(RN ,R) such that

|W (t, x)|+ |∇W (t, x)| ≤ |W (x)|, ∀t ∈ R, u ∈ RN .

Subsequently, the existence and multiplicity of solutions for the fractional
Hamiltonian system (1.1) have been extensively investigated in many papers,
see [8, 10, 11, 12, 15, 19, 28, 30] and the references therein. However, we note
that in almost all, L is required to satisfy either the coercivity condition (A1)
or the uniform positive-definiteness condition

(A5) there exists b0 > 0 such that

(L(t)x, x) ≥ b0|x|2, ∀t ∈ R, x ∈ RN .

Besides, some of them (see [31]) dealt with the case where W satisfies the well-
known Ambrosetti-Rabinowitz condition (A2), which is more restrictive than
the following weaker superquadratic condition

(A6) lim|x|→∞W (t, x)/|x|2 = +∞ uniformly with respect to t ∈ R.
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Then, more papers were devoted to the case where W satisfies the weaker
superquadratic growth condition (A6) and various additional technical con-
ditions, see [8, 10, 11, 12, 15, 19, 28, 30]. For example in [11], the author
studied system (1.1) and proved it has at least one ground state solution, un-
der (A3),(A6) and the following assumptions:

(A7) L(t) is T−periodic in t, and it is a symmetric and positive definite
matrix for all t ∈ R;

(A8) W (t, x) is T−periodic and, there exist constants C > 0 and p > 2
such that

|∇W (t, x)| ≤ C(|x|+ |x|p−1), ∀(t, x) ∈ R× RN ;

(W9) s 7−→ s−1∇W (t, sx).x is strictly increasing of s > 0 for all x ̸= 0
and t ∈ R.

In the recent paper [12], the author proved that system (1.1) possesses a
sequence of solutions (xk) satisfying

∥xk∥L∞ −→ 0 as k −→ ∞,
under the following conditions:

(A10) there exists a constant a0 > 0 such that for

l(t) := min
x∈RN ,|x|=1

L(t)x.x,

we have l(t) + a0 ≥ 1, ∀t ∈ R and
∫
R

1
l(t)+a0

dt < ∞;

(A11) W (t, 0) ≡ 0, W ∈ C1 (R×Bρ(0),R) is even, and there exists a
constant c > 0 such that

|∇W (t, x)| ≤ c, ∀(t, x) ∈ R×Bρ(0),

where Bρ(0) is the open ball in RN centered at 0 with radius ρ.

(A12) there exist a constant δ > 0, a closed interval Λ ⊂ R, and two
sequences of positives numbers σn −→ 0, Mn −→ ∞ as n −→ ∞ such that

W (t, x) ≥ −δ |x|2 ,∀ (t, x) ∈ Λ×Bρ(0)

and
W (t, x) ≥ σ2

nMn, ∀ t ∈ Λ and |x| = σn.

However, each result in the above papers implies that

(A13) There exists κ > 0 such that supt∈R,|x|=κW (t, x) < +∞.
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Clearly, (A13) holds when W (t, x) is periodic in t. If there is no periodic
assumption, (A13) is an important requirement in many papers.

Obviously, if we take W (t, x) of the following form

(1.2) W (t, x) = a(t)H(x),

where a : R → R+ is continuous and H ∈ C1(RN ,R). Then condition (A13)
does not hold since a(t) can go to infinity as |t| → ∞. On the other hand,
the assumptions on L(t) in the previous works do not cover examples like
L(t) = (|t| sin2(t)− 1)IN .

Motivated by the works mentioned above and by this previous discus-
sion, in this paper we study the existence and infinite solutions for systems
(1.1) under new conditions which are more general than in previous works and
covers examples like the previous ones. Precisely, we introduce the following
conditions:

(H1) W (t, x) = a(t)H(x), where a : R → R+ is continuous, and H ∈
C1(RN ,R), H(0) = 0 and ∇H(x) = o(|x|) as |x| −→ 0;

(H2) There exists a constants θ ≥ 1 such that θH̃(x) ≥ H̃(sx) for all
x ∈ RN and s ∈ [0, 1], where H̃(x) = ∇H(x).x− 2H(x).

(H3) H(x)
|x|2 → +∞ as |x| → ∞.

(H4) There are constants ζ > 2 and d1 > 0 such that

|H(x)| ≤ d1(|x|2 + |x|ζ) for all x ∈ RN ;

(H5) There exists A > 0 such that a(t) ≤ Al(t) for all t ∈ R;

(L1) There exists a constant r0 > 0 such that

lim
|s|→∞

meas({t ∈ (s− r0, s+ r0) :
l(t)

a(t)
̸≥ M}) = 0, ∀M > 0,

where meas denotes the Lebesgue measure in R.

Now we state our main results.

Theorem 1.1. Suppose that (H1)–(H5), (L1) and (A5) are satisfied.
Then the fractional Hamiltonian system (1.1) possesses at least one nontrivial
solution.

Theorem 1.2. Suppose that (H1), (H3), (H5), (L1), (A5), H̃(x) ≥ 0 for
any x ∈ RN , and the following condition hold:

(H4’) H̃(x)
H(x) |x|

2 → +∞ as |x| → ∞.
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Then the fractional Hamiltonian system (1.1) possesses at least one nontrivial
solution.

If H(x) is even in x, we can obtain the following multiplicity results.

Theorem 1.3. Suppose that (H1)–(H5), (L1) and (A5) are satisfied and
H(−x) = H(x). Then the fractional Hamiltonian system (1.1) possesses in-
finitely many solutions.

Theorem 1.4. Suppose that (H1), (H3), (H4’), (H5), (L1), (A5), H̃(x) ≥
0 for any x ∈ RN , are satisfied and H(−x) = H(x). Then the fractional Hamil-
tonian system (1.1) possesses infinitely many solutions.

Here and in the following, x.y denotes the inner product of x, y ∈ RN

and |.| denotes the associated norm. Throughout the paper, we denote by c, ci
the various positive constants which may vary from line to line and are not
essential to the problem.

The remaining part of this paper is organized as follows. Some prelimi-
nary results are presented in Section 2 and Section 3 is devoted to the proof of
Theorem 1.1.

2. PRELIMINARY RESULTS

2.1. Liouville-Weyl Fractional Calculus

Definition 2.1. The left and right Liouville-Weyl fractional integrals of
order 0 < α < 1 on the whole axis R are defined by

−∞Iαt x(t) :=
1

Γ(α)

∫ t

−∞
(t− ξ)α−1x(ξ)dξ,

tI
α
∞x(t) :=

1

Γ(α)

∫ ∞

t
(ξ − t)α−1x(ξ)dξ,

respectively, where t ∈ R.

Definition 2.2. The left and right Liouville-Weyl fractional derivatives of
order 0 < α < 1 on the whole axis R are defined by

(2.1) −∞Dα
t x(t) :=

d

dt
−∞I1−α

t x(t),

(2.2) tD
α
∞x(t) := − d

dt
tI

1−α
∞ x(t),

respectively, where t ∈ R.
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Remark 2.1. The definitions (2.1) and (2.2) may be written in an alter-
native form:

−∞Dα
t x(t) =

α

Γ(1− α)

∫ ∞

0

x(t)− x(t− ξ)

ξα+1
dξ,

tD
α
∞x(t) =

α

Γ(1− α)

∫ ∞

0

x(t)− x(t+ ξ)

ξα+1
dξ .

Recall that the Fourier transform x̂(z) of x(t) is defined by

x̂(z) =

∫ ∞

−∞
e−itzx(t)dt.

We establish the Fourier transform properties of the fractional integral and
fractional operators as follows:

̂−∞Iαt x(t)(z) := (iz)−αx̂(z),

̂
tIα∞x(t)(z) := (−iz)−αx̂(z),

̂−∞Dα
t x(t)(z) := (iz)αx̂(z),

̂
tDα

∞x(t)(z) := (−iz)αx̂(z).

2.2. Fractional derivative spaces

Let us recall that for any α > 0, the semi-norm

|x|Iα−∞
:= ∥−∞Dα

t x∥L2 ,

and the norm

∥x∥Iα−∞
:=
(
∥x∥2L2 + |x|2Iα−∞

)1/2
,

and let the space Iα−∞(R) denote the completion of C∞
0 (R) with respect to the

norm ∥.∥Iα−∞
, i.e.,

Iα−∞(R) = C∞
0 (R)∥·∥I

α
−∞ .

Next, we define the fractional Sobolev space Hα(R) in terms of the Fourier
transform. For 0 < α < 1, define the semi-norm

|x|α = ∥|z|αx̂∥L2 ,

and the norm

∥x∥α =
(
∥x∥2L2 + |x|2α

)1/2
,

and let
Hα(R) := C∞

0 (R)∥·∥α .
We note that a function x ∈ L2 (R) belongs to Iα−∞(R) if and only if

|z|αx̂ ∈ L2(R).
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In particular, |x|Iα−∞
= ∥|z|αx̂∥L2(R) . Therefore Hα(R) and Iα−∞(R) are equiv-

alent, with equivalent semi-norm and norm (see [27]).
Analogous to Iα−∞(R), we introduce Iα∞(R). Let the semi-norm

|x|Iα∞ := ∥tDα
∞∥L2(R) ,

and norm

∥x∥Iα∞ :=
(
∥x∥2L2 + |x|2Iα∞

)1/2
,

and let
Iα−∞(R) = C∞

0 (R)∥·∥I
α
−∞ .

Moreover, Iα∞(R) and Iα−∞(R) are equivalent, with equivalent semi-norm and
norm.

Lemma 2.1 ([27]). If α > 1/2, then Hα(R) ⊂ C(R) and there is a con-
stant c = cα such that

(2.3) ∥x∥L∞ = sup
t∈R

|x(t)| ≤ c ∥x∥α ,

where C(R) denote the space of continuous functions from R.
Remark 2.2. If x ∈ Hα(R), then x ∈ Lq(R) for all q ∈ [2,∞], since

(2.4)

∫
R
|x(t)|qdt ≤ ∥x∥q−2

L∞ ∥x∥2L2 .

Now we introduce a new fractional space. Set

Xα =
{
x ∈ Hα(R,RN ) :

∫
R
|−∞Dα

t x(t)|2 + L(t)x(t).x(t)dt < ∞
}
.

The space Xα is a Hilbert space with the inner product

(x, y)Xα =

∫
R
((−∞Dα

t x(t).−∞Dα
t y(t)) + L(t)x(t).y(t)) dt,

and the corresponding norm

∥x∥Xα =
√

(x, x)Xα .

Let L2
a(R,RN ) be the weighted space of measurable functions x : R → RN

under the norm

||x||L2
a
=

(∫
R
a(t)|x(t)|2dt

) 1
2

.

Note that under condition (L1)

Xα ⊂ Hα ⊂ Lp

for any p ∈ [2,+∞] with the embedding being continuous, which implies that
there is a positive constant C∞ > 0 such that the following inequality holds:

(2.5) max {||x||2, ||x||∞} ≤ C∞∥x∥Xα .

First, we show a compact embedding theorem.
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Lemma 2.2. If L satisfies (L1), (A5) and (H5) then, the embedding
Xα ↪→ L2

a(R,RN ) is continuous and compact.

Proof. Suppose that {xn} is a bounded sequence in Xα. Then there
exists M0 > 0 such that ∥xn∥Xα ≤ M0. Hence there exists a weak conver-
gent subsequence, still denoted by {xn} , such that xn ⇀ x0 in Xα. Assum-
ing yn = xn − x0, we obtain that {yn} is a bounded sequence in Xα. and
yn ⇀ 0 in Xα. Next, we show that yn → 0 in L2

a. It follows from the Sobolev
compact embedding theorem that yn → 0 in L1(BR(0),RN ) for any R > 0,
where BR(0) = {t ∈ R : 0−R ≤ t ≤ 0 +R} . Choose {si} ⊂ R such that R ⊂
∪∞
i=1Br0(si) and each t ∈ R is contained by two such intervals at most. Set

A(M,R) =
{
t ∈ Bc

R(0) :
l(t)
a(t) ̸≥ M

}
and B(M,R) =

{
t ∈ Bc

R(0) :
l(t)
a(t) ≥ M

}
.

On the one hand, we have

(2.6)

∫
B(M,R)

a(t)|yn(t)|2dt ≤
1

M

∫
B(M,R)

l(t)|yn(t)|2dt ≤
||yn||Xα

M
≤ 2M0

M
.

On the other hand, let εR = supsi(meas(A(M,R) ∩Br0(si))), we obtain

(2.7)

∫
A(M,R)

a(t)|yn(t)|2dt ≤
∞∑
i=1

∫
A(M,R)∩Br0 (si)

a(t)|yn(t)|2dt

≤ ε
1
2
R

∞∑
i=1

(∫
A(M,R)∩Br0 (si)

a2(t)|yn(t)|4dt

) 1
2

≤ Aε
1
2
R

∞∑
i=1

(∫
A(M,R)∩Br0 (si)

l2(t)|yn(t)|4dt

) 1
2

≤ ACε
1
2
R

∞∑
i=1

∫
Br0 (si)

(|ẏn(t)|2+(L(t)yn(t).yn(t)))dt

≤ ACε
1
2
R||yn||

2
Xα

for some C > 0.
It follows from (H5) that

∫
A(M,R) a(t)|yn(t)|

2dt → 0 as R → ∞, which
implies that

(2.8)

∫
Bc

R(0)
a(t)|yn(t)|2dt ≤

∫
A(M,R)

a(t)|yn(t)|2dt+
∫
B(M,R)

a(t)|yn(t)|2dt

≤ 2M0

M
+ 2d0Cε

1
2
R||yn||

2
Xα

−→ 0 as min {M,R} −→ ∞.

Then we can deduce that yn → 0 in L2
a(R,RN ).
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From Lemma 2.2, we can easily deduce that there is a positive constant
K > 0 such that the following inequality holds

(2.9) ||x||L2
a
≤ K||x||Xα .

Lemma 2.3. Suppose that conditions (A5), (L1), (H1) and (H3) hold,
then we have ∇G(xk) −→ ∇G(x) in L2

a

(
R,RN

)
if xk −→ x in Xα.

Proof. The proof is similar to Lemma 2.4 in [28].

Define the functional I : Xα → R by

I(x) =

∫
R

(
1

2
|−∞Dα

t x(t)|2 +
1

2
L(t)x(t).x(t)−W (t, x(t))

)
dt

=
1

2
∥x∥2Xα −

∫
R
W (t, x(t))dt.

Under the conditions of our Theorems, we see that I is a continuously Fréchet-
differentiable functional defined on Xα; i.e., I ∈ C1(Xα,R). Moreover, we have
(2.10)

I ′(x)y =

∫
R
((−∞Dα

t x(t).−∞Dα
t y(t)) + L(t)x(t).y(t)−∇W (t, x(t)).y(t)) dt,

for all x, y ∈ Xα, which yields

(2.11) I ′(x)x = ∥x∥2Xα −
∫
R
∇W (t, x(t)).x(t)dt.

According to [27], we know that in order to find solutions of system (1.1)
it is sufficient to obtain the critical points of I. For this purpose, we recall the
following definitions and results (see [32]).

Lemma 2.4 ([25], Mountain Pass Theorem). Let E be a real Banach space
and ϕ ∈ C1(E,R) satisfying the Palais-Smale condition. If ϕ satisfies the
following conditions:

(i) ϕ(0) = 0,

(ii) there exist constants ρ, γ > 0 such that ϕ/∂Bρ(0) ≥ γ,

(iii) there exists e ∈ E\Bρ(0) such that ϕ(e) ≤ 0.

Then ϕ possesses a critical value c ≥ γ given by

c = inf
g∈Γ

max
s∈[0,1]

ϕ(g(s)),

where
Γ = {g ∈ C([0, 1], E) : g(0) = 0, g(1) = e} .
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Lemma 2.5 ([25], Symmetric Mountain Pass Theorem). Let E be a real
Banach space and ϕ is even and ∈ C1(E,R) satisfying the Palais-Smale con-
dition. If ϕ satisfies (i) and (ii) of Lemma 2.4 and the following conditions:
(iii′) For each finite dimensional subspace E1 ⊂ E, there is r = r(E1) such
that ϕ(x) < 0 for x ∈ E1\Br(0). Then ϕ possesses an unbounded sequence of
critical values.

Remark 2.3. As shown in [6], a deformation Lemma can be proved with
replacing the usual (PS)−condition with the (C)−condition introduced by
Cerami, and it turns out that the Mountain Pass Theorem and the Symmetric
Mountain Pass Theorem are true under the (C)−condition. Recall that a C1

functional ϕ satisfies Cerami condition at level c ((C)c condition for short) if
any sequence (un) ⊂ E such that ϕ(un) → c and (1 + ∥un∥) ∥ϕ′(un)∥ → 0 has
a convergent subsequence; such a sequence is then called a (C)c sequence.

3. PROOF OF THEOREM 1.1

The proof of Theorem 1.1 is divided into several lemmas.

Lemma 3.1. Suppose that H̃(x) ≥ 0 and (H1) hold, then H(x) ≥ 0 for
all x ∈ R.

Proof. The proof of this lemma is similar to that of Lemma 7 in [29].

Lemma 3.2. Suppose that the conditions of Theorem 1.1 hold, then I
satisfies the (C)−condition.

Proof. Assume that {xn} ⊂ Xα is a sequence such that {I(xn)} is bounded
and ∥I ′(xn)∥ (1 + ||xn||Xα) → 0 as n → ∞. Then, for some M1 > 0, it follows

(3.1) |I(xn)| ≤ M1, ||I ′(xn)xn|| (1 + ||xn||Xα) ≤ M1.

Next we show that {xn} is bounded in Xα. Assuming ||xn||Xα −→ +∞ as
n −→ ∞, set zn := xn

||xn||Xα
, then ||zn||Xα = 1, which implies that there exists

a subsequence of {zn} , still denoted by {zn} , such that zn ⇀ z0 in Xα. By
(2.11) and (3.1), we get

(3.2)

∣∣∣∣∫
R

W (t, xn(t))

||xn||2Xα

dt− 1

2

∣∣∣∣ = ∣∣∣∣− I(xn)

||xn||2Xα

∣∣∣∣ ≤ M1

||xn||2Xα

,

which implies that

(3.3)

∣∣∣∣∫
R

W (t, xn(t))

||xn||2Xα

dt

∣∣∣∣ ≤ 1,
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for n large enough. The following discussion is divided into two cases.

Case 1: z0 ̸= 0, Let Ω := {t ∈ R : |z0(t)| > 0} . We can see that
meas (Ω) > 0. Then there exists χ > 0 such that, for Λ := Ω ∩ Bχ(0),
meas (Λ) > 0. Since ||xn||Xα −→ +∞ for a.e. t ∈ Λ.

Let a1 = inft∈Bχ(0) a(t) > 0. By (H1), (H3) and Lemma 3.1 and Fatou’s
lemma, we can obtain

lim
n−→∞

∫
R

W (t, xn(t))

||xn||2Xα

dt ≥ a1 lim
n−→∞

∫
Λ

H(xn(t))

|xn|2
|zn(t)|2dt = ∞,

which contradicts (3.3).

Case 2: z0 = 0. Set a sequence {Tn} ⊂ [0, 1] such that I(Tnxn) =
maxT∈[0,1] I(Txn). By Lemmas 2.2 and 3.1, and (H1), (H4), we obtain

0 ≤
∫
R
a(t)H(4

√
θM1zn(t))dt

≤ d1(16θM1

∫
R
a(t)|zn(t)|2dt+ (4

√
θM1)

ζ

∫
R
a(t)|zn(t)|ζdt)

= d1(16θM1 + (4
√
θM1)

ζCζ−2
∞ )

∫
R
a(t)|zn(t)|2dt −→ 0 as n −→ ∞,

which implies that

(3.4)

∫
R
a(t)H(4

√
θM1zn(t))dt −→ 0 as n −→ ∞.

By the definition of Tn and (3.4), for n large enough, we have

I(Tnxn) ≥ I(
4
√
θM1

||xn||Xα
xn) = I(4

√
θM1zn)

=
1

2
||4
√

θM1zn||2Xα −
∫
R
a(t)H(4

√
θM1zn(t))dt

= 8θM1 −
∫
R
a(t)H(4

√
θM1zn(t))dt

≥ 4θM1.

Then we obtain

(3.5)

||Tnxn||2Xα −
∫
R
a(t)(∇H(Tnxn(t)).Tnxn(t))dt = I ′(Tnxn(t))Tnxn(t)

= Tn
dI(Txn(t))

dT
|T=Tn = 0



720 A. Benhassine 12

Hence, it follows from (3.5) and (H3) that∫
R
a(t)(

1

2
(∇H(xn(t)).xn(t)−H(xn(t))))dt =

1

2

∫
R
a(t)H̃(xn(t))dt

≥ 1

2θ

∫
R
a(t)H̃(Tnxn(t))dt

=
1

θ

∫
R
(
1

2
a(t)(∇H(Tnxn(t)).Tnxn(t))− a(t)H(Tnxn(t)))dt

=
1

θ
(
1

2
||Tnxn||2Xα −

∫
R
a(t)H(Tnxn(t))dt)

=
1

θ
I(Tnxn),

which implies that

(3.6)

∫
R
a(t)(

1

2
(∇H(xn(t)).xn(t)−H(xn(t))))dt ≥ 4M1 for n large enough.

However, we can deduce from (3.1) that∣∣∣∣∫
R
a(t)(

1

2
(∇H(xn(t)).xn(t)−H(xn(t))))dt

∣∣∣∣ = ∣∣2I(xn)− I ′(xn).xn
∣∣ ≤ 3M1

for all n ∈ N, which contradicts (3.6). Hence {xn} is bounded in Xα. Going if
necessary to a subsequence, we can assume that xn ⇀ x in Xα, which yields

(I ′(xn)− I ′(x))(xn − x) −→ 0 as n −→ ∞

and it follows from Lemma 2.2, Hölder’s inequality, (2.9) and Lemma 2.3 that∣∣∣∣∫
R
a(t)(∇H(xn(t))−∇H(x(t)))(xn(t)− x(t))dt

∣∣∣∣
≤ ∥∇H(xn(t))−∇H(x(t))∥L2

a
∥xn(t)− x(t)∥L2

a
−→ 0 as n −→ ∞.

Hence, we conclude that

||xn − x||2Xα = (I ′(xn)− I ′(x))(xn − x)

+

∫
R
a(t)(∇H(xn(t))−∇H(x(t)))(xn(t)− x(t))dt −→ 0 as n −→ ∞.

Lemma 3.3. Suppose that (A5), (L1), (H1), (H2) and (H5) hold, then
there exist constants ρ, γ > 0 such that I|∂Bρ(0) ≥ γ.

Proof. By (H1), for any ε > 0, there is σ > 0 such that

(3.7) |H(x)| ≤ ε|x|2 for all |x| ≤ σ.
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For ε1 =
1
4A , there exists δ1 > 0 such that (3.7) holds. Set ρ := C−1

∞ δ1, γ := 1
4ρ

2.
By (H1), (H2), (H5) and (3.7), for any ||x||Xα = ρ, we obtain

(3.8)

I(x) =
1

2
||x||2Xα −

∫
R
a(t)H(xn(t))dt

≥ 1

2
||x||2Xα − 1

4A

∫
R
a(t)|x(t)|2dt

≥ 1

2
||x||2Xα − 1

4

∫
R
l(t)|x(t)|2dt

≥ 1

4
||x||2Xα .

By the definition of ρ and γ, (3.8) implies I|∂Bρ(0) ≥ γ.

Lemma 3.4. Suppose that (A5), (L1) and (H1)-(H3) hold, then there
exists e ∈ Xα such that ||e||αX > ρ and I(e) ≤ 0.

Proof. Set e0 ∈ C∞
0 (−1, 1) with ||e||αX = 1. Let

a2 := min
t∈B1(0)

a(t), a3 := max
t∈B1(0)

a(t).

For β > 1

2a2
∫ 1
−1 |e0(t)|2dt

, it follows from (H3) that there exists ξ > 0 such that

H(x) ≥ β|x|2for all |x| > ξ.

By Lemma 3.1, we have

(3.9) H(x) ≥ β(|x|2 − ξ2)for all x ∈ RN .

By (H1) and (3.9), for every η ∈ R\ {0} , we have

I(ηe0) =
η2

2
||e0||2Xα −

∫ 1

−1
a(t)H(ηe0(t))dt

≤ η2

2
− a2βη

2

∫ 1

−1
|e0(t)|2dt+ 2a3βξ

2

=

(
1

2
− a2βη

2

∫ 1

−1
|e0(t)|2dt

)
η2 + 2a3βξ

2,

which implies that
I(ηe0) −→ −∞ as η −→ +∞.

Then there exists η0 ∈ R\ {0} such that ||η0e0|| > ρ and I(η0e0) < 0.
Letting e(t) := η0e0(t), we finish the proof.

From the above proofs and the mountain pass theorem, I possesses a
critical point x0 such that I(x0) = c, which means system (1.1) has at least
one nontrivial solution.
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4. PROOF OF THEOREM 1.2

Lemma 4.1. Suppose that the conditions of Theorem 1.2 hold, then I
satisfies the (C)−condition.

Proof. Assume that {xn} ⊂ Xα is a sequence such that {I(xn)} is bounded
and ∥I ′(xn)∥ (1 + ||xn||Xα) → 0 as n → ∞. Then, for some M1 > 0, it follows

(4.1) |I(xn)| ≤ M2, ||I ′(xn)xn|| (1 + ||xn||Xα) ≤ M2.

Next we show that {xn} is bounded in Xα. Assuming ||xn||Xα −→ +∞ as
n −→ ∞, set zn := xn

||xn||Xα
, then ||zn||Xα = 1, which implies that there exists a

subsequence of {zn} , still denoted by {zn} , such that zn ⇀ z0 in Xα. Similar
to the proof of Lemma 3.2, we have

(4.2)

∣∣∣∣∫
R

W (t, xn(t))

||xn||2Xα

dt

∣∣∣∣ −→ 1

2
, as n −→ ∞.

The following discussion is divided into two cases.
Case 1: z0 ̸= 0. The proof is similar to the proof of Case 1 in Lemma

3.2.
Case 2: z0 = 0. Let ε := 1, then there exists σ0 > 0 such that (3.7) holds

for all |x| ≤ σ0. By (H4’), we obtain that for any B > 0, there exists r∞ > 0
such that, for all |x| ≥ r∞, we have

(4.3)
H̃(x)

H(x)
|x|2 ≥ B.

It follows from (4.3), (H2) and H̃(x) ≥ 0 that

0 ≤
∫
R

W (t, xn(t))

||xn||2Xα

dt(4.4)

≤
∫
{t∈R||xn|>r∞}

W (t, xn(t))

|xn|2
|zn(t)|2dt+

∫
{t∈R||xn|≤σ0}

W (t, xn(t))

||xn||2Xα

dt

+

∫
{t∈R|σ0≤|xn|≤r∞}

W (t, xn(t))

||xn||2Xα

dt

≤ ||zn||2L∞

∫
{t∈R||xn|>r∞}

a(t)G(xn)

|xn|2
dt+

∫
{t∈R||xn|≤σ0}

a(t)|xn|2dt

+

∫
{t∈R|σ0≤|xn|≤r∞}

a(t)H(xn(t))|xn(t)|2

σ0||xn||2Xα

dt

≤
||zn||2L∞

B

∫
{t∈R||xn|>r∞}

a(t)(∇H(xn).xn − 2H(xn))dt+ ||zn||2L2
a
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+
maxσ0≤|x|≤ρ∞ |H(x)|

σ2
0

∫
{t∈R|σ0≤|x|≤ρ∞}

a(t)|zn|2dt

≤
||zn||2L∞

B

∫
{t∈R||xn|>r∞}

a(t)(∇H(xn).xn − 2H(xn))

+ (1 +
maxσ0≤|x|≤ρ∞ |H(x)|

σ2
0

)||zn||2L2
a

≤
||zn||2L∞

B
(2I(xn)− I ′(xn).xn) + (1 +

maxσ0≤|x|≤ρ∞ |H(x)|
σ2
0

)||zn||2L2
a

≤ 3M2C
2
∞

B
+ (1 +

maxσ0≤|x|≤ρ∞ |H(x)|
σ2
0

)||zn||2L2
a
.

By the arbitraries of B and Lemma 3.1, we have

(4.5)

∫
R

W (t, xn(t))

||xn||2Xα

dt <
1

4
for n large enough,

which contradicts (4.2). Hence ||xn||Xα is bounded in Xα. Similar to the proof
of Lemma 3.2, we see that I satisfies the (C)−condition.

5. PROOF OF THEOREMS 1.3 AND 1.4

Lemma 5.1. Suppose that (H1), (H3), (H5), (L1) and (A5) hold, then I
satisfies (iii’) of Lemma 2.5.

Proof. Let X̃α ⊂ Xα be a finite dimensional subspace. For any x ∈
X̃α\ {0} and υ > 0, set

Γυ(x) := {t ∈ R : |x(t)| ≥ ϑ||x||Xα}

Similar to Lemma 6.2 in [29], there exists υ0 > 0 such that

(5.1) meas (Γυ0(x)) ≥ υ0

for all x ∈ X̃α\ {0} . It is easy to see that there exists ρ > 0 such that
meas (Γυ0(x) ∩Bρ(0)) >

1
2υ0, for any x ∈ X̃α\ {0} . Set a4 := inf |t|≤ρ a(t) > 0.

By (H3), there exists γ > 0 such that

(5.2) H(x(t)) ≥ 1

a4υ0
|x(t)|2 ≥ 1

a4υ0
||x||2Xα
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for all x ∈ X̃α and t ∈ Γυ0(x) ∩ Bρ(0) with ||x(t)||2Xα ≥ γ. Then, for any

x ∈ X̃α\Bγ , it follows from (H1), (H2 ) and (5.2) that

I(x) =
1

2
||x||2Xα −

∫
R
a(t)H(x(t))dt

=
1

2
||x||2Xα −

∫
{Γυ0 (x)∩Bρ(0)}

a(t)H(x(t))dt

−
∫
R\{Γυ0 (x)∩Bρ(0)}

a(t)H(x(t))dt

=
1

2
||x||2Xα − a4

∫
{Γυ0 (x)∩Bρ(0)}

H(x(t))dt

≤ 1

2
||x||2Xα − 1

υ0
meas (Γυ0(x) ∩Bρ(0)) ||x||2Xα

≤ −1

2
||x||2Xα .

Then there exists r > γ such that I|
X̃α\Br

≤ 0.

Obviously that, under H(−x) = H(x), I is even. By Lemmas 3.2 and
4.1, I satisfies the (C)−condition. Lemma 3.3 holds under the conditions
of Theorems 1.3 and 1.4, respectively. Moreover, if we take V = {0} and
X = Xα, we can see there are constants ρ1, α1 > 0 such that I|X∩Br ≥ α1.
From Lemma 5.1, I satisfies the condition (iii’). Hence, by Lemma 2.5, I
possesses an unbounded sequence of critical values.
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