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Let G be a homogeneous group and X1, X2, · · · , Xm be left invariant real vec-
tor fields satisfying Hörmander’s rank condition on G. We also assume that
X1, X2, · · · , Xm are homogeneous of degree one, by applying Moser iterations
method, we lift the regularity of solutions for the following equation

−
m∑

j=1

X2
j u+ λu = |u|p−1u,

where λ > 0, 1 < p < Q+2
Q−2

and Q is the homogeneous dimension of G.
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1. INTRODUCTION AND MAIN RESULT

Let X1, X2, · · · , Xm form a system of C∞ real vector fields defined in
RN (m ≤ N), and satisfy Hörmander’s condition:

rankL(X1, . . . , Xm)(x) = N, x ∈ RN ,

where L(X1, . . . , Xm) denotes the Lie algebra generated by X1, . . . , Xm. We
also assume that X1, . . . , Xm are left invariant with respect to the translations
on the Lie group G = (RN , ◦) and homogeneous with respect to the family
of dilations (δµ)µ>0 on RN . More precisely, X1, . . . , Xm are homogeneous of
degree one.

Our aim is to lift the regularity of solutions for the following equation

Lu+ λu = |u|p−1u, (1.1)

where Lu = −
∑m

j=1X
2
j u, λ > 0, 1 < p < Q+2

Q−2 and Q is the homogeneous
dimension of G (see (2.2)). In [8], by using the bootstrap approach introduced
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in [6], Feng and Niu proved that if u is a weak solution of (1.1) with critical
term and singular term in a bounded domain Ω ⊂ G, then u ∈ Lq(Ω) for any
q > 1.

If we let m = N , Xi = ∂i, i = 1, . . . , N and G be the Euclidean group
(RN ,+), then (1.1) is of the form

−∆u+ λu = |u|p−1u. (1.2)

By using the mountain pass approach, Kurata, Shibata and Tada [13] obtained
the existence of positive solution to (1.2) on unbounded domain.

When G is the Heisenberg group Hn and N = 2n+1, m = 2n, (1.1) can
be written as

−∆Hu+ λu = |u|p−1u, (1.3)
where 1 < p < n+2

n and −∆H is the sub-Laplacian operator. After the works
of Jerison and Lee [10, 11] on the Cauchy-Riemann (CR) Yamabe problem,
the sub-Laplace equation arises as the Euler-Lagrange equation of a varia-
tional problem on CR manifolds. Several authors have investigated semilinear
equations for sub-Laplacian operators with different techniques (see [2, 1, 14]
and the references therein). Maad in [14] showed that there are infinitely many
solutions by applying deformation Lemma. By developing the analogue of mov-
ing plane method for the Heisenberg group, Birindelli and Prajapat [2] derived
some new nonexistence results for the equation (1.3) with λ = 0.

Motivated by above papers, the main purpose of this paper is to lift the
regularity of nonnegative weak solutions for (1.1) by using Moser iterations
method with a similar strategy [7, 12, 17]. More accurately, our main result
reads as follows.

Theorem 1.1. Let u ∈ H1,2(G) be a nonnegative weak solution of (1.1).
Then u ∈ L∞(G) and there exist A, B > 0, which depend only on Q and p,
such that

∥u∥L∞(G) ≤ A(1 + ∥u∥B
L2∗ (G)

)∥u∥L2∗ (G),

where 2∗ = 2Q
Q−2 .

The paper is organized as follows. In Section 2, we present some prelimi-
naries and several Lemmas which will be used later. The proof of Theorem 1.1
is given in Section 3. As applications of our main result, Section 4 contains an
example.

2. PRELIMINARY

In this section, some notations on homogeneous groups are given, which
will be used throughout the article. By Stein [16], we call homogeneous group
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the space RN equipped with a Lie group structure, together with a family of
dilations that are group automorphisms. To be precise, let ◦ be a given group
law on RN and assume that the map (x, y) → y−1 ◦ x is smooth, then RN

together with this mapping forms a Lie group. Next, there exists an N -tuple
of positive real numbers ω1 ≤ ω2 ≤ . . . ≤ ωN , such that the dilations

δ(µ) : (x1, . . . , xN ) 7→ (µω1x1, . . . , µ
ωNxN ), µ > 0

are group automorphisms. The space RN with this structure of homogeneous
group is denoted by G.

Hence, we can define a homogeneous norm ∥·∥ in G as follows. For x = 0,
we set ∥x∥ = 0, while if x ∈ G\{0}, set ∥x∥ = ϱ ⇔ |δ(1/ϱ)x| = 1, where | · |
denotes the Euclidean norm. By calculation, we have

(i) ∥δ(µ)x∥ = µ∥x∥ for every x ∈ G, µ > 0;
(ii) there exist c1, c2 ⩾ 1 such that for every x, y ∈ G,

∥x−1∥ ≤ c1∥x∥ and ∥x ◦ y∥ ≤ c2(∥x∥+ ∥y∥).

In view of the above properties, it is natural to define the quasidistance
d by

d(x, y) = ∥y−1 ◦ x∥.
The ball with respect to d is denoted by

Br(x) = B(x, r) = {y ∈ G : d(x, y) < r} .

Note that B(0, r) = δ(r)B(0, 1) and

|B(x, r)| = rQ|B(0, 1)|, (2.1)

where x ∈ G, r > 0, and

Q = ω1 + · · ·+ ωN . (2.2)

We call thatQ is the homogeneous dimension ofG. By (2.1), the Lebesgue
measure dx is a doubling measure with respect to d, that is there exists a
positive constant c such that

|B(x, 2r)| ≤ c|B(x, r)|, x ∈ G, r > 0

and therefore (G, dx, d) is a space of homogenous type.
Throughout this paper, we use ∥ · ∥Lp(Ω) for the usual norms of Lp(Ω),

where p ∈ [1,∞] and Ω is an open subset of G. Let p ∈ (1,∞). In what follows,
we present the notations:

Du = (X1u,X2u, . . . ,Xmu);

∥Du∥2L2(G) =

m∑
j=1

∫
G
|Xju(x)|2dx;
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S1,2(G) = {u| u ∈ L2∗(G), Du ∈ L2(G)},
where 2∗ = 2Q

Q−2 . Clearly, S
1,2(G) is Hilbert space, its scalar products is given

by

(u, v)1 =

∫
G
DuDvdx, u, v ∈ S1,2(G).

The norm of S1,2(G) is introduced by

∥u∥21 = (u, u)1.

The space H1,2(G) is defined as the completion of C∞
0 (G) with respect to the

norm

∥u∥2H =

∫
R3

(|Du|2 + u2)dx.

Definition 2.1. We say that u ∈ H1,2(G) is a weak solution of (1.1) pro-
vided

m∑
j=1

∫
G
Xju(x)Xjφ(x)dx+ λ

∫
G
u(x)φ(x)dx =

∫
G
|u(x)|p−1u(x)φ(x)dx,

for all φ ∈ H1,2(G).

Lemma 2.1 ([9]). There is a unique fundamental solution Γ for L such
that:

(a) Γ ∈ C∞(G\{0});
(b) Γ is homogeneous of degree 2−Q;

(c) for every distribution τ ,

L(τ ∗ Γ) = (Lτ) ∗ Γ = τ.

Remark 2.1. The transpose LT of L is also left invariant and hypoelliptic
(see [5]). From the remark of [9], it follows that the fundamental solution of
LT is

ΓT (z) = Γ(z−1).

Lemma 2.2 ([9, 15]). For every 1 < p < Q
2 and g ∈ Lp(G), the function

Tg(x) =

∫
G
Γ(x, y)g(y)dy

is a.e. defined, and there exists Λ > 0 such that

∥Tg∥Lq(G) ⩽ Λ∥g∥Lp(G),

for any q verifying 1
p = 1

q +
2
Q .

Lemma 2.3. The embedding S1,2(G) ↪→ L2∗(G) is continuous.
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Proof. By Lemma 2.1, we have

u(x) =

∫
G
Γ(x−1 ◦ y)Lu(y)dy

for any u ∈ C∞
0 (G). Keeping in mind that X∗

j = −Xj , j = 1, . . . ,m, integrat-
ing by parts at right-hand side, we obtain

u(x) =

∫
G
(DΓ)(x−1 ◦ y)Du(y)dy.

It follows from Lemma 2.2 that there exists a positive constant C such that

∥u∥L2∗ (G) ≤ C∥u∥1.

Note that C∞
0 (G) is dense in S1,2(G), we can complete the proof.

3. PROOF OF THE MAIN RESULT

In this section, we prove Theorem 1.1 by using the Moser iterations
method as in [17]. Let r1 > r2 > 0. Given two balls Br2 , Br1 and a func-
tion φ ∈ C∞

0 (G), let us write Br2 ≺ φ ≺ Br1 to mean that 0 ≤ φ ≤ 1, φ = 1
on Br2 and suppφ ⊆ Br1 .

Lemma 3.1 ([5]). For any r1 > r2 > 0 and positive integer k, there exists
φ ∈ C∞

0 (G) with Br2 ≺ φ ≺ Br1 and

|P jφ| ≤ c

(r1 − r2)j
, 1 ≤ j ≤ k,

where c is a positive constant, P j is any left invariant differential monomial
homogeneous of degree j.

In the following, we will adapt the ideas found in [7, 12, 17] to prove our
main result.

Proof of Theorem 1.1. We first give two functions. For β > 1, M > 1,
the function h ∈ C1(0,+∞) is denoted by

h(s) =

{
sβ, s ∈ [0,M ],
βMβ−1s− (β − 1)Mβ, s ∈ (M,∞).

And we define the function g : (0,+∞) → (0,+∞) by

g(s) =

∫ s

0
|h′(t)|2dt =

{
β2

2β−1s
2β−1, s ∈ (0,M ],

β2M2β−1s− 2β2(β−1)
2β−1 M2β−1, s ∈ (M,∞).

Then, it is obvious that g, h are Lipschitz continuous in [0,+∞), and g(u),
h(u) ∈ S1,2(G) if u ∈ S1,2(G). We can verify that

0 ≤ sg(s) ≤ s2h′2(s) ≤ β2h2(s). (3.1)
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Let η̄ ∈ C∞
0 (G), 0 < r2 < r1 and Br2 ≺ η̄ ≺ Br1 . For each y ∈ G,

setting η(y) = η̄(y−1 ◦ x) and η2g(u) ∈ H1,2(G) with compact support in
Br1(y)∩ {x ∈ G : u(x) ̸= 0}. Combining (3.1) with the fact that u is the weak
solution of (1.2), we conclude that

(3.2)

∫
G
DuD(η2g(u))dx+ λ

∫
G
η2ug(u)dx =

∫
G
|u|p−1η2ug(u)dx

≤ β2

∫
G
|u|p−1η2h2(u)dx.

It is easy to verify that

DuD(η2g(u)) = |Du|2h′2(u)η2 + 2DuDηg(u)η.

Moreover, we deduce from (3.1) that

|DuDηg(u)η| ≤ 1

2
|ηu−1/2g1/2(u)Du| · 2|u1/2g1/2(u)Dη|

≤ 1

4
|Du|2h′2(u)η2 + 4β2|Dη|2h2(u).

Hereby, we derive from (3.2) that∫
G
|Du|2h′2(u)η2dx ≤

∫
G
|DuD(η2g(u))|dx+ 2

∫
G
|DuDηg(u)η|dx

≤ β2

∫
G
|u|p−1η2h2(u)dx+

1

2

∫
G
|Du|2h′2(u)η2dx+ 8β2

∫
G
|Dη|2h2(u)dx,

which implies∫
G
|Du|2h′2(u)η2dx ≤ 2β2

∫
G
|u|p−1η2h2(u)dx+ 16β2

∫
G
|Dη|2h2(u)dx.

Note that β > 1, then making use of Hölder inequality ensures that∫
G
|D(h(u)η)|2dx ≤ 2

∫
G
|Dη|2h2(u)dx+ 2

∫
G
|Du|2|h′(u)|2|η|2dx

≤ 4β2

∫
G
|u|p−1η2h2(u)dx+ (32β2 + 2)

∫
G
|Dη|2h2(u)dx

≤ (32β2 + 2)

∫
G
|Dη|2h2(u)dx+ 4β2∥ηh(u)∥2L2∗(G)∥u∥

p−1
L2∗(G)

|Br1 |γ

≤ (32β2 + 2)

∫
G
|Dη|2h2(u)dx+ 4β2C2∥ηh(u)∥2L2∗(G)∥u∥

p−1
L2∗(G)

|Br1 |γ ,

(3.3)

where γ = 2∗−p−1
2∗ and |Br1 | denotes the volume of Br1 . Setting β = 2∗

2 ≜ β0
and

(3.4)
r1 = |B1|−

1
Q (8β2

0∥u∥
p−1
L2∗(G)

C2 + 1)
− 1

γQ

≤ min{|B1|−
1
Q , |B1|−

1
Q (8C2β2

0∥u∥
p−1
L2∗(G)

)
− 1

γQ },
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where C is the imbedding constant as in Lemma 2.3. It is easy to see that
4β2

0∥u∥
p−1
L2∗(G)

|Br1 |γC2 ≤ 1
2 and |Br1 | ≤ 1. Then taking β = β0, (3.3) becomes∫

G
|D(h(u)η)|2dx ≤ (64β2

0 + 4)

∫
G
|Dη|2h2(u)dx.

Hence, by Lemma 2.3 and using the fact that ηh(u) ∈ S1,2(G), it follows

∥h(u)∥2
L2∗ (Br2 (y))

≤
(∫

G
|h(u)η|2∗dx

)2/2∗

≤ C2

∫
G
|D(h(u)η)|2dx

≤ C2(64β2
0 + 4)

∫
G
|Dη|2h2(u)dx

≤ c2C2(64β2
0 + 4)

(r1 − r2)2
∥h(u)∥2L2(Br1 (y))

.

(3.5)

By definition of h, there holds h(s) = sβ if M → +∞. Noting that β = β0
and 2β0 = 2∗, which together with (3.5) implies

∥u∥2β0

L2β20 (Br2 (y))
≤ c2C2(64β2

0 + 4)

(r1 − r2)2
∥u∥2β0

L2∗ (Br1 (y))
.

For each i ≥ 2, let ri =
2+2−i

4 r1. Let η̄i ∈ C∞
0 (G) and Bri+1 ≺ η̄i ≺ Bri . Set

ρ = 2β0

2β2
0+1−p

and ρ ∈ (0, 1) by p ∈ (1, Q+2
Q−2). For i ≥ 2, taking η = ηi(x) =

η̄i(y
−1 ◦ x) and β = βi ≜ ρ−i > 1, then invoking Hölder inequality and using

the fact that |Bri | < |Br1 | ≤ 1, we have∫
G
|D(h(u)ηi)|2dx ≤ 4β2

i

∫
G
|u|p−1η2i h

2(u)dx+(32β2
i +2)

∫
G
|Dηi|2h2(u)dx

≤
(

2

ri − ri+1

)2

(32β2
i + 2)|Bri |

2∗ρ−2
∗ρ ∥h(u)∥2

L2∗ρ(Bri (y))

+ 4β2
i ∥h(u)∥2L2∗ρ(Bri (y))

∥u∥p−1

L2β20 (Bri (y))

≤

(
(32β2

i +2)

(
2

ri − ri+1

)2

+ 4β2
i ∥u∥

p−1

L2β20 (Bri (y))

)
∥h(u)∥2

L2∗ρ(Bri (y))

≤

(32β2
i + 2)

(
2

ri − ri+1

)2

+

(
c2C2(64β2

0 + 4)

(r1 − r2)2

) (p−1)
2β0

∥u∥p−1

L2β20 (Bri (y))


× ∥h(u)∥2

L2∗ρ(Bri (y))

≤

C1βi(1 + ∥u∥(p−1)/2
L2∗(G)

)

ri − ri+1

2

∥h(u)∥2
L2∗ρ(Bri (y))

,

(3.6)
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where C1 is a constant depending only on N and p. In view of ηih(u) ∈ S1,2(G),
it follows from Lemma 2.3 that

∥h(u)∥2
L2∗ (Bri+1 (y))

≤ C2

∫
G
|D(h(u)ηi)|2dx

≤

C2βi(1 + ∥u∥(p−1)/2
L2∗(G)

)

ri − ri+1

2

∥h(u)∥2
L2∗ρ(Bri (y))

,

where C2 = CC1 depends only on Q and p. Let M → +∞, and h(u) = uβi ,
we obtain that

∥u∥L2∗βi (Bri+1 (y))
≤

C2βi(1 + ∥u∥(p−1)/2
L2∗(G)

)

ri − ri+1

1/βi

∥u∥
L2∗βi−1 (Bri (y))

.

Then combining with the Moser iterations in a standard way, it leads to

∥u∥L2∗βi (Bri+1 (y))
≤ Πi

l=2

C2βl(1+∥u∥(p−1)/2
L2∗(G)

)

rl − rl+1

1/βl

∥u∥L2∗β1 (Br2 (y))

=

(
2

ρ

)f(i)
8C2(1+∥u∥(p−1)/2

L2∗(G)
)

r1

k(i)

∥u∥2
L2∗β1 (Br2 (y))

,

(3.7)

where f(i) = 2ρ2

1−ρ + ρ3(1−ρi−2)
(1−ρ)2

− iρi+1

1−ρ → 2ρ2−ρ3

(1−ρ)2
and k(i) = ρ2(1−ρi−1)

1−ρ → ρ2

1−ρ

as i → ∞. Notice that 2∗β1 = 2β2
0 + 1 − p < 2β2

0 , then by virtue of Hölder
inequality, (3.4) and (3.6), there holds

∥u∥L2∗β1 (Br2 (y))
≤ |Br2 |

p−1

2β202
∗β1 ∥u∥

L2β20 (Br2 (y))

≤
(
c2C2(64β2

0 + 4)

(r1 − r2)2

) 1
2β0

∥u∥L2∗ (G).

We deduce from (3.7) that

∥u∥L2∗βi (Br1/2
(y)) ≤ ∥u∥L2∗βi (Bri+1 (y))

≤
(
2

ρ

)f(i)
8C2(1 + ∥u∥(p−1)/2

L2∗(G)
)

r1

k(i)(
(167 )

2c2C2(64β2
0 + 4)

r21

) 1
2β0

∥u∥L2∗ (G).

By taking the limit as i → ∞, we know there exist positive constants C4(P,Q),
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C5(P,Q) such that

∥u∥L∞(Br1/2
(y)) ≤

(
2

ρ

) 2ρ2−ρ3

(1−ρ)2

8C2(1 + ∥u∥(p−1)/2
L2∗(G)

)

r1


ρ2

1−ρ

×

(
(167 )

2c2C2(64β2
0 + 4)

r21

) 1
2β0

∥u∥L2∗ (G)

≤
(
2

ρ

) 2ρ2−ρ3

(1−ρ)2

C3(1 + ∥u∥(p−1)/2

L2∗ (G)
)

r1


ρ2

1−ρ
+ 1

β0

∥u∥L2∗ (G)

≤
(
2

ρ

) 2ρ2−ρ3

(1−ρ)2
(
|B1|1/QC3(1 + ∥u∥(p−1)/2

L2∗(G)
)

× (8β2
0∥u∥

p−1

L2∗ (G)
C2 + 1)

1
γQ )

) ρ2

1−ρ
+ 1

β0

∥u∥L2∗ (G)

≤ C4(p,Q)(1 + ∥u∥C5(p,Q)

L2∗ (G)
)∥u∥L2∗ (G).

Recalling that y ∈ G, and r1 is fixed, we can derive that

∥u∥L∞(G) ≤ C4(p,Q)(1 + ∥u∥C5(p,Q)

L2∗ (G)
)∥u∥L2∗ (G).

This completes the proof.

4. APPLICATIONS

Example 4.1. Let u ∈ H1,2(Hn) be a weak solution of (1.4). Then by
Theorem 1.1, it follows that u is in Lq(Hn) for any 1 < q < ∞. Moreover,

∥u∥L∞(G) ≤ C6(p, n)(1 + ∥u∥C7(p,n)

L2∗ (G)
)∥u∥L2∗ (G).

Acknowledgments. The author would like to express their sincere gratitude to the

anonymous referee for his/her constructive comments for improving the quality of this paper.

REFERENCES

[1] I. Birindelli and I. Capuzzo Dolcetta, Indefinite semi-linear equations on the Heisenberg
group: A priori bounds and existence. Comm. Partial Differential Equations 23 (1998),
7-8, 1123–1157.

[2] L. Birindelli and J. Prajapat, Nonlinear Liouville theorems in the Heisenberg group via
the moving plane method. Commun. Partial Differential Equations 24 (1999), 9-10, 1875–
1890.



736 X. Feng 10

[3] M. Biroli and U. Mosco, Sobolev inequalities on homogeneous spaces. Potential Anal. 4
(1995), 4, 311–324.

[4] M. Bramanti, G. Cupini, E. Lanconelli and E. Priola, Global Lp estimates for degenerate
Ornstein-Uhlenbeck operators. Math. Z. 266 (2010), 4, 789–816.

[5] M. Bramanti and L. Brandolini, Lp estimates for uniformly hypoelliptic operators with dis-
continuous coefficients on homogeneous groups. Rend. Semin. Mat. Univ. Politec. Torino
58 (2000), 4, 389–433.

[6] W. Chen and C. Li, Methods on Nonlinear Elliptic Equations. AIMS Series on Differen-
tial Equations and Dynamical Systems 4, American Institute of Mathematical Sciences
(AIMS), 2010.

[7] H. Egnell, Asymptotic results for finite energy solutions of semilinear elliptic equations.
J. Differential Equations 98 (1992), 1, 34–56.

[8] X. Feng and P. Niu, Regularity lifting of weak solutions for nonlinear sub-Laplace equations
on homogeneous groups. Ark. Mat. 98 (2012), 4, 361–371.

[9] G.B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups. Ark. Mat.
13 (1975), 161–207.

[10] D. Jerison and J.M. Lee, Extremals for the Sobolev inequality on the Heisenberg group
and the CR Yamabe problem. J. Amer. Math. Soc. 1 (1988), 1, 1–13.

[11] D. Jerison and J.M. Lee, Intrinsic CR normal coordinates and the CR Yamabe problem.
J. Differential Geom. 29 (1989), 2, 303–343.

[12] Y. Jiang and H. Zhou, Schrödinger-Poisson system with steep potential well. J. Differ-
ential Equations 251 (2011), 3, 582–608.

[13] K. Kurata, M. Shibata and K. Tada, Existence of positive solutions for some nonlinear
elliptic equations on unbounded domains with cylindrical ends. Nonlinear Anal. 55 (2003),
1-2, 83–101.

[14] S. Maad, Infinitely many solutions of a semilinear problem for the Heisenberg Laplacian
on the Heisenberg group. Manuscripta Math. 116 (2005), 3, 357–384.

[15] S. Polidoro and M.A. Ragusa, Sobolev-Morrey spaces related to an ultraparabolic equa-
tion. Manuscripta Math. 96 (1998), 3, 371–392.

[16] E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory
Integrals. Princeton Mathematical Series 43, Princeton Univ. Press, Princeton, NJ, 1993.

[17] N.S. Trudinger, Remarks concerning the conformal deformation of Riemannian struc-
tures on compact manifolds. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 22 (1968), 265–274.

Received December 13, 2018 Shanxi University
School of Mathematical Sciences

Taiyuan 030006, People’s Republic of China
fxj467@mail.nwpu.edu.cn


