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Let Mn be an n-dimensional (n ≥ 3) complete smooth connected and oriented
hypersurface in a real space form Mn+1(c) (c = 0, 1,−1) with constant quasi-
Gauss-Kronecker curvature and two distinct principal curvatures. Denoting by
H the mean curvature, |A|2 the squared norm of the second fundamental form
and Kq the quasi-Gauss-Kronecker curvature of Mn, we obtain some character-
izations of Sk(a)×Rn−k or Sk(a)×Sn−k(

√
1− a2) or Sk(a)×Hn−k(−

√
1 + a2)

in terms of H, |A|2 and Kq, where 1 ≤ k ≤ n− 1 and Sk(a) is the k-dimensional
sphere with radius a.
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1. INTRODUCTION

Let Mn be an n-dimensional immersed hypersurface in a real space form
Mn+1(c). If c = 0, c > 0 or c < 0, we call Mn+1(c) the Euclidean space, sphere
space or hyperbolic space. Let (hij) be the second fundamental form. Denote
by H = 1

n

∑n
i=1 hii the mean curvature, by |A|2 =

∑n
i,j=1 h

2
ij the squared norm

of the second fundamental form, and by K = det(hij) the Gauss-Kronecker
curvature of Mn. We notice that if Mn is an n-dimensional immersed hyper-
surface in a real space form Mn+1(c) with constant mean curvature H or con-
stant m-th mean curvature Hm and two distinct principal curvatures, there are
many important characterization results ofMn (see [ 4, 6, 11–16]). IfMn is an
n-dimensional immersed hypersurface in Mn+1(c) with constant squared norm
of the second fundamental form |A|2 and two distinct principal curvatures, or
with constant Gauss-Kronecker curvature K and two distinct principal curva-
tures, the author and others also obtained some interesting characterization
results of Mn (see [9, 10]). Putting µij = hij − Hδij , we define the so-called
quasi-Gauss-Kronecker curvature ofMn byKq = det(µij), which is a conformal
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invariant (see [5]). We notice that if Mn is a minimal hypersurface, then the
quasi-Gauss-Kronecker curvature is exactly the Gauss-Kronecker curvature.

Since H, |A|2, K and Kq are the important invariants of Mn under the
isometric immersion, it is natural for us to ask the following question: if Mn

has constant quasi-Gauss-Kronecker curvature and two distinct principal cur-
vatures, what characterization results can we obtain?

In this article, we try to study such a problem and give some charac-
terization results. We introduce the well-known standard models of complete
hypersurfaces with constant quasi-Gauss-Kronecker curvature in Mn+1(c):

When c = 0, we consider the Riemannian product immersion

Sk(a)×Rn−k ↪→ Mn+1(c),

where a > 0 and 1 ≤ k ≤ n − 1 , then it has two distinct constant principal
curvatures 1a and 0 with multiplicities k and n− k, respectively. We easily see
that Sk(a)×Rn−k has constant quasi-Gauss-Kronecker curvature

Kq =
( k

k − n

)n−k(n− k

n

)n 1

an
.

If k = n− 1, then Kq = −n−1
nn

1
an < 0. If k = 1, then Kq = (−1)n 1−n

nn
1
an . Thus

1
a = −n( Kq

1−n)
1
n > 0, this implies that it must have Kq > 0 and n is an odd

number.

Putting G =
Kq

1−n and denote by |A|2 and H the squared norm of the sec-

ond fundamental form and the mean curvature of Sn−1(a)×R1 or S1(a)×Rn−1,

then for Sn−1(a)×R1, where a = 1
nG

− 1
n and G > 0 we have

|A|2 = n2(n− 1)G
2
n , H = n(n− 1)G

1
n ,

for S1(a)×Rn−1, where a = − 1
nG

− 1
n , G < 0 and n is an odd number, we have

|A|2 = n2G
2
n , H = −nG

1
n .

When c = 1, we consider the standard immersions Sn−k(
√
1− a2) ↪→

Rn−k+1 and Sk(a) ↪→ Rk+1, where 0 < a < 1, 1 ≤ k ≤ n − 1, and take the
Riemannian product immersion Sk(a) × Sn−k(

√
1− a2) ↪→ Sn+1(c) ⊂ Rn+2,

then it has two distinct constant principal curvatures

λ1 = · · · = λk =

√
1− a2

a
, λk+1 = · · · = λn = − a√

1− a2
,

respectively. We easily see that Sk(a) × Sn−k(
√
1− a2) has constant quasi-

Gauss-Kronecker curvature

Kq =
( k

k − n

)n−k(n− k

n

)n( 1

a
√
1− a2

)n
.
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If k = n − 1, then Kq = −n−1
nn

1
(a
√
1−a2)n

< 0. If k = 1, then Kq =

(−1)n 1−n
nn

1
(a
√
1−a2)n

. Thus 1
a
√
1−a2

= −n( Kq

1−n)
1
n > 0. This implies that we

must have Kq > 0 and n is an odd number.

Putting G =
Kq

1−n and denoting by |A|2 and H the squared norm of the

second fundamental form and the mean curvature of Sn−1(a)×S1(
√
1− a2) or

S1(a)× Sn−1(
√
1− a2) , then for

Sn−1(a)×S1(
√
1− a2), where a2 =

1

2
±

√
n2G2/n − 4

2nG1/n
and G > (2/n)n > 0,

or for

S1(a)× Sn−1(
√

1− a2), where a2 =
1

2
∓

√
n2G2/n − 4

2nG1/n

and G < −(2/n)n < 0, n being an odd number,

we have

|A|2 = n

2
G

1
n
[
n2G

1
n ± (n− 2)

√
n2G

2
n − 4

]
− n,

H =
1

2

[
(n− 2)G

1
n ∓

√
n2G

2
n − 4

]
.

When c = −1, we consider the standard immersions Hn−k(−
√
1 + a2) ↪→

Rn−k+1
1 and Sk(a) ↪→ Rk+1, where a > 0, 1 ≤ k ≤ n − 1, and take the

Riemannian product immersion Sk(a)×Hn−k(−
√
1 + a2) ↪→ Hn+1(c) ⊂ Rn+2

1 ,
then it has two distinct constant principal curvatures

λ1 = · · · = λk =

√
1 + a2

a
, λk+1 = · · · = λn =

a√
1 + a2

,

respectively. We easily see that Sk(a)×Hn−k(−
√
1 + a2) has constant quasi-

Gauss-Kronecker curvature

Kq =
( k

k − n

)n−k(n− k

n

)n( 1

a
√
1 + a2

)n
.

If k = n − 1, then Kq = −n−1
nn

1
(a
√
1+a2)n

< 0. If k = 1, then Kq =

(−1)n 1−n
nn

1
(a
√
1+a2)n

. Thus 1
a
√
1+a2

= −n( Kq

1−n)
1
n > 0, this implies that it must

have Kq > 0 and n is an odd number.

Putting G =
Kq

1−n and denote by |A|2 and H the squared norm of the

second fundamental form and the mean curvature of Sn−1(a)×H1(−
√
1 + a2)

or S1(a)×Hn−1(−
√
1 + a2), then for

Sn−1(a)×H1(−
√
1 + a2), where a2 = −1

2
+

√
n2G2/n + 4

2nG1/n
and G > 0,
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or for

S1(a)×Hn−1(−
√
1 + a2), where a2 = −1

2
−

√
n2G2/n + 4

2nG1/n

and G < 0, n being an odd number,

we have

|A|2 = n

2
G

1
n
[
n2G

1
n + (n− 2)

√
n2G

2
n + 4

]
+ n,

H =
1

2

[
(n− 2)G

1
n +

√
n2G

2
n + 4

]
.

If Mn has two distinct principal curvatures and the multiplicities of both
principal curvatures are greater than 1, we obtain the following:

Theorem 1.1. Let Mn be an n-dimensional, n ≥ 3, complete smooth
connected and oriented hypersurface in a real space form Mn+1(c) with constant
quasi-Gauss-Kronecker curvature and two distinct principal curvatures. If the
multiplicities of both principal curvatures are constant and greater than 1, then

(1) for c = 0, Mn is isometric to Sk(a)×Rn−k, where a = F ;

(2) for c = 1 and F 2 ≤ 1/4, Mn is isometric to Sk(a)× Sn−k(
√
1− a2),

where a2 = 1±
√
1−4F 2

2 ;

(3) for c = −1, Mn is isometric to Sk(a) × Hn−k(−
√
1 + a2), where

a2 = −1±
√
1+4F 2

2 .

In the above, F = ( k
k−n)

(n−k)/n n−k
n K

−1/n
q and 1 < k < n− 1.

If Mn has two distinct principal curvatures one of which is simple, in
order to state Theorem 1.2 and Theorem 1.3 briefly, we denote

δ±(n,G) =
n

2
G

1
n
[
n2G

1
n ± (n− 2)

√
n2G2/n − 4

]
− n,

ϵ+(n,G) =
n

2
G

1
n
[
n2G

1
n + (n− 2)

√
n2G2/n + 4

]
+ n,

α±(n,G) =
1

2

[
(n− 2)G

1
n ±

√
n2G

2
n − 4

]
,

β+(n,G) =
1

2

[
(n− 2)G

1
n +

√
n2G

2
n + 4

]
,

b(n,G)± =
1

2
±

√
n2G2/n − 4

2nG1/n
,

c(n,G)± = −1

2
±

√
n2G2/n + 4

2nG1/n
,

where G =
Kq

1−n , and obtain the following:
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Theorem 1.2. Let Mn be an n-dimensional with n ≥ 3 complete smooth
connected and oriented hypersurface in Mn+1(c) with constant quasi-Gauss-
Kronecker curvature Kq and two distinct principal curvatures one of which is
simple. Denote by |A|2 the squared norm of the second fundamental form of
Mn. Then Kq ̸= 0.

(I) If Kq < 0, (i.e. G > 0), then

(1) for c = 0, if |A|2 ≥ (n − 1)n2G
2
n or |A|2 ≤ (n − 1)n2G

2
n , then Mn is

isometric to Sn−1(a)×R1, where a = 1
nG

− 1
n ;

(2) for c = 1 and Kq ≤ −( 1
n−1)

n−2
2 , (i.e. G ≥ ( 1

n−1)
n
2 ),

(i) if |A|2 ≥ δ+(n,G), then Mn is isometric to Sn−1(a) × S1(
√
1−a2),

where a2 = b(n,G)+;

(ii) if |A|2 ≤ δ+(n,G), then Mn is isometric to Sn−1(a) × S1(
√
1−a2),

where a2 = b(n,G)+ or a2 = b(n,G)−;

(iii) if |A|2 ≥ δ−(n,G), then Mn is isometric to Sn−1(a) × S1(
√
1−a2),

where a2 = b(n,G)− or a2 = b(n,G)+;

(iv) if |A|2 ≤ δ−(n,G), then Mn is isometric to Sn−1(a) × S1(
√
1−a2),

where a2 = b(n,G)−;

(3) for c = −1, if |A|2 ≥ ϵ+(n,G) or |A|2 ≤ ϵ+(n,G), then Mn is iso-
metric to Sn−1(a)×H1(−

√
1 + a2), where a2 = c(n,G)+.

(II) If Kq > 0, (i.e. G < 0), and n is an odd number, then

(1) for c = 0, if |A|2 ≥ n2G
2
n or |A|2 ≤ n2G

2
n , then Mn is isometric to

S1(a)×Rn−1, where a = − 1
nG

− 1
n ;

(2) for c = 1 and Kq ≥ ( 1
n−1)

n−2
2 , (i.e. G ≤ −( 1

n−1)
n
2 ),

(i) if |A|2 ≥ δ+(n,G), then Mn is isometric to S1(a) × Sn−1(
√
1−a2),

where a2 = b(n,G)− or a2 = b(n,G)+ ;

(ii) if |A|2 ≤ δ+(n,G), then Mn is isometric to S1(a) × Sn−1(
√
1−a2),

where a2 = b(n,G)−;

(iii) if |A|2 ≥ δ−(n,G), then Mn is isometric to S1(a) × Sn−1(
√
1−a2),

where a2 = b(n,G)+;

(iv) if |A|2 ≤ δ−(n,G), then Mn is isometric to S1(a) × Sn−1(
√
1−a2),

where a2 = b(n,G)− or a2 = b(n,G)+;

(3) for c = −1, if |A|2 ≥ ϵ+(n,G) or |A|2 ≤ ϵ+(n,G), then Mn is iso-
metric to S1(a)×Hn−1(−

√
1 + a2), where a2 = c(n,G)−.

Theorem 1.3. Let Mn be an n-dimensional with n ≥ 3 complete smooth
connected and oriented hypersurface in Mn+1(c) with constant quasi-Gauss-
Kronecker curvature Kq and two distinct principal curvatures one of which is
simple. Denote by H the mean curvature of Mn. Then Kq ̸= 0.

(I) If Kq < 0, (i.e. G > 0), then
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(1) for c = 0, if H ≥ n(n− 1)G
1
n , or H ≤ n(n− 1)G

1
n , then Mn is isomet-

ric to Sn−1(a)×R1, where a = 1
nG

− 1
n ;

(2) for c = 1 and Kq ≤ −( 1
n−1)

n−2
2 , (i.e. G ≥ ( 1

n−1)
n
2 ),

(i) if H ≥ α+(n,G), then Mn is isometric to Sn−1(a) × S1(
√
1− a2),

where a2 = b(n,G)−;

(ii) if H ≤ α+(n,G), then Mn is isometric to Sn−1(a) × S1(
√
1− a2),

where a2 = b(n,G)− or a2 = b(n,G)+;

(iii) if H ≥ α−(n,G), then Mn is isometric to Sn−1(a) × S1(
√
1− a2),

where a2 = b(n,G)− or a2 = b(n,G)+;

(iv) if H ≤ α−(n,G), then Mn is isometric to Sn−1(a) × S1(
√
1− a2),

where a2 = b(n,G)+;

(3) for c = −1, if H ≥ β+(n,G) or H ≤ β+(n,G), then Mn is isometric to
Sn−1(a)×H1(−

√
1 + a2), where a2 = c(n,G)+.

(II) If Kq > 0, (i.e. G < 0), and n is an odd number, then

(1) for c = 0, if H ≥ −n G
1
n or H ≤ −n G

1
n , then Mn is isometric to

S1(a)×Rn−1, where a = − 1
nG

− 1
n ;

(2) for c = 1 and Kq ≥ ( 1
n−1)

n−2
2 , (i.e. G ≤ −( 1

n−1)
n
2 ),

(i) if H ≥ α+(n,G), then Mn is isometric to S1(a) × Sn−1(
√
1− a2),

where a2 = b(n,G)+;

(ii) if H ≤ α+(n,G), then Mn is isometric to S1(a) × Sn−1(
√
1− a2),

where a2 = b(n,G)+ or a2 = b(n,G)−;

(iii) if H ≥ α−(n,G), then Mn is isometric to S1(a) × Sn−1(
√
1− a2),

where a2 = b(n,G)+ or a2 = b(n,G)−;

(iv) if H ≤ α−(n,G), then Mn is isometric to S1(a) × Sn−1(
√
1− a2),

where a2 = b(n,G)−;

(3) for c = −1, if H ≥ β+(n,G) or H ≤ β+(n,G), then Mn is isometric to
S1(a)×Hn−1(−

√
1 + a2), where a2 = c(n,G)−.

2. PRELIMINARIES

Let Mn be an n-dimensional complete smooth connected and oriented
hypersurface in a real space form Mn+1(c). We choose a local orthonormal
frame e1, . . . , en+1 in Mn+1(c) such that e1, . . . , en are tangent to Mn. Let
ω1, . . . , ωn+1 be the dual coframe. We use the following convention on the
range of indices:

1 ≤ A,B,C, . . . ≤ n+ 1; 1 ≤ i, j, k, . . . ≤ n.
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The structure equations of Mn+1(c) are given by

dωA =
∑
B

ωAB ∧ ωB, ωAB + ωBA = 0,

dωAB =
∑
C

ωAC ∧ ωCB +ΩAB, ΩAB = −1

2

∑
C,D

KABCDωC ∧ ωD,

KABCD = c(δACδBD − δADδBC),

where ΩAB and KABCD denote the curvature form and the components of the
curvature tensor of Mn+1(c), respectively.

Restricting to Mn,

ωn+1 = 0,(2.1)

ωn+1i =
∑
j

hijωj , hij = hji,(2.2)

where hij denotes the components of the second fundamental form ofMn. The
structure equations of Mn are

dωi =
∑
j

ωij ∧ ωj , ωij + ωji = 0,

dωij =
∑
k

ωik ∧ ωkj +Ωij , Ωij = −1

2

∑
k,l

Rijklωk ∧ ωl,(2.3)

Rijkl = c(δikδjl − δilδjk) + (hikhjl − hilhjk),(2.4)

where Ωij and Rijkl denote the curvature form and the components of the
curvature tensor of Mn, respectively. From (2.4), we have

n(n− 1)(r − c) = n2H2 − |A|2,

where n(n−1)r = R is the scalar curvature, H is the mean curvature and |A|2
is the squared norm of the second fundamental form of Mn.

Putting µij = hij−Hδij , we callKq = det(µij) the quasi-Gauss-Kronecker
curvature of Mn. We choose e1, . . . , en such that hij = λiδij , then we see that

(2.5) Kq = det(µij) = (λ1 −H)(λ2 −H) · · · (λn −H).

From (2.2) we obtain

ωn+1i = λiωi, i = 1, 2, . . . , n.

Hence, we get from the structure equations of Mn,

dωn+1i =dλi ∧ ωi + λidωi(2.6)

=dλi ∧ ωi + λi
∑
j

ωij ∧ ωj .
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On the other hand, we have on the curvature forms of Mn+1(c),

Ωn+1i =− 1

2

∑
C,D

Kn+1iCDωC ∧ ωD

=− 1

2

∑
C,D

c(δn+1CδiD − δn+1DδiC)ωC ∧ ωD

=− cωn+1 ∧ ωi = 0.

Therefore, from the structure equations of Mn+1(c), we obtain

dωn+1i =
∑
j

ωn+1j ∧ ωji + ωn+1n+1 ∧ ωn+1i +Ωn+1i(2.7)

=
∑
j

λjωij ∧ ωj .

From (2.6) and (2.7), we get

(2.8) dλi ∧ ωi +
∑
j

(λi − λj)ωij ∧ ωj = 0.

Putting

(2.9) ψij = (λi − λj)ωij ,

we have ψij = ψji. Hence (2.8) can be written as∑
j

(ψij + δijdλj) ∧ ωj = 0.

By E. Cartan’s Lemma, we get

(2.10) ψij + δijdλj =
∑
k

Qijkωk,

where Qijk are uniquely determined functions such that

Qijk = Qikj .

3. PROOFS OF THEOREMS

We have the following Proposition 3.1 (originally see Otsuki [7]):

Proposition 3.1. LetMn be a hypersurface in a real space form Mn+1(c)
such that the multiplicities of the principal curvatures are constant. Then the
distribution of the space of the principal vectors corresponding to each prin-
cipal curvature is completely integrable. In particular, if the multiplicity of a
principal curvature is greater than 1, then this principal curvature is constant
on each integral submanifold of the corresponding distribution of the space of
the principal vectors.
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Proof of Theorem 1.1. If Mn has two distinct principal curvatures λ and
λ′ of multiplicities k and n − k, where 1 < k < n − 1, from (2.5) and µij =
hij −Hδij , we get

Kq =
( k

k − n

)n−k(n− k

n

)n
(λ− λ′)n.(3.1)

Denote by Dλ and Dλ′ the integral submanifolds of the corresponding distri-
bution of the space of principal vectors corresponding to the principal cur-
vature λ and λ′, respectively. From Proposition 3.1, we know that λ is con-
stant on Dλ. From (3.1), we infer that λ′ is constant on Dλ. By Proposition
3.1 again, we get that λ′ is constant on Dλ′ . Thus, we see that λ′ is con-
stant on Mn. By the same assertion we know that λ is constant on Mn.
Therefore, Mn is isoparametric. By the classical results of Segre [8] and Car-
tan [2, 1] (see also [3, pp. 238]), we know that Mn is isometric to one of

Sk(a) × Rn−k, a = F for c = 0, or Sk(a) × Sn−k(
√
1− a2), a2 = 1±

√
1−4F 2

2

for c = 1, or Sk(a) × Hn−k(−
√
1 + a2), a2 = −1±

√
1+4F 2

2 for c = −1, where

F = ( k
k−n)

(n−k)/n n−k
n K

−1/n
q and 1 < k < n − 1. This completes the proof of

Theorem 1.1.

Now, we consider the case that Mn has two distinct principal curvatures
one of which is simple. Let Mn be an n-dimensional complete smooth con-
nected and oriented hypersurface with two distinct principal curvatures one of
which is simple and n ≥ 3, that is, without loss of generality, we may assume

λ1 = λ2 = · · · = λn−1 = λ, λn = λ′,

where λi for i = 1, 2, . . . , n are the principal curvatures of Mn. Thus, we get

Kq = −n− 1

nn
(λ− λ′)n.

Putting G =
Kq

1−n , we get

(3.2) 0 ̸= λ− λ′ = n
( Kq

1− n

) 1
n
= nG

1
n ,

this implies that Kq ̸= 0 and there only exist two cases: Kq < 0 or Kq > 0 and
n must be odd numbers. Hence, we obtain

(3.3) λ′ = λ− nG
1
n ,

where G > 0 or G < 0 and n must be odd numbers.
We denote the integral submanifold through x ∈Mn corresponding to λ

by Mn−1
1 (x). Putting

dλ =

n∑
k=1

λ,k ωk, dλ′ =

n∑
k=1

λ′,k ωk,
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from Proposition 3.1, we have

(3.4) λ,1= λ,2= · · · = λ,n−1= 0 on Mn−1
1 (x).

From (3.3), we have

(3.5) dλ′ = dλ.

Thus, we also have

(3.6) λ′,1= λ′,2= · · · = λ′,n−1= 0 on Mn−1
1 (x).

In this case, we may consider locally λ as a function of the arc length s of the
integral curve of the principal vector field en corresponding to the principal
curvature λ′. From (2.10) and (3.4), we have for 1 ≤ j ≤ n− 1,

λ,n ωn =
n∑

i=1

λ,i ωi = dλ =dλj =
n∑

k=1

Qjjkωk =
n−1∑
k=1

Qjjkωk +Qjjnωn.

Therefore, we have

(3.7) Qjjk = 0, 1 ≤ k ≤ n− 1, and Qjjn = λ,n .

By (2.10) and (3.6), we have

λ′,n ωn =
n∑

i=1

λ′,i ωi = dλ′ =dλn =
n∑

k=1

Qnnkωk =
n−1∑
k=1

Qnnkωk +Qnnnωn.

Hence, we obtain

(3.8) Qnnk = 0, 1 ≤ k ≤ n− 1, and Qnnn = λ′,n .

From (3.5), we get
Qnnn = λ′,n= λ,n .

From the definition of ψij , if i ̸= j, we have ψij = 0 for 1 ≤ i ≤ n − 1 and
1 ≤ j ≤ n − 1. Therefore, from (2.10), if i ̸= j and 1 ≤ i ≤ n − 1 and
1 ≤ j ≤ n− 1 we have

(3.9) Qijk = 0, for any k.

By (2.10), (3.7), (3.8) and (3.9), for j < n, we get

ψjn =

n∑
k=1

Qjnkωk(3.10)

=Qjjnωj +Qjnnωn = λ,n ωj .

From (2.9), (3.2) and (3.10), for j < n, we have

ωjn =
ψjn

λ− λ′
=

λ,n

nG
1
n

ωj .



11 Hypersurfaces with constant quasi-Gauss-Kronecker curvature 11

Thus, from the structure equations of Mn we have

dωn =

n−1∑
k=1

ωk ∧ ωkn + ωnn ∧ ωn = 0.

Therefore, we may put ωn = ds. By (3.4), we get

dλ = λ,n ds, λ,n=
dλ

ds
.

Thus, we have

(3.11) ωjn =
dλ
ds

nG
1
n

ωj =
d( 1nG

− 1
nλ)

ds
ωj =

d(ln e
1
n
G− 1

n λ)

ds
ωj .

From (3.11) and the structure equations of Mn+1(c), for j < n, we have

dωjn =
n−1∑
k=1

ωjk ∧ ωkn + ωjn ∧ ωnn + ωjn+1 ∧ ωn+1n +Ωjn

=

n−1∑
k=1

ωjk ∧ ωkn + ωjn+1 ∧ ωn+1n − cωj ∧ ωn

=
d(ln e

1
n
G− 1

n λ)

ds

n−1∑
k=1

ωjk ∧ ωk − (λλ′ + c)ωj ∧ ds.

Differentiating (3.11), we have

dωjn =
d2(ln e

1
n
G− 1

n λ)

ds2
ds ∧ ωj +

d(ln e
1
n
G− 1

n λ)

ds
dωj

=
d2(ln e

1
n
G− 1

n λ)

ds2
ds ∧ ωj +

d(ln e
1
n
G− 1

n λ)

ds

n∑
k=1

ωjk ∧ ωk

=
{
− d2(ln e

1
n
G− 1

n λ)

ds2
+
[d(ln e 1

n
G− 1

n λ)

ds

]2}
ωj ∧ ds

+
d(ln e

1
n
G− 1

n λ)

ds

n−1∑
k=1

ωjk ∧ ωk.

From the previous two equalities, we have

(3.12)
d2(ln e

1
n
G− 1

n λ)

ds2
−
{d(ln e

1
n
G− 1

n λ)

ds

}2
− (λλ′ + c) = 0.

Defining ϖ = e−
1
n
G− 1

n λ, from (3.12), we get

(3.13)
d2ϖ

ds2
+ϖ(λλ′ + c) = 0.
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On the other hand, from (3.11), we have ∇enen =
∑n

i=1 ωni(en)ei = 0.
By the definition of geodesic, we know that any integral curve of the principal
vector field corresponding to the principal curvature λ′ is a geodesic. Thus, we
see that ϖ(s) is a function defined in (−∞,+∞) sinceMn is complete and any
integral curve of the principal vector field corresponding to λ′ is a geodesic.

We can prove the following Lemma:

Lemma 3.2. The positive function ϖ is bounded from above.

Proof. From (3.3) and (3.13), we get

(3.14)
d2ϖ

ds2
+ϖ(λ2 − nG

1
nλ+ c) = 0,

that is

(3.15)
d2ϖ

ds2
+ϖ

[
n2G

2
n (lnϖ)2 + n2G

2
n lnϖ + c

]
= 0.

Multiplying (3.15) by 2dϖ
ds and integrating, we get(dϖ

ds

)2
+ cϖ2 + n2G

2
nϖ2(lnϖ)2 = C,

where C is a constant. Thus, we have

(3.16) c+ n2G
2
n (lnϖ)2 ≤ C

ϖ2
.

If the positive function ϖ is not bounded from above, that is, ϖ → +∞, from
(3.16), we conclude a contradiction for all c = 0, 1,−1 since G

2
n > 0. Lemma

3.2 is proved.

The following Lemma is obvious:

Lemma 3.3. (1) Let

P (x) = x2 − nG
1
nx+ c.

Then P (x) gets its minimum at x0 = 1
2nG

1
n , x ≥ x0 if and only if P (x) is

an increasing function, x ≤ x0 if and only if P (x) is a decreasing function

and P (x) has two real roots x1 = 1
2(nG

1
n −

√
n2G

2
n − 4c), x2 = 1

2(nG
1
n +√

n2G
2
n − 4c), where |G| ≥ (2/n)n if c = 1;

(2) Let

|A|2(x) = nx2 − 2nG
1
nx+ n2G

2
n

Then |A|2(x) gets its minimum at x′0 = G
1
n and x ≥ x′0 if and only if |A|2(x) is

an increasing function, x ≤ x′0 if and only if |A|2(x) is a decreasing function.
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(3) Let

H(x) = nx− nG
1
n .

Then H(x) is a strictly increasing function of x.

Proof of Theorem 1.2. From (3.2), we know that Kq ̸= 0 and there only
exist two cases: Kq < 0 or Kq > 0 and n is an odd number. Since we denote

G =
Kq

1−n , these two cases are equivalent to G > 0 or G < 0 and n is an odd
number.

(I) If G > 0, putting x = λ, from (3.3), we see that the squared norm of

second fundamental form |A|2 = (n − 1)λ2 + (λ − nG
1
n )2 = nλ2 − 2nG

1
nλ +

n2G
2
n = |A|2(x). From (3.14), we have

(3.17)
d2ϖ

ds2
+ϖP (x) = 0.

(1) For c = 0 and G > 0,

(i) If |A|2 ≥ n2(n − 1)G
2
n , that is, |A|2(x) ≥ |A|2(x2), where x2 = nG

1
n ,

we consider two cases: x ≥ x′0 and x < x′0, where x
′
0 = G

1
n is the minimum

point of |A|2(x).
Case (i). If x ≥ x′0, since x

′
0 < x0, where x0 = 1

2nG
1
n is the minimum

point of P (x), we consider two subcases: x′0 ≤ x < x0 and x ≥ x0.

If x′0 ≤ x < x0, from Lemma 3.3 and (3.17), we get P (x) ≤ P (x′0) = −(n−
1)G

2
n < 0 and d2ϖ

ds2
> 0, this implies that dϖ(s)

ds is a strictly monotone increasing
function of s and thus it has at most one zero point for s ∈ (−∞,+∞). If
dϖ(s)
ds has no zero point in (−∞,+∞), then ϖ(s) is a monotone function of s

in (−∞,+∞). If dϖ(s)
ds has exactly one zero point s0 in (−∞,+∞), then ϖ(s)

is a monotone function of s in both (−∞, s0] and [s0,+∞).

On the other hand, from Lemma 3.2, we know that ϖ(s) is bounded.
Since ϖ(s) is bounded and monotonic when s tends to infinity, we know that
both lims→−∞ϖ(s) and lims→+∞ϖ(s) exist and then we get

(3.18) lim
s→−∞

dϖ(s)

ds
= lim

s→+∞

dϖ(s)

ds
= 0,

this is impossible because dϖ(s)
ds is a strictly monotone increasing function of s.

Therefore, the subcase x′0 ≤ x < x0 does not occur, it follows that x ≥ x0.

If x ≥ x0, from Lemma 3.3 and (3.17), we obtain that |A|2(x) ≥ |A|2(x2)
holds if and only if x ≥ x2, if and only if P (x) ≥ P (x2) = 0 and if and only if
d2ϖ
ds2

≤ 0. Thus, dϖ
ds is a monotonic decreasing function of s ∈ (−∞,+∞), this

implies that dϖ(s)
ds has at most one zero point for s ∈ (−∞,+∞). By the same
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arguments as in above, we know that (3.18) holds. From the monotonicity of
dϖ(s)
ds , we have dϖ(s)

ds ≡ 0 and ϖ(s) = constant. Combining ϖ = e−
1
n
G− 1

n λ

and (3.3), we conclude that λ and λ′ are constant, that is, Mn is isoparamet-
ric. From the classical result of Segre [8], we know that Mn is isometric to

Sn−1(a)×R1, a = 1
nG

− 1
n .

Case (ii). If x < x′0, we consider two subcases: x < 0 and 0 ≤ x < x′0.

If x < 0, since 0 < x′0 < x0, from Lemma 3.3 and (3.17), we get P (x) >

P (0) = 0 and d2ϖ
ds2

< 0, this implies that dϖ(s)
ds is a strictly monotone decreasing

function of s. By the same arguments as in case (i), we get (3.18) holds, this

is impossible because dϖ(s)
ds is a strictly monotone decreasing function of s.

Therefore, we know that the subcase x < 0 does not occur, it follows that
0 ≤ x < x′0.

If 0 ≤ x < x′0, from Lemma 3.3, we get |A|2(x) ≤ |A|2(0) = n2G
2
n , this

contradicts the assumption |A|2 ≥ (n− 1)n2G
2
n , thus, the subcase 0 ≤ x < x′0

also does not occur.

(ii) If |A|2 ≤ n2(n − 1)G
2
n , that is, |A|2(x) ≤ |A|2(x2), we also consider

two cases: x ≥ x′0 and x < x′0.

Case (i). If x ≥ x′0, since x
′
0 < x0, we consider two subcases: x′0 ≤ x < x0

and x0 ≤ x,.

If x′0 ≤ x < x0, by the same arguments as in case (i) of (i), we easily see
that the subcase x′0 ≤ x < x0 does not occur, it follows that x0 ≤ x.

If x0 ≤ x, since x′0 < x0, from Lemma 3.3 and (3.17), we obtain that
|A|2(x) ≤ |A|2(x2) holds if and only if x ≤ x2, if and only if P (x) ≤ P (x2) = 0

and if and only if d2ϖ
ds2

≥ 0. By the same arguments as in case (i) of (i) and

from Segre [8], we know that Mn is isometric to Sn−1(a)×R1, a = 1
n(

1
G)

1
n .

Case (ii). If x < x′0, we consider two subcases: x < 0 and 0 ≤ x < x′0.

If x < 0, by the same arguments as in case (ii) of (i), we see that this
does not occur, it follows that 0 ≤ x < x′0.

If 0 ≤ x < x′0, from Lemma 3.3 and (3.17), we get |A|2(x) ≤ |A|2(0) =
n2G

2
n , P (x) ≤ P (0) = 0 and d2ϖ

ds2
≥ 0. By the same arguments as in case

(i) of (i) and from Segre [8], we see that Mn is isometric to S1(a)×Rn−1,

a = − 1
n(

1
G)

1
n and |A|2 = n2G

2
n . Since a > 0, this implies G < 0 and n is

an odd number, contradicts the assumption G > 0. Therefore, the subcase
0 ≤ x < x′0 does not occur.

(2) For c = 1 and Kq ≤ −( 1
n−1)

n−2
2 , that is, G ≥ ( 1

n−1)
n
2 ,

(i) if |A|2 ≥ δ+(n,G), that is, |A|2(x) ≥ |A|2(x2), where x2 = 1
2(nG

1
n +√

n2G
2
n − 4), we consider two cases: x ≥ x′0 and x < x′0.
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Case (i). If x ≥ x′0, since x
′
0 < x0, we consider two subcases: x′0 ≤ x < x0

and x ≥ x0.

If x′0 ≤ x < x0, by the same arguments as in (i) of (1), we see that
x′0 ≤ x < x0 does not occur, it follows that x ≥ x0.

If x ≥ x0, from Lemma 3.3 and (3.17), we obtain that |A|2(x) ≥ |A|2(x2)
holds if and only if x ≥ x2, if and only if P (x) ≥ P (x2) = 0 and if and only if
d2ϖ
ds2

≤ 0. By the same arguments as in (i) of (1) and from Cartan [2], we know

that Mn is isometric to Sn−1(a)× S1(
√
1− a2), where a2 = b(n,G)+.

Case (ii). If x < x′0, we consider two subcases: x < 0 and 0 ≤ x < x′0.

If x < 0, the same arguments as in (i) of (1) implies x < 0 does not occur,
it follows that 0 ≤ x < x′0.

If 0 ≤ x < x′0, since G
2
n ≥ 1

n−1(>
4
n2 ), we see that x1 ≤ x′0, where

x1 =
1
2(nG

1
n −

√
n2G

2
n − 4). Thus, we may consider two subcases: 0 ≤ x < x1

and x1 ≤ x ≤ x′0.

If 0 ≤ x < x1, since x1 ≤ x′0 < x0, by the same arguments as in (i) of (1),
we see that 0 ≤ x < x1 does not occur, it follows that x1 ≤ x ≤ x′0.

If x1 ≤ x ≤ x′0, from Lemma 3.3, we get |A|2(x) ≤ |A|2(x1) = δ−(n,G),

this contradicts the assumption |A|2 ≥ δ+(n,G), since G
2
n ≥ 1

n−1 implies
δ−(n,G) < δ+(n,G). Thus, the subcase x1 ≤ x ≤ x′0 also does not occur.

(ii) If |A|2 ≤ δ+(n,G), that is, |A|2(x) ≤ |A|2(x2), we also consider two
cases: x ≥ x′0 and x < x′0.

Case (i). If x ≥ x′0, since x
′
0 < x0, we consider two subcases: x′0 ≤ x < x0

and x0 ≤ x,.

If x′0 ≤ x < x0, the same arguments as in (i) of (1) implies x′0 ≤ x < x0
does not occur, it follows that x0 ≤ x.

If x0 ≤ x, since x′0 < x0, from Lemma 3.3 and (3.17), we obtain that
|A|2(x) ≤ |A|2(x2) holds if and only if x ≤ x2, if and only if P (x) ≤ P (x2) = 0

and if and only if d2ϖ
ds2

≥ 0. By the same arguments as in (i) of (1) and

from Cartan [2], we see that Mn is isometric to Sn−1(a)×S1(
√
1− a2), where

a2 = b(n,G)+.

Case (ii). If x < x′0, we consider two subcases: x < 0 and 0 ≤ x < x′0.

If x < 0, we easily see that this does not occur, it follows that 0 ≤ x < x′0.

If 0 ≤ x < x′0, since x1 ≤ x′0, we may also consider two subcases: 0 ≤ x <
x1 and x1 ≤ x < x′0.

If 0 ≤ x < x1, we easily see that this does not occur, it follows that
x1 ≤ x < x′0.

If x1 ≤ x < x′0, since x′0 < x0, from Lemma 3.3 and (3.17), we get

|A|2(x) ≤ |A|2(x1) = δ−(n,G), P (x) ≤ P (x1) = 0 and d2ϖ
ds2

≥ 0. By the same
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arguments as in (i) of (1) and from Cartan [2], we know that Mn is isometric
to Sn−1(a)× S1(

√
1− a2), a2 = b(n,G)−.

(iii) If |A|2 ≥ δ−(n,G), that is, |A|2(x) ≥ |A|2(x1), where x1 = 1
2(nG

1
n −√

n2G
2
n − 4), we consider two subcases: x < x′0 and x ≥ x′0.

Case (i). If x < x′0, we consider two subcases: x < 0 and 0 ≤ x < x′0.

If x < 0, we easily see that this does not occur, it follows that 0 ≤ x < x′0.

If 0 ≤ x < x′0, since x
′
0 < x0, from Lemma 3.3 and (3.17), we obtain that

|A|2(x) ≥ |A|2(x1) holds if and only if x ≤ x1, if and only if P (x) ≥ P (x1) = 0

and if and only if d2ϖ
ds2

≤ 0. By the same arguments as in (i) of (1) and

from Cartan [2], we see that Mn is isometric to Sn−1(a)×S1(
√
1− a2), where

a2 = b(n,G)−.

Case (ii). If x ≥ x′0, we consider two subcases: x′0 ≤ x < x0 and x ≥ x0.

If x′0 ≤ x < x0, we easily see that this does not occur, it follows that
x ≥ x0.

If x ≥ x0, since x0 < x2, we also consider two subcases: x0 ≤ x < x2 and
x ≥ x2.

If x0 ≤ x < x2, we easily see that this does not occur, it follows that
x ≥ x2.

If x ≥ x2, since x ≥ x2 > x0 > x′0, from Lemma 3.3 and (3.17), we see

that |A|2(x) ≥ |A|2(x2) = δ+(n,G), P (x) ≥ P (x2) = 0 and d2ϖ
ds2

≤ 0. By
the same arguments as in (i) of (1) and from Cartan [2], we know that Mn is
isometric to Sn−1(a)× S1(

√
1− a2), a2 = b(n,G)+.

(iv) If |A|2 ≤ δ−(n,G), that is, |A|2(x) ≤ |A|2(x1), we consider two
subcases: x < x′0 and x ≥ x′0.

Case (i). If x < x′0, we consider two subcases: x < 0 and 0 ≤ x < x′0.

If x < 0, we easily see that this does not occur, it follows that 0 ≤ x < x′0.

If 0 ≤ x < x′0, since x1 ≤ x′0, we may consider two subcases: 0 ≤ x < x1
and x1 ≤ x ≤ x′0.

If 0 ≤ x < x1, we easily see that this does not occur, it follows that
x1 ≤ x ≤ x′0.

If x1 ≤ x ≤ x′0, from Lemma 3.3 and (3.17), we get |A|2 ≤ δ−(n,G)
holds if and only if x ≥ x1, if and only if P (x) ≤ P (x1) = 0 and if and only if
d2ϖ
ds2

≥ 0. By the same arguments as in (i) of (1) and from Cartan [2], we see

that Mn is isometric to Sn−1(a)× S1(
√
1− a2), where a2 = b(n,G)−.

Case (ii). If x ≥ x′0, we consider two subcases: x′0 ≤ x < x0 and x ≥ x0.

If x′0 ≤ x < x0, we easily see that this does not occur, it follows that
x ≥ x0.

If x ≥ x0, since x0 < x2, we also consider two subcases: x0 ≤ x < x2 and
x ≥ x2.
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If x0 ≤ x < x2, we easily see that this does not occur, it follows that
x ≥ x2.

If x ≥ x2, since x ≥ x2 > x0 > x′0, from Lemma 3.3, we see that |A|2(x) ≥
|A|2(x2) = δ+(n,G), this contradicts the assumption |A|2 ≤ δ−(n,G), thus, the
subcase x ≥ x2 does not occur.

(3) For c = −1 and G > 0,

(i) if |A|2 ≥ ϵ+(n,G), that is, |A|2(x) ≥ |A|2(x2), where x2 = 1
2(nG

1
n +√

n2G
2
n + 4), we consider two cases: x ≥ x′0 and x < x′0.

Case (i). If x ≥ x′0, since x
′
0 < x0, we consider two subcases: x′0 ≤ x < x0

and x ≥ x0.

If x′0 ≤ x < x0, we easily see that this does not occur, it follows that
x ≥ x0.

If x ≥ x0, from Lemma 3.3 and (3.17), we get |A|2(x) ≥ |A|2(x2) holds if
and only if x ≥ x2, if and only if P (x) ≥ P (x2) = 0 and if and only if d2ϖ

ds2
≤ 0.

By the same arguments as in (i) of (1) and from Cartan [1], we see that Mn is
isometric to Sn−1(a)×H1(−

√
1 + a2), where a2 = c(n,G)+.

Case (ii). If x < x′0, we consider two subcases: x ≤ 0 and 0 < x < x′0.

If x ≤ 0, since x1 = 1
2(nG

1
n −

√
n2G

2
n + 4) < 0, we also consider two

subcases: x < x1 and x1 ≤ x ≤ 0.

If x < x1, we easily see that this does not occur, it follows that x1 ≤ x ≤ 0.

If x1 ≤ x ≤ 0, since G > 0, we see that x1 < x′0 < x0. Thus, from Lemma

3.3, we see that |A|2(x) ≤ |A|2(x1) = ϵ−(n,G), where ϵ−(n,G) = n
2G

1
n

[
n2G

1
n −

(n − 2)
√
n2G2/n + 4

]
+ n. This contradicts the assumption |A|2 ≥ ϵ+(n,G),

thus x1 ≤ x < 0 does not occur.

If 0 < x < x′0, by the same arguments as in (i) of (1), we also easily see
that this does not occur.

(ii) If |A|2 ≤ ϵ+(n,G), that is, |A|2(x) ≤ |A|2(x2), we also consider two
cases: x ≥ x′0 and x < x′0.

Case (i). If x ≥ x′0, since x
′
0 < x0, we consider two subcases: x′0 ≤ x < x0

and x0 ≤ x,.

If x′0 ≤ x < x0, we easily see that this does not occur, it follows that
x0 ≤ x.

If x0 ≤ x, since x′0 < x0, from Lemma 3.3 and (3.17), we obtain that
|A|2(x) ≤ |A|2(x2) holds if and only if x ≤ x2, if and only if P (x) ≤ P (x2) = 0

and if and only if d2ϖ
ds2

≥ 0. By the same arguments as in (i) of (1) and from

Cartan [1], we know that Mn is isometric to Sn−1(a)×H1(−
√
1 + a2), where

a2 = c(n,G)+.

Case (ii). If x < x′0, we consider two subcases: x ≤ 0 and 0 < x < x′0.
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If x ≤ 0, we also consider two subcases: x < x1 and x1 ≤ x ≤ 0.

If x < x1, we easily see that this does not occur, it follows that x1 ≤ x ≤ 0.

If x1 ≤ x ≤ 0, from Lemma 3.3 and (3.17), we see that |A|2(x) ≤
|A|2(x1) = ϵ−(n,G), P (x) ≤ P (x1) = 0 and d2ϖ

ds2
≥ 0. By the same argu-

ments as in (i) of (1) and from Cartan [1], we see that Mn is isometric to

Sn−1(a) × H1(−
√
1 + a2), a2 = −1

2 −
√

n2G2/n+4

2nG1/n and |A|2 = ϵ−(n,G). Since

a2 > 0, this implies G < 0 and n is an odd number, it contradicts the assump-
tion G > 0. Thus x1 ≤ x ≤ 0 does not occur, it follows that 0 < x < x′0.

If 0 < x < x′0, we easily see that this does not occur.

(II) If G < 0 and n is an odd number, in this case, we notice that x0 <

x′0 < 0, x1 =
1
2(nG

1
n −

√
n2G

2
n − 4c) < 0, x2 =

1
2(nG

1
n +

√
n2G

2
n − 4c) = 0 if

c = 0, x2 < 0 if c = 1 and x2 > 0 if c = −1. Combining Lemma 3.3 and (3.17),
we see that the rest of the proof of (II) suffices to use the same method as in
the proof of (I).

Theorem 1.2 is proved.

Proof of Theorem 1.3. Similar to the proof of Theorem 1.2, we may con-
sider two cases: G > 0 or G < 0 and n is an odd number.

(I) If G > 0, putting x = λ, from (3.3), we see that the mean curvature

H = (n− 1)λ+ (λ− nG
1
n ) = nλ− nG

1
n = H(x).

(1) For c = 0 and G > 0,

(i) If H ≥ (n − 1)nG
1
n , that is, H(x) ≥ H(x2), where x2 = nG

1
n , we

consider two cases: x ≥ x0 and x < x0, where x0 = 1
2nG

1
n is the minimum

point of P (x).

Case (i). If x ≥ x0, since x0 < x2, from Lemma 3.3 and (3.17), we obtain
that H(x) ≥ H(x2) holds if and only if x ≥ x2, if and only if P (x) ≥ P (x2) = 0

and if and only if d2ϖ
ds2

≤ 0. By the same arguments as in the proof of (I) in

Theorem 1.2, we know that Mn is isometric to Sn−1(a)×R1, a = 1
nG

− 1
n .

Case (ii). If x < x0, since x1 < x0, where x1 = 0, we consider two
subcases: x ≤ x1 and x1 < x < x0.

If x ≤ x1, from Lemma 3.3, we get H(x) ≤ H(x1) = −nG
1
n < 0, this

contradicts the assumption H ≥ (n− 1)nG
1
n . Thus, x ≤ x1 does not occur, it

follows that x1 < x < x0.

If x1 < x < x0, from Lemma 3.3 and (3.17), we have P (x) < P (x1) = 0

and d2ϖ
ds2

> 0, by the same arguments as in the proof of (I) in Theorem 1.2, we
know that x1 < x < x0 also does not occur.
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(ii) If H ≤ (n − 1)nG
1
n , that is, H(x) ≤ H(x2), we consider two cases:

x ≥ x0 and x < x0.

Case (i). If x ≥ x0, from Lemma 3.3 and (3.17), we obtain that H(x) ≤
H(x2) holds if and only if x ≤ x2, if and only if P (x) ≤ P (x2) = 0 and if and

only if d2ϖ
ds2

≥ 0. By the same arguments as in the proof of Theorem 1.2, we

see that Mn is isometric to Sn−1(a)×R1, a = 1
nG

− 1
n .

Case (ii). If x < x0, we consider two subcases: x ≤ x1 and x1 < x < x0.

If x ≤ x1, from Lemma 3.3 and (3.17), we get H(x) ≤ H(x1) = −nG
1
n ,

P (x) ≥ P (x1) = 0 and d2ϖ
ds2

≤ 0. By the same arguments as in the proof of

Theorem 1.2, we know that Mn is isometric to S1(a)×Rn−1, a = − 1
nG

− 1
n .

Since a > 0, this implies G < 0 and n is an odd number, it contradicts the
assumption G > 0, thus x ≤ x1 does not occur, it follows x1 < x < x0.

If x1 < x < x0, we easily see that this also does not occur.

(2) For c = 1 and G ≥ ( 1
n−1)

n
2 ,

(i) if H ≥ α+(n,G), that is, H(x) ≥ H(x2), where x2 = 1
2(nG

1
n +√

n2G
2
n − 4), we consider two cases: x ≥ x0 and x < x0.

Case (i). If x ≥ x0, since x0 < x2, from Lemma 3.3 and (3.17), we obtain
that H(x) ≥ H(x2) holds if and only if x ≥ x2, if and only if P (x) ≥ P (x2) = 0

and if and only if d2ϖ
ds2

≤ 0. By the same arguments as in the proof of Theorem

1.2, we see thatMn is isometric to Sn−1(a)×S1(
√
1− a2), where a2 = b(n,G)−.

Case (ii). If x < x0, since x1 < x0, where x1 = 1
2(nG

1
n −

√
n2G

2
n − 4),

we consider two subcases: x ≤ x1 and x1 < x < x0.

If x ≤ x1, from Lemma 3.3, we get H(x) ≤ H(x1) = α−(n,G), this
contradicts the assumption H ≥ α+(n,G). Thus, x ≤ x1 does not occur, it
follows that x1 < x < x0.

If x1 < x < x0, we easily see that this also does not occur.

(ii) If H ≤ α+(n,G), that is, H(x) ≤ H(x2), we consider two cases:
x ≥ x0 and x < x0.

Case (i). If x ≥ x0, from Lemma 3.3 and (3.17), we obtain that H(x) ≤
H(x2) holds if and only if x ≤ x2, if and only if P (x) ≤ P (x2) = 0 and if and

only if d2ϖ
ds2

≥ 0. By the same arguments as in the proof of Theorem 1.2, we

know that Mn is isometric to Sn−1(a)× S1(
√
1− a2), where a2 = b(n,G)−.

Case (ii). If x < x0, we consider two subcases: x ≤ x1 and x1 < x < x0.

If x ≤ x1, from Lemma 3.3 and (3.17), we get H(x) ≤ H(x1) = α−(n,G),

P (x) ≥ P (x1) = 0 and d2ϖ
ds2

≤ 0. By the same arguments as in the proof of

Theorem 1.2, we know that Mn is isometric to Sn−1(a)× S1(
√
1− a2), where

a2 = b(n,G)+.
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If x1 < x < x0, we easily see that this also does not occur.

(iii) if H ≥ α−(n,G), that is, H(x) ≥ H(x1), we consider two cases:
x ≥ x0 and x < x0.

Case (i). If x ≥ x0, since x0 < x2, we consider two subcases: x0 ≤ x < x2
and x ≥ x2.

If x0 ≤ x < x2, we easily see that this does not occur, it follows that
x ≥ x2.

If x ≥ x2, from Lemma 3.3 and (3.17), we get H(x) ≥ H(x2), P (x) ≥
P (x2) = 0 and d2ϖ

ds2
≤ 0. By the same arguments as in the proof Theorem 1.2,

we know that Mn is isometric to Sn−1(a)×S1(
√
1− a2), where a2 = b(n,G)−.

Case (ii). If x < x0, since x1 < x0, we consider two subcases: x < x1 and
x1 ≤ x < x0.

If x < x1, we easily see that this does not occur, it follows that x1 ≤ x <
x0.

If x1 ≤ x < x0, from Lemma 3.3 and (3.17), we obtain thatH(x) ≥ H(x1)
holds if and only if x ≥ x1, if and only if P (x) ≤ P (x1) = 0 and if and only if
d2ϖ
ds2

≥ 0. By the same arguments as in the proof of Theorem 1.2, we see that

Mn is isometric to Sn−1(a)× S1(
√
1− a2), where a2 = b(n,G)+.

(iv) If H ≤ α−(n,G), that is, H(x) ≤ H(x1), we consider two cases:
x ≥ x0 and x < x0.

Case (i). If x ≥ x0, we consider two subcases: x0 ≤ x < x2 and x ≥ x2.

If x0 ≤ x < x2, we easily see that this does not occur, it follows that
x ≥ x2.

If x ≥ x2, from Lemma 3.3, we get H(x) ≥ H(x2) = α+(n,G), this
contradicts the assumption H ≤ α−(n,G), thus x ≥ x2 does not occur.

Case (ii). If x < x0, we consider two subcases: x ≤ x1 and x1 < x < x0.

If x ≤ x1, from Lemma 3.3 and (3.17), we get H(x) ≤ H(x1) holds if and

only if x ≤ x1, if and only if P (x) ≥ P (x1) = 0 and if and only if d2ϖ
ds2

≤ 0.
By the same arguments as in the proof of Theorem 1.2, we see that Mn is
isometric to Sn−1(a)× S1(

√
1− a2), where a2 = b(n,G)+.

If x1 < x < x0, we easily see that this does not occur.

(3) For c = −1 and G > 0,

(i) if H ≥ β+(n,G), that is, H(x) ≥ H(x2), where x2 = 1
2(nG

1
n +√

n2G
2
n + 4), we consider two cases: x ≥ x0 and x < x0.

Case (i). If x ≥ x0, since x0 < x2, from Lemma 3.3 and (3.17), we obtain
that H(x) ≥ H(x2) holds if and only if x ≥ x2, if and only if P (x) ≥ P (x2) = 0

and if and only if d2ϖ
ds2

≤ 0. By the same arguments as in the proof of Theorem

1.2, we know that Mn is isometric to Sn−1(a) × H1(−
√
1 + a2), where a2 =
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c(n,G)+.

Case (ii). If x < x0, since x1 < x0, where x1 = 1
2(nG

1
n −

√
n2G

2
n + 4),

we consider two subcases: x ≤ x1 and x1 < x < x0.
If x ≤ x1, from Lemma 3.3, we get H(x) ≤ H(x1) = β−(n,G), where

β−(n,G) = 1
2

[
(n− 2)G

1
n −

√
n2G

2
n + 4

]
, this contradicts the assumption H ≥

β+(n,G). Thus, x ≤ x1 does not occur, it follows that x1 < x < x0.
If x1 < x < x0, we easily see that this does not occur.
(ii) If H ≤ β+(n,G), that is, H(x) ≤ H(x2), we consider two cases:

x ≥ x0 and x < x0.
Case (i). If x ≥ x0, from Lemma 3.3 and (3.17), we obtain that H(x) ≤

H(x2) holds if and only if x ≤ x2 if and only if P (x) ≤ P (x2) = 0 and if and

only if d2ϖ
ds2

≥ 0. By the same arguments as in the proof of Theorem 1.2, we

see that Mn is isometric to Sn−1(a)×H1(−
√
1 + a2), where a2 = c(n,G)+.

Case (ii). If x < x0, we consider two subcases: x ≤ x1 and x1 < x < x0.
If x ≤ x1, from Lemma 3.3 and (3.17), we get H(x) ≤ H(x1) = β−(n,G),

P (x) ≥ P (x1) = 0 and d2ϖ
ds2

≤ 0. By the same arguments as in the proof of

Theorem 1.2, we see that Mn is isometric to Sn−1(a)×H1(−
√
1 + a2), where

a2 = −1
2 −

√
n2G2/n+4

2nG1/n and H = β−(n,G). Since a2 > 0, this implies G < 0
and n is an odd number, it contradicts the assumption G > 0, thus x ≤ x1
does not occur.

If x1 < x < x0, we easily see that this does not occur.

(II) If G < 0 and n is an odd number, it suffices to use the same method
as in the proof of (I) in Theorem 1.3.

Theorem 1.3 is proved.
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