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Let R be a Noetherian ring and I be an ideal of R. Let M be a finitely generated
R-module with cd(I,M) = t ≥ 0 and assume that L is the largest submodule of
M such that cd(I, L) < cd(I,M). It is shown that AnnR Ht

I(M) = AnnR M/L
in each of the following cases: (i) dimM/IM ≤ 1. (ii) dimR/I ≤ 1. (iii)
The R-module Hi

I(M) is Artinian for each i ≥ 2. (iv) The R-module Hi
I(R)

is Artinian for each i ≥ 2. (v) cd(I,M) ≤ 1. (vi) cd(I, R) ≤ 1. (vii) The R-
module Ht

I(M) is Artinian and I-cofinite. These assertions answer affirmatively
a question raised by Atazadeh et al. in [2], in some special cases.
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1. INTRODUCTION

Throughout this paper, let R denote a commutative Noetherian ring
(with identity) and I an ideal of R. The local cohomology modules H i

I(M),
i = 0, 1, 2, . . . , of an R-module M with respect to I were introduced by
Grothendieck [13]. They arise as the derived functors of the left exact functor
ΓI(−), where for an R-module M , ΓI(M) is the submodule of M consisting of
all elements annihilated by some power of I, i.e.,

⋃∞
n=1(0 :M In). There is a

natural isomorphism:

H i
I(M) ∼= lim−→

n≥1

ExtiR(R/In,M).

We refer the reader to [13] or [10] for more details about local cohomology.

The problem of finding annihilators of local cohomology modules have
been studied by several authors; see, for example, [2, 4, 5, 7, 8, 15, 16, 17, 20,
21].
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Recall that, for an R-module M , the cohomological dimension of M with
respect to I is defined as

cd(I,M) := sup{i ∈ Z : H i
I(M) ̸= 0}.

In [8] it is shown that if (R,m) is a complete Noetherian local ring and M
is a finitely generated R-module then AnnR HdimM

m (M) = AnnR M/TR(M),
where TR(M) is the largest submodule of M such that dimTR(M) < dimM .
This result was later extended to non-complete Noetherian local rings by the
present author in [4]. Also, for an ideal I in an arbitrary Noetherian ring R
(not necessarily local), in [2] Atazadeh et al. defined the submodule TR(I,M)
of M as the largest submodule of M such that cd(I, TR(I,M)) < cd(I,M).
They observed that, in general there is an isomorphism of R-modules

H
cd(I,M)
I (M) ≃ H

cd(I,M)
I (M/TR(I,M)).

Then, as a generalization of the main result of [8], they proved that if
cd(I,M) = dimM < ∞, then AnnR HdimM

I (M) = AnnR M/TR(I,M).

Furthermore, in the same paper they asked about the similar result in
general. In this paper, we prepare some partially affirmative answers for this
question. More precisely, we prove the following result:

Theorem 1. Let R be a Noetherian ring and I be an ideal of R. Let
M be a non-zero finitely generated R-module with cd(I,M) = t ≥ 0. Then
AnnR Ht

I(M) = AnnR M/TR(I,M) in each of the following cases:

(i) dimM/IM ≤ 1.

(ii) dimR/I ≤ 1.

(iii) The R-module H i
I(M) is Artinian for each i ≥ 2.

(iv) The R-module H i
I(R) is Artinian for each i ≥ 2.

(v) cd(I,M) ≤ 1.

(vi) cd(I,R) ≤ 1.

(vii) The R-module Ht
I(M) is Artinian and I-cofinite.

Our main tools in the proof of Theorem 1 is the following theorem.

Theorem 2. Let R be a Noetherian ring and let I be an ideal of R. Let
M be a non-zero finitely generated R-module such that cd(I,M) = t ≥ 0 and
the R-module HomR(R/I,Ht

I(M/N)) is finitely generated, for each submodule
N of M . Then

AnnR(H
t
I(M)) = AnnR M/TR(I,M).

For each R-module L, we denote by mAssR L the set of minimal elements
of AssR L with respect to inclusion. Also, in this paper for any Noetherian
local ring (R,m) and any R-module M , ER(M) denotes the injective envelope
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of M and D(−) denotes the Matlis duality functor HomR(−, ER(R/m)). In
addition, for any ideal I of R, DI(−) denotes the I-transform functor

DI(−) = lim−→
n≥1

HomR(I
n,−).

For any prime ideal p of R and any positive integer n we denote the nth

symbolic power of p by p(n). Also, for any ideal I of R, we denote the set
SuppR/I = {p ∈ SpecR : p ⊇ I} by V (I). Furthermore, for any ideal I of R,
the radical of I, denoted by Rad(I), is defined to be the set {x ∈ R : xn ∈ I
for some n ∈ N}. Finally, for any finitely generated R-module M , the notion
fI(M), the finiteness dimension of M relative to I, is defined to be the least
integer i such that H i

I(M) is not finitely generated, if there exist such i’s and
∞ otherwise, i.e.

fI(M) := inf{i ∈ N0 : H i
I(M) is not finitely generated}.

For any unexplained notation and terminology, we refer the reader to [18]
or [10].

2. THE RESULTS

Recall that following [14], for a given ideal I of a Noetherian ring R,
an arbitrary R-module M is said to be I-cofinite, if SuppM ⊆ V (I) and the
R-module ExtiR(R/I,M) is finitely generated for each integer i ≥ 0. For any
R-module N , the second author of the present paper defined q̃(I,N) as the
greatest integer i such that H i

I(N) is not an Artinian I-cofinite module if there
exist such i’s and −∞ otherwise (see [6, Definition 2.4]).

Let R be a Noetherian ring and C (R) denote the category of all R-
modules and R-homomorphisms. We say that a functor T : C (R) −→ C (R)
is additive if T (g + h) = T (g) + T (h), for each pair of homomorphisms of
R-modules g : M −→ N and h : M −→ N . Also, we say that T is R-
linear precisely when it is additive and T (rf) = rT (f) for all r ∈ R and all
homomorphisms f of R-modules. The following theorem, which is needed in
the proofs of Lemmata 2.2 and 2.5, is a generalization of [5, Lemma 2.3].

Theorem 2.1. Let (R,m) be a Noetherian complete local ring and I be
an ideal of R. Let M be a non-zero finitely generated R-module such that
cd(I,M) = t ≥ 0 and q̃(I,M) < cd(I,M). Then

AttR Ht
I(M) = {q ∈ mAssR M : dimR/ q = t and Rad(I + q) = m}.

Proof. Let Ψ := {q ∈ mAssR M : dimR/ q = t and Rad(I + q) = m}
and let q ∈ AttHt

I(M). Then, it follows from the definition of the attached
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prime ideal that AnnR Ht
I(M)/ qHt

I(M) = q and hence Ht
I(M)/ qHt

I(M) ̸= 0.
Assume that a ∈ AnnR M . Since by [10, Theorem 1.2.2(ii)], for each i ≥ 0, the
functor H i

I(−) is R-linear, one sees that

aIdHi
I(M) = aH i

I(IdM ) = H i
I(aIdM ) = H i

I(0) = 0,

where “Id” denotes the identity map. Therefore, a ∈ AnnR H i
I(M) and hence

AnnR M ⊆ AnnR H i
I(M).

Now, since

AnnR M ⊆ AnnR Ht
I(M) ⊆ AnnR Ht

I(M)/ qHt
I(M) = q,

it follows that q ∈ SuppM and hence SuppR/ q = SuppM/ qM ⊆ SuppM .
So, using the fact that SuppR/AnnR M = SuppM , by [12, Theorem 2.2] one
has

cd(I,R/AnnR M) = cd(I,M) = t,
and

cd(I,R/ q) = cd(I,M/ qM) ≤ cd(I,M) = t.

Now, it follows from [10, Exercise 6.1.9] and Independence Theorem that

Ht
I(M/ qM) ≃ Ht

(I+AnnR M)/AnnR M (R/AnnR M ⊗R M/ qM)

≃ Ht
(I+AnnR M)/AnnR M (R/AnnR M)⊗R M/ qM

≃ Ht
(I+AnnR M)/AnnR M (R/AnnR M)⊗R

(
M ⊗R R/ q

)
≃

(
Ht

(I+AnnR M)/AnnR M (R/AnnR M)⊗R M
)
⊗R R/ q

≃ Ht
(I+AnnR M)/AnnR M (M)⊗R R/ q

≃ Ht
I(M)⊗R R/ q

≃ Ht
I(M)/ qHt

I(M) ̸= 0.

Therefore, cd(I,M/ qM) ≥ t, which implies that

cd(I,R/ q) = cd(I,M/ qM) = t.

Moreover, by [6, Theorem 2.6 and Lemma 5.1] the R-module

Ht
I(R/ q) ≃ Ht

(I+q)/ q(R/ q)

is Artinian and (I + q)/ q-cofinite. Hence, [5, Lemma 2.3] implies that

AttR Ht
I(R/ q) = {q}, dimR/ q = t and Rad(I + q) = m .

In view of [6, Theorem 2.6], the R-module Ht
I(R/AnnR M) is Artinian and

I-cofinite. Also, the exact sequence

0 −→ q /AnnR M −→ R/AnnR M −→ R/ q −→ 0,
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induces an exact sequence

Ht
I(R/AnnR M) −→ Ht

I(R/ q) −→ Ht+1
I (q /AnnR M).

But, Ht+1
I (q /AnnR M) = 0 by [12, Theorem 2.2]. So, we get the exact se-

quence
Ht

I(R/AnnR M) −→ Ht
I(R/ q) −→ 0,

which using [5, Lemma 2.3] implies that

q ∈ AttR Ht
I(R/AnnR M) ⊆ mAssR R/AnnR M = mAssR M.

Thus, q ∈ Ψ. Hence, AttR Ht
I(M) ⊆ Ψ.

Now, let q ∈ Ψ. Then, SuppM/ qM = V (q) and so dimM/ qM = t.
Therefore, using the Independence Theorem we have

Ht
I(M/ qM) ≃ Ht

(I+q)/ q(M/ qM) = Ht
m / q(M/ qM) ≃ Ht

m(M/ qM)

and hence, [10, Theorem 7.3.2] implies that

AttR Ht
I(M/ qM) = AttR Ht

m(M/ qM) = {q}.
Also, the exact sequence

0 −→ qM −→ M −→ M/ qM −→ 0

induces the exact sequence

Ht
I(M) −→ Ht

I(M/ qM) −→ Ht+1
I (qM).

But, in view of [12, Theorem 2.2], we have Ht+1
I (qM) = 0. Hence, we get the

exact sequence
Ht

I(M) −→ Ht
I(M/ qM) −→ 0,

which yields that

{q} = AttR Ht
I(M/ qM) ⊆ AttR Ht

I(M).

Therefore, q ∈ AttR Ht
I(M). So, we have Ψ ⊆ AttR Ht

I(M).

Let R be a Noetherian ring, I be an ideal of R and M be a non-zero
finitely generated R-module with cd(I,M) ≥ 0. Following [2], the submodule
TR(I,M) of M is defined as:

TR(I,M) := ∪{N : N ≤ M and cd(I,N) < cd(I,M)}.
The following consequence of Theorem 2.1 will be useful in the proof of

Lemma 2.6.

Lemma 2.2. Let (R,m) be a Noetherian complete local ring and I be
an ideal of R. Let M be a non-zero finitely generated R-module such that
cd(I,M) = t ≥ 0 and q̃(I,M) < cd(I,M). Set

A := AttR Ht
I(M)= {q1, ..., qn} and B := AssR M \AttR Ht

I(M)= {p1, ..., pk}.
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Let

0 =

(
n⋂

i=1

Ki

)⋂ k⋂
j=1

Lj


be a minimal primary decomposition of the zero submodule of M , where Ki is
qi-primary for each 1 ≤ i ≤ n and Lj is pj-primary for each 1 ≤ j ≤ k. Then
the following statements hold:

i)
⋂n

i=1Ki = TR(I,M).

ii) AnnR Ht
I(M) = AnnR M/TR(I,M).

Proof. (i) Set K :=
⋂n

i=1Ki and L :=
⋂k

j=1 Lj . Then we have K ∩L = 0
and so there is an exact sequence 0 −→ K −→ M/L. In particular, we have

Supp(K) ⊆ Supp(M/L) ⊆ SuppM

and therefore, it follows from [12, Theorem 2.2] and [6, Theorem 2.6] that

cd(I,K) ≤ cd(I,M/L) ≤ cd(I,M) = t

and
q̃(I,M/L) ≤ q̃(I,M) < cd(I,M) = t.

We claim that cd(I,M/L) < t. Assume the opposite. Then we have
cd(I,M/L) = t and so it follows from Theorem 2.1 that

∅ ≠ AttR Ht
I(M/L) = {q ∈ mAssR M/L : dimR/ q = t and Rad(I+q) = m}.

Let q ∈ AttR Ht
I(M/L). Then

q ∈ mAssR M/L ⊆ AssR M/L = B = AssR M \AttR Ht
I(M).

Then we claim q ∈ mAssR M . Assume the opposite. Then there is an element
q1 ∈ mAssR M such that q1 ⊂ q. Since q is a minimal element of B and
AssR M = A ∪B it follows that q1 ∈ A = AttR Ht

I(M). Then by Theorem 2.1
we have

dimR/ q1 = t = dimR/ q,
which is a contradiction. So, q ∈ mAssR M and hence, by Theorem 2.1 we have
q ∈ A = AttR Ht

I(M). Therefore, q ∈
(
A ∩B

)
= ∅, which is a contradiction.

So,
cd(I,K) ≤ cd(I,M/L) < t.

Therefore, by the definition we have K ⊆ TR(I,M). On the other hand, using
the fact that AssR M/K = A it follows that for any non-zero submodule U of
M/K we have ∅ ̸= AssR U ⊆ A. Therefore, there exists q ∈ AssR U such that
q ∈ A. Applying the method used in the proof of Theorem 2.1, it is easy to
see that cd(I,R/ q) = t. So, as

SuppR/ q ⊆ SuppU ⊆ SuppM



7 Annihilators of top local cohomology modules 139

it follows from [12, Theorem 2.2] that cd(I, U) = t. On the other hand, for the
submodule TR(I,M)/K of M/K by [12, Theorem 2.2], one has

cd(I, TR(I,M)/K) ≤ cd(I, TR(I,M)) < t

and so TR(I,M)/K = 0. Thus, TR(I,M) = K =
⋂n

i=1Ki.

(ii) Let K denote the same R-module as in the proof of (i). The exact
sequence

0 −→ K −→ M −→ M/K −→ 0
yields the isomorphism Ht

I(M) ≃ Ht
I(M/K). Also, using the fact that

AssR M/K = A,

it follows from Theorem 2.1 that M/K is a non-zero finitely generated R-
module of dimension t such that Rad(I +AnnR M/K) = m. Hence, using the
Grothendieck’s Non-vanishing Theorem and Independence Theorem we have

Ht
I(M/K) ≃ Ht

(I+AnnR M/K)/AnnR M/K(M/K)

= Ht
m /AnnR M/K(M/K)

≃ Ht
m(M/K).

Now, it follows from [8, Theorem 2.6] that

AnnR Ht
I(M/K) = AnnR Ht

m(M/K) = AnnR M/K = AnnR M/TR(I,M).

The following easy lemma is needed in the proofs of Lemma 2.4 and
Theorem 2.8.

Lemma 2.3. Let R be a Noetherian local ring and M be a non-zero finitely
generated R-module. If AnnR M = J , then AnnT M ⊗R T = JT , for any flat
R-algebra T .

Proof. By the hypothesis M is a finitely generated R-module and so there
are elements x1, ..., xn ∈ M such that M = Rx1 + · · · + Rxn. We define
f : R −→

⊕n
i=1M by f(r) = (rx1, ..., rxn). Then it is easy to see that

kerf = AnnR M = J . Whence, we get an exact sequence

0 −→ R/J −→
n⊕

i=1

M.

Effecting the exact functor − ⊗R T to this exact sequence we get the exact
sequence

0 −→ T/JT −→
n⊕

i=1

M ⊗R T,
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which implies that

AnnT M ⊗R T ⊆ AnnT T/JT = JT ⊆ AnnT M ⊗R T

and so AnnT M ⊗R T = JT.

The following lemma plays a key role in the proof of Lemma 2.5.

Lemma 2.4. Let (R,m) be a Noetherian local ring and M be a non-zero
finitely generated R-module. If Q ∈ mAss

R̂
M⊗R R̂, then (Q∩R) ∈ mAssR M ,

where R̂ denotes the m-adic completion of R.

Proof. Set J := AnnR M . Since, R̂ is a flat R-algebra, it follows from
Lemma 2.3 that Ann

R̂
M⊗RR̂ =JR̂. From the hypothesisQ ∈ mAss

R̂
M⊗RR̂.

It follows that Q ∈ mAss
R̂
R̂/JR̂ and hence, J ⊆ Q∩R. Therefore, we have

(Q∩R) ∈ SuppM . Now, in order to prove the lemma, assume the opposite
and set q = Q∩R. Then there exists q1 ∈ mAssR M such that q1 ⊂ q. Since
R̂/JR̂ is a flat R/J-algebra it follows from [18, Theorem 9.5] that the going-
down theorem holds between R/J and R̂/JR̂. So, there exists a prime ideal
P /JR̂ of R̂/JR̂ such that P ⊂ Q and P∩R = q1, which is a contradiction
because, by the hypothesis, we have Q ∈ mAss

R̂
R̂/JR̂.

The following lemma is crucial for us in the proofs of Theorems 2.10 and
2.11.

Lemma 2.5. Let (R,m) be a Noetherian local ring and I be an ideal of R.
Let M be a non-zero finitely generated R-module such that cd(I,M) = t ≥ 0
and q̃(I,M) < cd(I,M). Then

AttR Ht
I(M) = {q ∈ mAssR M : cd(I,R/ q) = t}.

In particular, AnnR Ht
I(M) ⊆

⋃
p∈mAssR M p.

Proof. Let q be an arbitrary element of AttR Ht
I(M). Then by [10, Ex-

ercise 8.2.4]

Ht
I(M) ≃ Ht

I(M)⊗R R̂ ≃ Ht
IR̂

(M ⊗R R̂)

has an R̂-module structure. Therefore, it follows from [10, Exercise 8.2.5] that
Q ∩ R = q, for some Q ∈ Att

R̂
Ht

IR̂
(M ⊗R R̂). Since R̂ is a faithfully flat R-

algebra, it follows that cd(IR̂,M ⊗R R̂) = t and the R̂-module Ht
IR̂

(M ⊗R R̂)

is Artinian and IR̂-cofinite. So, it follows from Theorem 2.1 that

Att
R̂
Ht

I(M) ⊆ mAss
R̂
M ⊗R R̂.
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Hence, Q ∈ mAss
R̂
M ⊗R R̂ and so, by Lemma 2.4 one has q ∈ mAssR M .

Also, by the method used in the proof of Theorem 2.1 we have cd(I,R/ q) = t.
Therefore,

AttR Ht
I(M) ⊆ {q ∈ mAssR M : cd(I,R/ q) = t}.

On the other hand, let q be an arbitrary element of the set

{q ∈ mAssR M : cd(I,R/ q) = t}.

Then by [6, Theorem 2.6] and [12, Theorem 2.2] we have

q̃(I,M/ qM) < cd(I,M/ qM) = cd(I,R/ q) = t.

So, by the first part of the proof, we have

∅ ≠ AttR Ht
I(M/ qM) ⊆ mAssR M/ qM = {q},

which implies that AttR Ht
I(M/ qM) = {q}. The exact sequence

0 −→ qM −→ M −→ M/ qM −→ 0

induces the exact sequence

Ht
I(M) −→ Ht

I(M/ qM) −→ Ht+1
I (qM).

But [12, Theorem 2.2], implies that Ht+1
I (qM) = 0. Hence, we get the exact

sequence

Ht
I(M) −→ Ht

I(M/ qM) −→ 0,

which yields that

{q} = AttR Ht
I(M/ qM) ⊆ AttR Ht

I(M)

and hence q ∈ AttR Ht
I(M). Therefore,

{q ∈ mAssR M : cd(I,R/ q) = t} ⊆ AttR Ht
I(M).

Now, we are ready to deduce that

AttR Ht
I(M) = {q ∈ mAssR M : cd(I,R/ q) = t}.

Finally, it is clear that

AnnR Ht
I(M) ⊆

 ⋂
q∈AttR Ht

I(M)

q

 ⊆

 ⋃
p∈mAssR M

p

 .

The proof of the following result is quite similar to the proof of [1, The-
orem 3.5].
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Lemma 2.6. Let (R,m) be a Noetherian local ring and I be an ideal of R.
Let M be a non-zero finitely generated R-module such that cd(I,M) = t ≥ 0
and q̃(I,M) < cd(I,M). Then

AnnR Ht
I(M) = AnnR M/TR(I,M).

Proof. The exact sequence

0 −→ TR(I,M) −→ M −→ M/TR(I,M) −→ 0

yields the isomorphism Ht
I(M) ≃ Ht

I(M/TR(I,M)).
So, we may assume that TR(I,M)=0. Now, as AnnR M ⊆ AnnR Ht

I(M),
it is enough to show that AnnR Ht

I(M) ⊆ AnnR M .

To this end, let x ∈ AnnR Ht
I(M) and we show that xM = 0. Suppose the

contrary, that xM ̸= 0. Then, as TR(I,M) = 0, it follows that cd(I, xM) = t.

Hence cd(IR̂, xM̂) = t, and so xHt
IR̂

(M̂) ̸= 0. Because, if xHt
IR̂

(M̂) = 0, then

xR̂ ⊆Ann
R̂
Ht

IR̂
(M̂). Hence, in view of Lemma 2.2, xR̂ ⊆Ann

R̂
M̂/T

R̂
(IR̂, M̂),

and so xM̂ ⊆ T
R̂
(IR̂, M̂). Therefore, cd(IR̂, xM̂) < t, which is a contradiction.

Consequently, xHt
IR̂

(M̂) ̸= 0 and hence x(Ht
I(M) ⊗R R̂) ̸= 0. Therefore,

x ̸∈ AnnR Ht
I(M), which is a contradiction.

The next easy lemma is needed in the proofs of Theorems 2.8 and 2.11.

Lemma 2.7. Let (R,m) be a Noetherian local ring and I be an ideal of R.
Let M be a non-zero finitely generated R-module such that cd(I,M) = t ≥ 0.
Assume that SuppHt

I(M) ⊆ {m} and the R-module HomR(R/I,Ht
I(M)) is

finitely generated. Then the R-module Ht
I(M) is Artinian and I-cofinite and

hence q̃(I,M) < cd(I,M).

Proof. Since, by the hypothesis, we have SuppHt
I(M) ⊆ {m} it follows

that SuppHomR(R/I,Ht
I(M)) ⊆ {m}.

Hence, the finitely generated R-module HomR(R/I,Ht
I(M)) is of finite length.

So, in view of [19, Proposition 4.1] the R-module Ht
I(M) is Artinian and I-

cofinite. Now the remainder part of the assertion is clear.

The following result plays a key role in the proof of our first main result,
Theorem 2.9.

Theorem 2.8. Let R be a Noetherian ring and let I be an ideal of R. Let
M be a non-zero finitely generated R-module such that cd(I,M) = t ≥ 0 and
the R-module HomR(R/I,Ht

I(M/N)) is finitely generated, for each submodule
N of M . Then

AnnR(H
t
I(M)) = AnnR M/TR(I,M).
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Proof. By the proof of Lemma 2.5, we may assume that TR(I,M) = 0
and with this assumption our aim is to show that AnnR Ht

I(M) = AnnR M.
To this end, as AnnR M ⊆ AnnR Ht

I(M), it is enough for us to prove that
AnnR/AnnR M Ht

I(M) = 0. So, it is enough for us to show that

AnnR/AnnR M Ht
(I+AnnR M)/AnnR M (M) = 0.

Replacing R by R/AnnR M and replacing I by (I +AnnR M)/AnnR M ,
we may assume that M is a faithful R-module such that TR(I,M) = 0,
cd(I,M) = t and the R-module HomR(R/I,Ht

I(M/N)) is finitely generated,
for each submodule N of M . Let AssR M = {q1, ..., qn} and assume that
0 =

⋂n
i=1Ki is a minimal primary decomposition of the zero submodule of M ,

where Ki is a qi-primary submodule of M for each 1 ≤ i ≤ n.
Henceforth, in order to prove the relation AnnR Ht

I(M) = 0, our main
strategy is to show AnnR Ht

I(M) ⊆ AnnR M/Ki, for each 1 ≤ i ≤ n. Assume
that 1 ≤ i ≤ n and set K := Ki and q := qi. Since, q ∈ AssR M/K ∩ AssR M
and TR(I,M) = 0 it follows from [12, Theorem 2.2] that

t = cd(I,R/ q) ≤ cd(I,M/K) ≤ cd(I,M) = t

and hence, cd(I,M/K) = t. The exact sequence

0 −→ K −→ M −→ M/K −→ 0

induces the exact sequence

Ht
I(M) −→ Ht

I(M/K) −→ Ht+1
I (K).

But, in view of [12, Theorem 2.2], we have Ht+1
I (K) = 0. Hence, we have the

following exact sequence

Ht
I(M) −→ Ht

I(M/K) −→ 0,

which yields that
AnnR Ht

I(M) ⊆ AnnR Ht
I(M/K).

By the hypothesis, the R-module HomR(R/I,Ht
I(M/K)) is finitely gen-

erated and so by Lemma 2.7, for each p ∈ mAssR Ht
I(M/K), the Rp-module

Ht
IRp

((M/K)p) is Artinian and IRp-cofinite.
On the other hand, using the fact that the set AssR M/K has exactly one

element, it is straightforward to see that TRp(IRp, (M/K)p) = 0. So, it follows
from Lemma 2.6, that

AnnRp H
t
IRp

((M/K)p) = AnnRp(M/K)p,

which using the fact that Rp is a flat R-algebra, Lemma 2.2, implies that

(AnnR Ht
I(M))Rp ⊆ AnnRp H

t
IRp

((M/K)p)
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= AnnRp(M/K)p

= (AnnR M/K)Rp.

Set J := AnnR Ht
I(M) and Q := AnnR M/K. Then,(

(J +Q)/Q
)
p
≃ (JRp +QRp)/QRp = 0

and hence

p ̸∈ Supp (J +Q)/Q = V (AnnR(J +Q)/Q).

Therefore, there exists an element

s ∈
(
AnnR (J +Q)/Q

)
\ p .

So, sJ ⊆ Q and s ̸∈ p. But,

p ∈ mAssR Ht
I(M/K) ⊆ V (AnnR Ht

I(M/K)) ⊆ V (AnnR M/K) = V (q).

So, s ̸∈ q and sJ ⊆ Q. By the proof of Lemma 2.2, for some integer n ≥ 1,
there exists an exact sequence

0 −→ R/Q −→
n⊕

i=1

M/K,

which implies that AssR R/Q = {q} and hence Q is a q-primary ideal of R.
Now, since s ̸∈ q and sJ ⊆ Q, it follows that

AnnR Ht
I(M) = J ⊆ Q = AnnR M/K.

So, we have

J = AnnHt
I(M) ⊆

n⋂
i=1

AnnR M/Ki = AnnR

n⊕
i=1

M/Ki.

Furthermore, since by the hypothesis
⋂n

i=1Ki = 0, we have an exact
sequence

0 −→ M −→
n⊕

i=1

M/Ki,

which implies that AnnR
⊕n

i=1M/Ki ⊆ AnnR M = 0. Therefore,

J = AnnHt
I(M) = 0.

Let R be a Noetherian ring, I be an ideal of R and let N be an R-module.
Recall that q(I,N) is defined as the greatest integer i such that H i

I(N) is not
an Artinian module if there exist such i’s and −∞ otherwise.

Now, we are ready to state and prove the first main result of this paper.
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Theorem 2.9. Let R be a Noetherian ring and I be an ideal of R. Let
M be a non-zero finitely generated R-module with cd(I,M) = t ≥ 0. Then,
AnnR Ht

I(M) = AnnR M/TR(I,M) in each of the following cases:

i) dimM/IM ≤ 1.

ii) dimR/I ≤ 1.

iii) q(I,M) ≤ 1.

iv) q(I,R) ≤ 1.

v) cd(I,M) ≤ 1, (see [3, Corollary 2.16] for the local case).

vi) cd(I,R) ≤ 1.

vii) q̃(I,M) < cd(I,M).

Proof. (i) Let N be an arbitrary submodule of M and set K := M/N .
Then, SuppK/IK ⊆ SuppM/IM and hence dimK/IK ≤ dimM/IM ≤
1. So, by [9, Corollary 2.7] the R-module Ht

I(K) = Ht
I(M/N) is I-cofinite.

Therefore, the R-module HomR(R/I,Ht
I(M/N)) is finitely generated, for each

submodule N of M . Hence, the assertion follows from Theorem 2.8.

(ii) Follows from (i).

(iii) Let N be an arbitrary submodule of M and set K := M/N . Then,
SuppK ⊆ SuppM and hence in view of [11, Theorem 3.2], there is an inequality
q(I,K) ≤ q(I,M) ≤ 1 and hence by [6, Theorem 4.9] the R-module Ht

I(K) =
Ht

I(M/N) is I-cofinite. So, the R-module HomR(R/I,Ht
I(M/N)) is finitely

generated, for each submodule N of M . Hence, the assertion follows from
Theorem 2.8.

(iv) In view of [6, Theorem 2.6], it follows from the hypothesis q(I,R) ≤ 1
that q(I,M) ≤ 1 and hence the assertion follows from (iii).

(v) Using the inequalities q(I,M) ≤ cd(I,M) ≤ 1, the assertion follows
from (iii).

(vi) Applying [12, Theorem 2.2], the assertion follows from (v).

(vii) Let N be an arbitrary submodule of M and set K := M/N . Then,
SuppK ⊆ SuppM and hence in view of [6, Theorem 2.6], the R-module
Ht

I(K) = Ht
I(M/N) is Artinian and I-cofinite. Thus, the R-module

HomR(R/I,Ht
I(M/N))

is finitely generated, for each submodule N of M . So, the assertion follows
from Theorem 2.8.



146 I. Bagheriyeh, K. Bahmanpour, and G. Ghasemi 14

The following theorem is the second main result of this paper.

Theorem 2.10. Let R be a Noetherian ring and let I be an ideal of R.
Let M be a non-zero finitely generated R-module such that cd(I,M) = t ≥ 0
and q̃(I,M) < cd(I,M). Then

AttR Ht
I(M) = {q ∈ mAssR M : cd(I,R/ q) = t}.

In particular, AnnR Ht
I(M) ⊆

⋃
p∈mAssR M p.

Proof. By the definition of q̃(I,M), the non-zero R-module Ht
I(M) is

Artinian and I-cofinite. So the R-module Ht
I(M) has finite support contained

in Max(R). Assume that

SuppHt
I(M) = {n1, ..., nk}.

Set Lj := Γnj (H
t
I(M)) for j = 1, . . . , k and put L′

j =
∑

i∈({1,...,k}\{j}) Li for

j = 1, . . . , k. Then it is clear that SuppLj∩L′
j ⊆ {nj}∩({n1, ..., nk}\{nj}) = ∅,

for each 1 ≤ j ≤ k. Therefore, Lj ∩ L′
j = 0, for each 1 ≤ j ≤ k. Hence,∑k

j=1 Lj ≃
⊕k

j=1 Lj . Also, for each 1 ≤ j ≤ k one has

nj ̸∈ AssR Ht
I(M)/Lj = SuppHt

I(M)/Lj ,

which means that SuppHt
I(M)/(

∑k
j=1 Lj) = ∅ and hence Ht

I(M) =
∑k

j=1 Lj .
So, there is an isomorphism

Ht
I(M) ≃

k⊕
j=1

Lj .

Furthermore, one sees that for each 1 ≤ j ≤ k,

Ht
IRnj

(Mnj ) ≃ (Ht
I(M))nj ≃

 k∑
j=1

Lj


nj

≃ (Lj)nj ≃ Lj .

Consequently, there is an isomorphism

Ht
I(M) ≃

k⊕
j=1

Ht
IRnj

(Mnj ).

Moreover, it is clear that for each 1 ≤ j ≤ k the Rnj -module Ht
IRnj

(Mnj ) is

Artinian and IRnj -cofinite. So, for each 1 ≤ j ≤ k we have q̃(IRnj ,Mnj ) <
cd(IRnj ,Mnj ) = t. Now, since

AttR Ht
I(M) =

k⋃
j=1

AttR Ht
IRnj

(Mnj )
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and

AttR Ht
IRnj

(Mnj ) = {p ∈ SpecR : pRnj ∈ AttRnj
Ht

IRnj
(Mnj )},

the assertion follows from Lemma 2.5.

Theorem 2.11. Let R be a Noetherian ring and I be an ideal of R.
Let M be a non-zero finitely generated R-module such that cd(I,M) = t
and the R-module HomR(R/I,Ht

I(M)) is finitely generated. Then for each
p ∈ mAssR Ht

I(M), the Rp-module Ht
IRp

(Mp) is Artinian and IRp-cofinite and

AttRp H
t
IRp

(Mp) ⊆ mAssRp Mp. In particular, we have

AnnR Ht
I(M) ⊆

⋃
p∈mAssR M

p .

Proof. The assertion follows from Lemma 2.5 and Lemma 2.7, using the
localization.

Theorem 2.12. Let R be a Noetherian ring and I be an ideal of R with
cd(I,R) = t ≥ 0. Assume that there exists a non-zero finitely generated R-
module M such that cd(I,M) = cd(I,R) and q̃(I,M) < cd(I,M). Then
AnnR Ht

I(R) ⊆
⋃

p∈mAssR R p.

Proof. Set T :=
⊕

p∈mAssR M R/ p. Then T is a finitely generated R-
module with SuppT = SuppM . So, using [12, Theorem 2.2] we can deduce
that cd(I, T ) = cd(I,M) = t. But we have

cd(I, T ) = max{cd(I,R/ p) : p ∈ mAssR M}.

So, there exists an element q ∈ mAssR M such that cd(I,R/ q) = cd(I,R) = t.
Furthermore, since SuppR/ q ⊆ SuppM it follows from [6, Theorem 2.6] that

q̃(I,R/ q) ≤ q̃(I,M) < cd(I,M) = t = cd(I,R/ q).

Since q is a prime ideal of R, it contains a minimal prime ideal of R. So, there
exists q1 ∈ mAssR R such that q1 ⊆ q. The exact sequence

0 −→ q1 −→ R −→ R/ q1 −→ 0

induces the exact sequence

Ht
I(R) −→ Ht

I(R/ q1) −→ Ht+1
I (q1).

But, in view of [12, Theorem 2.2], we have Ht+1
I (q1) = 0. Hence we have the

following exact sequence

Ht
I(R) −→ Ht

I(R/ q1) −→ 0,
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which yields that AnnR Ht
I(R) ⊆ AnnR Ht

I(R/ q1). So, it is enough to prove
AnnR Ht

I(R/ q1) = q1. Since

SuppR/ q ⊆ SuppR/ q1 ⊆ SpecR = SuppR,

it follows from [12, Theorem 2.2] that

cd(I,R) = cd(I,R/ q) ≤ cd(I,R/ q1) ≤ cd(I,R)

and hence cd(I,R/ q1) = cd(I,R) = t. So, using Independence Theorem and
replacing R by R/ q1, without loss of generality we may assume that R is a
domain, I is an ideal of R and q is a prime ideal with

q̃(I,R/ q) < cd(I,R/ q) = cd(I,R) = t.

Then it is enough to prove that AnnR Ht
I(R) = 0. Since for each integer n ≥ 1

we have SuppR/ q(n) = SuppR/ q it follows from [6, Theorem 2.6] and [12,
Theorem 2.2] that

q̃(I,R/ q(n)) = q̃(I,R/ q) < cd(I,R/ q) = cd(I,R/ q(n)) = t.

Whence, by Theorem 2.9(iii), for each integer n ≥ 1 we have

AnnR Ht
I(R/ q(n)) = q(n) .

On the other hand, the exact sequence

0 −→ q(n) −→ R −→ R/ q(n) −→ 0

induces the following exact sequence

Ht
I(R) −→ Ht

I(R/ q(n)) −→ Ht+1
I (q(n)).

But, in view of [12, Theorem 2.2], we have

Ht+1
I (q(n)) = 0.

Hence, we have the following exact sequence

Ht
I(R) −→ Ht

I(R/ q(n)) −→ 0,

which implies that

AnnR Ht
I(R) ⊆ AnnHt

I(R/ q(n)) = q(n) .

So, we have

AnnR Ht
I(R) ⊆

∞⋂
n=1

q(n) .

Let φ : R −→ Rq be the natural homomorphism. Then, since for each
positive integer n by the definition we have q(n) = φ−1(qnRq) and by Krull’s
Intersection Theorem we have

⋂∞
n=1 q

nRq = 0 it follows that φ(
⋂∞

n=1 q
(n)) = 0.

So, as the ideal J :=
⋂∞

n=1 q
(n) is finitely generated, it is straightforward and

so left to reader, that sJ = 0 for some element s ∈ (R \ q). As R is a domain
it follows that J = 0. Hence, AnnR Ht

I(R) = 0. This completes the proof.
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The following lemma will be useful in the proof of Theorem 2.14.

Lemma 2.13. Let R be a Noetherian ring and I be an ideal of R. Assume
that M is a non-zero finitely generated R-module such that fI(M) = 1. Then

AnnR H1
I (M) ⊆

⋃
p∈(AssR M\V (I))

p .

Proof. Assume the opposite. Then there is an element x ∈ AnnR H1
I (M)

such that

x ̸∈

 ⋃
p∈(AssR M\V (I))

p


and so

x ̸∈

 ⋃
p∈AssR M/ΓI(M)

p

 .

By [10, Remark 2.2.7], there is an exact sequence

0 −→ M/ΓI(M) −→ DI(M) −→ H1
I (M) −→ 0,

which using the Snake Lemma induces an exact sequence

(0 :DI(M) x) −→ (0 :H1
I (M) x) −→ M/(xM + ΓI(M)).

In view of [7, Lemma 3.7], we have AssR DI(M) = AssR M/ΓI(M) and hence
it follows from the hypothesis that

x ̸∈

 ⋃
p∈AssR DI(M)

p

 .

So, we have (0 :DI(M) x) = 0 and (0 :H1
I (M) x) = H1

I (M). Hence from the last
exact sequence we get the following exact sequence

0 −→ H1
I (M) −→ M/(xM + ΓI(M)),

that means the R-module H1
I (M) is finitely generated. This is a contradiction,

because fI(M) = 1.

Theorem 2.14. Let R be a Noetherian ring and I be an ideal of R.
Assume that M is a non-zero finitely generated R-module with cd(I,M) ≥ 1.
Then fI(M) = 1 if and only if AnnR H1

I (M) ⊆
⋃

p∈(AssR M\V (I)) p.
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Proof. By Lemma 2.13 it is enough to prove that if

AnnR H1
I (M) ⊆

⋃
p∈(AssR M\V (I))

p

then fI(M) = 1. Assume that AnnR H1
I (M) ⊆

⋃
p∈(AssR M\V (I)) p and that

fI(M) ̸= 1. Then as cd(I,M) ≥ 1 we can conclude that fI(M) ≥ 2. So, the
I-torsion R-module H1

I (M) is finitely generated. Hence, there exists a positive
integer n such that InH1

I (M) = 0 and so that

In ⊆ AnnR H1
I (M) ⊆

⋃
p∈(AssR M\V (I))

p .

Therefore, there is an element p ∈
(
AssR M \ V (I)

)
such that I ⊆ p, which is

a contradiction.
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