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Let R be a Noetherian ring and I be an ideal of R. Let M be a finitely generated
R-module with cd(I, M) =t > 0 and assume that L is the largest submodule of
M such that ed(I, L) < cd(I, M). Tt is shown that Anng H}(M) = Anng M/L
in each of the following cases: (i) dimM/IM < 1. (ii) dimR/I < 1. (iii)
The R-module H}(M) is Artinian for each ¢ > 2. (iv) The R-module H}(R)
is Artinian for each i > 2. (v) ¢cd({,M) < 1. (vi) cd(I,R) < 1. (vii) The R-
module H}(M) is Artinian and I-cofinite. These assertions answer affirmatively
a question raised by Atazadeh et al. in [2], in some special cases.
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1. INTRODUCTION

Throughout this paper, let R denote a commutative Noetherian ring
(with identity) and I an ideal of R. The local cohomology modules H(M),
i = 0,1,2,..., of an R-module M with respect to I were introduced by
Grothendieck [13]. They arise as the derived functors of the left exact functor
I';1(—), where for an R-module M, I';(M) is the submodule of M consisting of
all elements annihilated by some power of I, i.e., [J;2;(0 :ps I™). There is a
natural isomorphism:

H}(M) = limp Extp(R/I", M).

n>1
We refer the reader to [I3] or [10] for more details about local cohomology.

The problem of finding annihilators of local cohomology modules have
been studied by several authors; see, for example, [2, [, B [7, 8, [15] 16, 17, 20]
21].
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Recall that, for an R-module M, the cohomological dimension of M with
respect to I is defined as

cd(I, M) :=sup{i € Z: Hi(M) # 0}.

In [§] it is shown that if (R, m) is a complete Noetherian local ring and M
is a finitely generated R-module then Anng HI™M (M) = Anng M/Tr(M),
where Tr(M) is the largest submodule of M such that dim Tr(M) < dim M.
This result was later extended to non-complete Noetherian local rings by the
present author in [4]. Also, for an ideal I in an arbitrary Noetherian ring R
(not necessarily local), in [2] Atazadeh et al. defined the submodule T (I, M)
of M as the largest submodule of M such that cd(I,Tr(I,M)) < cd(I,M).
They observed that, in general there is an isomorphism of R-modules

H M () ~ B M (M Tr(1, M)).

Then, as a generalization of the main result of [§], they proved that if
cd(I, M) = dim M < oo, then Anng HE™M (M) = Anng M/Tr(I, M).

Furthermore, in the same paper they asked about the similar result in
general. In this paper, we prepare some partially affirmative answers for this
question. More precisely, we prove the following result:

THEOREM 1. Let R be a Noetherian ring and I be an ideal of R. Let
M be a non-zero finitely generated R-module with cd(I,M) =t > 0. Then
Anng H{(M) = Anng M/Tg(I, M) in each of the following cases:

(i) dim M/IM < 1.

(i) dim R/T < 1.

(iii) The R-module H}(M) is Artinian for each i > 2.

(iv) The R-module Hi(R) is Artinian for each i > 2.

(v) ed(I,M) < 1.

(vi) cd(I,R) < 1.
(vii) The R-module H4(M) is Artinian and I-cofinite.

Our main tools in the proof of Theorem 1 is the following theorem.

THEOREM 2. Let R be a Noetherian ring and let I be an ideal of R. Let
M be a non-zero finitely generated R-module such that cd(I, M) =1t > 0 and
the R-module Homgr(R/I, H{(M/N)) is finitely generated, for each submodule
N of M. Then
Anng(HY(M)) = Anng M/TRr(I, M).

For each R-module L, we denote by mAssg L the set of minimal elements
of Assg L with respect to inclusion. Also, in this paper for any Noetherian
local ring (R, m) and any R-module M, Er(M) denotes the injective envelope
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of M and D(—) denotes the Matlis duality functor Hompg(—, Egr(R/m)). In
addition, for any ideal I of R, D;(—) denotes the I-transform functor
Di(—) = lim Hompg(I™, —).
(=) g r(I",—)

For any prime ideal p of R and any positive integer n we denote the nt*
symbolic power of p by p(™. Also, for any ideal I of R, we denote the set
Supp R/I = {p € SpecR : p D I} by V(I). Furthermore, for any ideal I of R,
the radical of I, denoted by Rad([), is defined to be the set {x € R : 2™ € I
for some n € N}. Finally, for any finitely generated R-module M, the notion
fr(M), the finiteness dimension of M relative to I, is defined to be the least
integer ¢ such that H}(M ) is not finitely generated, if there exist such i’s and
oo otherwise, i.e.

fr(M) :=inf{i € Ny : H{(M) is not finitely generated}.

For any unexplained notation and terminology, we refer the reader to [1§]
or [10].

2. THE RESULTS

Recall that following [14], for a given ideal I of a Noetherian ring R,
an arbitrary R-module M is said to be I-cofinite, if Supp M C V(I) and the
R-module Ext(R/I, M) is finitely generated for each integer i > 0. For any
R-module N, the second author of the present paper defined ¢(I, N) as the
greatest integer i such that H:(NN) is not an Artinian I-cofinite module if there
exist such i’s and —oo otherwise (see [6, Definition 2.4]).

Let R be a Noetherian ring and % (R) denote the category of all R-
modules and R-homomorphisms. We say that a functor 7' : €(R) — €(R)
is additive if T(g + h) = T(g) + T'(h), for each pair of homomorphisms of
R-modules g : M — N and h : M — N. Also, we say that T is R-
linear precisely when it is additive and T'(rf) = rT'(f) for all r € R and all
homomorphisms f of R-modules. The following theorem, which is needed in
the proofs of Lemmata 2.2 and 2.5, is a generalization of [5, Lemma 2.3].

THEOREM 2.1. Let (R, m) be a Noetherian complete local ring and I be

an ideal of R. Let M be a non-zero finitely generated R-module such that
cd(I,M)=1t>0 and q(I,M) < cd(I,M). Then

Attp HY(M) = {qg € mAssp M : dimR/q =t and Rad(I +q) = m}.

Proof. Let ¥ := {q € mAssp M : dimR/q =t and Rad(I + q) = m}
and let q € Att H{(M). Then, it follows from the definition of the attached
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prime ideal that Anng Ht(M)/qHY(M) = q and hence HY(M)/q HE(M) # 0.
Assume that a € Anng M. Since by [10, Theorem 1.2.2(ii)], for each ¢ > 0, the
functor Hi(—) is R-linear, one sees that

aldgiap) = aHi(Idys) = Hi(aldps) = HE(0) = 0,
where “Id” denotes the identity map. Therefore, a € Anng H}(M ) and hence
Anngp M C Anng HE(M).
Now, since
Anng M C Anng Hy(M) C Anng Hy(M)/ q Hy (M) = q,
it follows that q € Supp M and hence Supp R/ q = Supp M/ qM C Supp M.
So, using the fact that Supp R/ Anng M = Supp M, by [12, Theorem 2.2] one
has
cd(I,R/ Anangp M) = cd(I, M) = t,
and
cd(I,R/q) =cd(I,M/qM) <cd(I,M) =t.
Now, it follows from [10, Exercise 6.1.9] and Independence Theorem that
H;(M/qM) = H€I+AnnRM)/AnnRM(R/AnnRM @R M/qM)
~  H{ry Anng 1)/ Anmp s (R/ Anng M) ©p M/ q M
~  H{ry Anng M)/ Annp m(R/ Anng M) @p (M ©p R/q)
= <H€I+AnnRM)/AnnRM(R/ Anng M) ®r M) ®r R/q
= H€I+AnnR M)/AnnRM(M) @R R/ q
~ Hi(M)®grR/q
~ HY(M)/ q HY(M) #0.
Therefore, cd(I, M/ q M) > t, which implies that
cd(I,R/q) =cd(I,M/qM) =t.
Moreover, by [0, Theorem 2.6 and Lemma 5.1] the R-module
Hi(R/q) =~ Hqu)/q(R/ q)
is Artinian and (I + q)/ g-cofinite. Hence, [0, Lemma 2.3] implies that
Attp HY(R/q) = {q}, dimR/q =t and Rad(I +q) =m.

In view of [6, Theorem 2.6], the R-module H}(R/Anng M) is Artinian and
I-cofinite. Also, the exact sequence

0—q/Aang M — R/Anng M — R/q — 0,
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induces an exact sequence
Hi(R/Anng M) — HY(R/q) — H(q/ Anng M).

But, H}H(q/AnnR M) = 0 by [12, Theorem 2.2]. So, we get the exact se-
quence

HY(R/Anngp M) — HY(R/q) — 0,
which using [5, Lemma 2.3] implies that

q € Attg Hi(R/ Anng M) C mAssg R/ Anngp M = mAssg M.
Thus, q € ¥. Hence, Attg H{(M) C .

Now, let q € . Then, SuppM/qM = V(q) and so dimM/qM = t.
Therefore, using the Independence Theorem we have

Hy(M/qM) =~ H g (M/aM)=Hy, (M/qM) ~ Hy(M/qM)
and hence, [10, Theorem 7.3.2] implies that
Attp HI(M/q M) = Attg Hy (M/q M) = {q}.
Also, the exact sequence
0—qM—M—M/qM — 0
induces the exact sequence
Hj(M) — Hy(M/qM) — H{™ (g M).

But, in view of [I2, Theorem 2.2], we have Hf“(q M) = 0. Hence, we get the

exact sequence
Hi(M) — Hj(M/qM) — 0,
which yields that

{a} = Attg H(M/q M) C Attg Hi(M).
Therefore, q € Attg Hi(M). So, we have ¥ C Attg Hi(M). O
Let R be a Noetherian ring, I be an ideal of R and M be a non-zero

finitely generated R-module with cd(I, M) > 0. Following [2], the submodule
Tr(I, M) of M is defined as:

Tr(I,M):=U{N : N <M and cd(I, N) < cd(I, M)}.

The following consequence of Theorem 2.1 will be useful in the proof of
Lemma 2.6.

LEMMA 2.2. Let (R,m) be a Noetherian complete local ring and I be

an ideal of R. Let M be a non-zero finitely generated R-module such that
cd(I,M)=1t>0 and q(I,M) < cd(I,M). Set

A= Attg Hi(M)={qq,...,q,,} and B := Assp M \ Attg Hi(M)= {py, ..., px}-
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n k
o= (A=)n (N s
i=1 j=1
be a minimal primary decomposition of the zero submodule of M, where K; is

q;-primary for each 1 < i < n and Lj is p;-primary for each 1 < j < k. Then
the following statements hold:

i) Niey K =Tr(I,M).
ii) Anng HY(M) = Anung M/Tr(I, M).

Proof. (i) Set K = (){_; K; and L := (\{_; L;. Then we have K N L =0
and so there is an exact sequence 0 — K — M/L. In particular, we have

Supp(K) € Supp(M/L) C Supp M
and therefore, it follows from [I2, Theorem 2.2] and [0, Theorem 2.6] that
cd(I,K) <cd(I,M/L) <cd(I,M) =t

and
G(I, M/L) < (I, M) < cd(I, M) = t.
We claim that cd(I, M/L) < t. Assume the opposite. Then we have
cd(I,M/L) =t and so it follows from Theorem 2.1 that

0 # Attgp HY(M/L) = {q € mAssg M/L : dimR/q =t and Rad(I+q) = m}.
Let q € Attg Hi(M/L). Then
q € mAssg M/L C Assg M/L =B = Assg M \ Attg Hi(M).

Then we claim q € mAssg M. Assume the opposite. Then there is an element
q; € mAssg M such that q; C q. Since q is a minimal element of B and
Assp M = AU B it follows that q; € A = Attg Hi(M). Then by Theorem 2.1
we have

dimR/q; =t =dim R/ q,
which is a contradiction. So, q € mAssg M and hence, by Theorem 2.1 we have
q € A = Attg Hi{(M). Therefore, q € (AN B) = 0, which is a contradiction.
So,

cd(I,K) <cd(I,M/L) < t.
Therefore, by the definition we have K C Tr(I, M). On the other hand, using
the fact that Assp M/K = 2 it follows that for any non-zero submodule U of
M/K we have () # Assp U C 2L. Therefore, there exists q € Assp U such that
q € 2. Applying the method used in the proof of Theorem 2.1, it is easy to
see that cd(I, R/ q) =t. So, as

Supp R/ q € SuppU € Supp M
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it follows from [12, Theorem 2.2] that cd(/,U) = t. On the other hand, for the
submodule Tr(I, M)/K of M/K by [12, Theorem 2.2], one has
cd(I, Tp(I, M)/K) < cd(I, Tr(I, M)) < t
and so Tr(I,M)/K = 0. Thus, Tr(I,M) = K =\, K;.
(ii) Let K denote the same R-module as in the proof of (i). The exact
sequence

0—K—M—M/K—0
yields the isomorphism H4(M) ~ HY(M/K). Also, using the fact that

Assp M/K =,
it follows from Theorem 2.1 that M/K is a non-zero finitely generated R-
module of dimension ¢ such that Rad(I + Anng M/K) = m. Hence, using the
Grothendieck’s Non-vanishing Theorem and Independence Theorem we have
Hi{(M/E) =~ H{ aanp v/i)) Anng v/ 5 (M/EK)
= Hy/amng a/x (M/K)
~ Hl(M/K).
Now, it follows from [8, Theorem 2.6] that
Anng Hi(M/K) = Anng HL.(M/K) = Anng M/K = Anng M /Tg(I, M).
O

The following easy lemma is needed in the proofs of Lemma 2.4 and
Theorem 2.8.

LEMMA 2.3. Let R be a Noetherian local ring and M be a non-zero finitely
generated R-module. If Anng M = J, then Annp M Qg T = JT, for any flat
R-algebra T.

Proof. By the hypothesis M is a finitely generated R-module and so there
are elements z1,...,z, € M such that M = Rzi + --- + Rx,. We define
f: R — @M by f(r) = (rei,...,rz,). Then it is easy to see that
kerf = Anng M = J. Whence, we get an exact sequence

n
0— R/J — @M.
i=1
Effecting the exact functor — ®r T' to this exact sequence we get the exact
sequence

n
0—T/JT — P MerT,
=1
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which implies that
Amnp M Qg T C Anngp T/JT = JT C Annp M Qr T
and so Annp M @rp T =JT. O

The following lemma plays a key role in the proof of Lemma 2.5.

LEMMA 2.4. Let (R,m) be a Noetherian local ring and M be a non-zero
finitely generated R-module. If Q € mAssiz M ®@g R, then (QNR) € mAssg M,

where R denotes the m-adic completion of R.

Proof. Set J := Anngr M. Since, R is a flat R-algebra, it follows from
Lemma 2.3 that Anng M®gR =JR. From the hypothesis Q € mAssg M®gR.
It follows that Q € mAssR R/ JR and hence, J C QNR. Therefore, we have
(QNR) € Supp M. Now, in order to prove the lemma, assume the opposite
and set ¢ = QNR. Then there exists q; € mAssg M such that q; C g. Since
R/JR is a flat R/J-algebra it follows from [I8, Theorem 9.5] that the going-
down theorem holds between R/.J and R/JR. So, there exists a prime ideal

/JR of R/JR such that P C Q and ‘PNR = q;, which is a contradiction
because, by the hypothesis, we have Q € mAsss R/ JR. O

The following lemma is crucial for us in the proofs of Theorems 2.10 and
2.11.

LEMMA 2.5. Let (R,m) be a Noetherian local ring and I be an ideal of R.
Let M be a non-zero finitely generated R-module such that cd(I, M) =1t >0
and q(I, M) < cd(I,M). Then

Attr Hi(M) = {q € mAssg M : cd(I,R/q) = t}.

In particular, Anng Hi(M) C Upemassy m P-

Proof. Let q be an arbitrary element of Attg HY(M). Then by [10, Ex-
ercise 8.2.4]
Hi(M) ~ Hj(M)®g R~ H;5(M ®p R)

has an R-module structure. Therefore, it follows from [Al(], Exercise 8.2.5] that
QN R = q, for some Q € Attp H;g(M ®pr R). Since R is a faithfully flat R-

algebra, it follows that Cd(IIAB, M ®g ﬁ) = ¢t and the R-module H;E(M ®R ﬁ)

is Artinian and IR-cofinite. So, it follows from Theorem 2.1 that

Atty Hp (M) C mAssy M Qg R.
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Hence, Q € mAssz M ®pg R and so, by Lemma 2.4 one has q € mAssg M.
Also, by the method used in the proof of Theorem 2.1 we have cd(I, R/ q) = t.
Therefore,

Attp HY(M) C {q € mAssp M : cd(I,R/q) = t}.
On the other hand, let q be an arbitrary element of the set
{9 €mAssg M : cd(I,R/q) = t}.
Then by [6, Theorem 2.6] and [I2], Theorem 2.2] we have
gUI,M/qM) <cd(I,M/qM)=cd(I,R/q) =t.
So, by the first part of the proof, we have
0 # Attg H(M/q M) C mAssg M/ q M = {q},
which implies that Attg HE(M/qM) = {q}. The exact sequence
0—qM — M — M/qM — 0
induces the exact sequence
HY(M) — H}(M/q M) — H{*(q M),

But [12, Theorem 2.2], implies that H;H(q M) = 0. Hence, we get the exact
sequence

Hi(M) — Hp(M/qM) — 0,
which yields that

{a} = Attg Hj(M/qM) C Attg Hj (M)
and hence q € Attg Hi(M). Therefore,
{q€mAssp M : cd(I,R/q) =t} C Attg Hi(M).
Now, we are ready to deduce that
Attgp Hi(M) = {q € mAssp M : cd(I,R/q) = t}.

Finally, it is clear that

Anng Hj (M) C (N afc U »
qeAttr HE (M) peEmAssg M

O]

The proof of the following result is quite similar to the proof of [I, The-
orem 3.5].
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LEMMA 2.6. Let (R,m) be a Noetherian local ring and I be an ideal of R.
Let M be a non-zero finitely generated R-module such that cd(I, M) =1t >0
and q(I,M) < cd(I,M). Then

Anng HY(M) = Anng M /Tg(I, M).

Proof. The exact sequence
0 —Tr(I,M) — M — M/Tr(I,M) — 0
yields the isomorphism H%(M) ~ HY(M/Tr(I, M)).
So, we may assume that Tr(I, M)=0. Now, as Anng M C Annp Hi(M),
it is enough to show that Anng HY(M) C Anng M.

To this end, let € Anng H(M) and we show that zM = 0. Suppose the
contrary, that M # 0. Then, as TR(I M) =0, it follows that cd(I xM) =t.
Hence cd(IR, xM) =t, and so th ( ) # 0. Because, if :L'Ht (M) =0, then

zR C Anng IR(M)' Hence, in view of Lemma 2.2, zR CAnng M/Tﬁ(lﬁ, ]\7),
and so tM C Tx(I R, M). Therefore, cd(I R, M) < t, which is a contradiction.
Consequently, xH;E(Z\/Z ) # 0 and hence z(H}(M) @p }/%) # 0. Therefore,
r & Anng HY(M), which is a contradiction. [

The next easy lemma is needed in the proofs of Theorems 2.8 and 2.11.

LEMMA 2.7. Let (R,m) be a Noetherian local ring and I be an ideal of R.
Let M be a non-zero finitely generated R-module such that cd(I,M) =t > 0.
Assume that Supp Hi(M) C {m} and the R-module Hompg(R/I, H}(M)) is
finitely generated. Then the R-module Hi(M) is Artinian and I-cofinite and
hence q(I1, M) < cd(I,M).

Proof. Since, by the hypothesis, we have Supp Ht(M) C {m} it follows
that Supp Homp(R/I, Hi(M)) C {m}.
Hence, the finitely generated R-module Hompg(R/I, H:(M)) is of finite length.
So, in view of [19, Proposition 4.1] the R-module H}(M) is Artinian and I-
cofinite. Now the remainder part of the assertion is clear. [

The following result plays a key role in the proof of our first main result,
Theorem 2.9.

THEOREM 2.8. Let R be a Noetherian ring and let I be an ideal of R. Let
M be a non-zero finitely generated R-module such that cd(I, M) =1t > 0 and
the R-module Homp(R/I, H{(M/N)) is finitely generated, for each submodule
N of M. Then
Anng(HY(M)) = Anng M/Tr(I, M).
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Proof. By the proof of Lemma 2.5, we may assume that Tr(I, M) = 0
and with this assumption our aim is to show that Anng H(M) = Anng M.
To this end, as Anng M C Anng HY(M), it is enough for us to prove that
Anng; anng M H!(M) = 0. So, it is enough for us to show that

AHHR/ Anngp M H(tl—i—AnnR M)/ Anng M(M) = 0.

Replacing R by R/ Anng M and replacing I by (I + Anng M)/ Anng M,
we may assume that M is a faithful R-module such that Tr(I,M) = 0,
cd(I, M) =t and the R-module Homg(R/I, H{(M/N)) is finitely generated,
for each submodule N of M. Let Assp M = {qy,...,q,,} and assume that
0 =();_; K; is a minimal primary decomposition of the zero submodule of M,
where K is a q;-primary submodule of M for each 1 <17 < n.

Henceforth, in order to prove the relation Anng HY(M) = 0, our main
strategy is to show Anng Hi(M) C Anng M/K;, for each 1 <4 < n. Assume
that 1 <7 <mn and set K := K; and q := q;. Since, q € Assg M/K N Assp M
and Tr(I, M) = 0 it follows from [12| Theorem 2.2] that

t=cd(I,R/q) <cd(I,M/K) <cd(I,M)=t
and hence, cd(I, M/K) = t. The exact sequence
0—K-—M-—M/K—0
induces the exact sequence
H{(M) — Hy(M/K) — HIY(K).
But, in view of [12, Theorem 2.2], we have H:*'(K) = 0. Hence, we have the
following exact sequence
Hi{(M) — Hi(M/K) — 0,

which yields that
Anng HY (M) C Anng HY(M/K).

By the hypothesis, the R-module Homp(R/I, Hi(M/K)) is finitely gen-
erated and so by Lemma 2.7, for each p € mAssg Hi(M/K), the Ry-module
Hip ((M/K)y) is Artinian and I R,-cofinite.

On the other hand, using the fact that the set Assgp M /K has exactly one
element, it is straightforward to see that Tg, (I Ry, (M/K),) = 0. So, it follows
from Lemma 2.6, that

Anng, Hip, (M/K),) = Anng, (M/K),,
which using the fact that R, is a flat R-algebra, Lemma 2.2, implies that
(Annp Hy(M))R, C Anng, Hip ((M/K)p)
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== Anan(M/K)p
= (Anng M/K)R,.
Set J := Anng H}(M) and @ := Anng M /K. Then,
((J+Q)/Q), = (JRy + QRy)/QRy =0

and hence

p & Supp (J +Q)/Q = V(Anng(J + Q)/Q).
Therefore, there exists an element
s € (Amng (J+Q)/Q) \ p.
So, sJ C @ and s ¢ p. But,
p € mAssg Hi(M/K) C V(Anng Hi(M/K)) C V(Anng M/K) = V(q).

So, s € q and sJ C Q. By the proof of Lemma 2.2, for some integer n > 1,
there exists an exact sequence

0— R/Q —>éM/K,

i=1
which implies that Assg R/Q = {q} and hence @ is a g-primary ideal of R.
Now, since s € q and sJ C @, it follows that
Annp Hi(M)=J C Q = Anng M/K.

So, we have

n n
J = A Hj(M) C () Anng M/K; = Annp @ M/K;.
i=1 i=1
Furthermore, since by the hypothesis ();_; K; = 0, we have an exact
sequence

n
0— M — P M/K;,
=1
which implies that Anng @;" ;| M/K; € Anng M = 0. Therefore,
J=Ann H{(M) = 0.

O]

Let R be a Noetherian ring, I be an ideal of R and let N be an R-module.
Recall that q(I, N) is defined as the greatest integer i such that H:(N) is not
an Artinian module if there exist such i’s and —oo otherwise.

Now, we are ready to state and prove the first main result of this paper.
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THEOREM 2.9. Let R be a Noetherian ring and I be an ideal of R. Let
M be a non-zero finitely generated R-module with cd(I, M) =t > 0. Then,
Anng H{(M) = Anng M/Tg(I, M) in each of the following cases:

i) dim M/IM < 1.

) dim R/T < 1.

) q(I, M) <1

) a(I,R) <1

v) cd(I, M) <1, (see [3, Corollary 2.16] for the local case).
) cd(I,R) <

) q(I, M) < cd(I,M).

Proof. (i) Let N be an arbitrary submodule of M and set K := M/N.
Then, Supp K/IK C Supp M/IM and hence dim K/IK < dimM/IM <
1. So, by [9, Corollary 2.7] the R-module H{(K) = HY(M/N) is I-cofinite.
Therefore, the R-module Homg(R/I, H{(M/N)) is finitely generated, for each
submodule N of M. Hence, the assertion follows from Theorem 2.8.

(ii) Follows from (i).

(iii) Let N be an arbitrary submodule of M and set K := M /N. Then,
Supp K C Supp M and hence in view of [I1), Theorem 3.2], there is an inequality
q(I,K) < q(I,M) <1 and hence by [6, Theorem 4.9] the R-module H}(K) =
HY(M/N) is I-cofinite. So, the R-module Homp(R/I, H!(M/N)) is finitely
generated, for each submodule N of M. Hence, the assertion follows from
Theorem 2.8.

(iv) In view of [6], Theorem 2.6, it follows from the hypothesis ¢(I, R) < 1
that ¢(I, M) < 1 and hence the assertion follows from (iii).

(v) Using the inequalities ¢(I, M) < cd(I, M) < 1, the assertion follows
from (iii).
i) Applying [12, Theorem 2.2], the assertion follows from (v).

(v
(vii) Let N be an arbitrary submodule of M and set K := M/N. Then,
SuppK C Supp M and hence in view of [6, Theorem 2.6], the R-module
HY(K)= H{(M/N) is Artinian and I-cofinite. Thus, the R-module
Homp(R/I, H{(M/N))

is finitely generated, for each submodule N of M. So, the assertion follows
from Theorem 2.8. [



146 1. Bagheriyeh, K. Bahmanpour, and G. Ghasemi 14

The following theorem is the second main result of this paper.

THEOREM 2.10. Let R be a Noetherian ring and let I be an ideal of R.
Let M be a non-zero finitely generated R-module such that cd(I, M) =1t >0
and q(I,M) < cd(I,M). Then
Attgr Hi(M) = {q € mAssg M : cd(I,R/q) =t}.
In particular, Anng HY (M) C Upemassy m P-
Proof. By the definition of ¢(I, M), the non-zero R-module H}(M) is

Artinian and I-cofinite. So the R-module H(M) has finite support contained
in Max(R). Assume that

SuppH;(M) = {111, "'ank}'
Set Lj := Tn,(H}(M)) for j = 1,...,k and put L = Die({1,. kg Li for
j=1,...,k Then it is clear that Supp L;NL}; C {n;}N({n1, ..., n}\{n;}) =0,
for each 1 < j < k. Therefore, L; N L;» = 0, for each 1 < j < k. Hence,
2521 Lj~ @;?:1 L;. Also, for each 1 < j <k one has
n; & Assp Hi(M)/L; = Supp H(M)/L;,
which means that Supp H}(M)/(Zk L;) =0 and hence H}{(M) = SOk L;.

j=1 j=1
So, there is an isomorphism
k
Hy(M) ~ P L;.

Furthermore, one sees that for each 1 < j <k,
k
H;an (Mﬂj) = (H;(M))ﬂ] = ZLJ = (Lj)ﬂj = Lj'
=1 )
J

Consequently, there is an isomorphism
k
t -~ t
1) = P i, (M)
J:

Moreover, it is clear that for each 1 < j < k the Ry;-module H;Rn.(M"j) is
J

Artinian and IRy;-cofinite. So, for each 1 < j < k we have q(IRy;, My,) <
cd(I Ry, My,) = t. Now, since

k
Attr Hi(M) = | Attr Hip, (M)
j=1
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and
Attp H}an (Mx,) = {p €Spec R : pRn, € Attg,, H}an (M)},

the assertion follows from Lemma 2.5. O

THEOREM 2.11. Let R be a Noetherian ring and I be an ideal of R.
Let M be a non-zero finitely generated R-module such that cd(I,M) = t
and the R-module Hompg(R/I, H{(M)) is finitely generated. Then for each
p € mAssp HY (M), the Ry-module H}Rp(Mp) is Artinian and I Ry-cofinite and
Attg, H}RP(MP) C mAssg, M. In particular, we have

Anng Hi (M) C U p.
pEmAssp M

Proof. The assertion follows from Lemma 2.5 and Lemma 2.7, using the
localization. [

THEOREM 2.12. Let R be a Noetherian ring and I be an ideal of R with
cd(I,R) =t > 0. Assume that there exists a mon-zero finitely generated R-
module M such that cd(I,M) = cd(I,R) and q(I,M) < cd(I,M). Then
AHDR H;(R) < UpEmASSRRp‘

Proof. Set T := GBPEmASSRMR/p. Then T is a finitely generated R-
module with SuppT = Supp M. So, using [12] Theorem 2.2] we can deduce
that cd(I,T) = cd(I, M) = t. But we have

cd(I,T) = max{cd(I,R/p) : p € mAssp M }.

So, there exists an element q € mAssg M such that cd(I, R/ q) = cd(I,R) =t.
Furthermore, since Supp R/ q C Supp M it follows from [6, Theorem 2.6] that

Since q is a prime ideal of R, it contains a minimal prime ideal of R. So, there

exists q; € mAssgy R such that q; C q. The exact sequence

0—q —R—R/qy —0
induces the exact sequence

H}(R) — H(R/ay) — H;™ ().

But, in view of [I2, Theorem 2.2], we have H:™(q;) = 0. Hence we have the
following exact sequence

H{(R) — H(R/ @) — 0,
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which yields that Anng HY(R) C Anng HY(R/q;). So, it is enough to prove
Anng HY{(R/q;) = q;. Since
Supp R/ q € Supp R/ q; € Spec R = Supp R,
it follows from [12, Theorem 2.2] that
cd(, R) = cd(I, R/ q) < cd(I, R/ q1) < cd([, R)
and hence c¢d(I,R/q;) = cd(I,R) = t. So, using Independence Theorem and
replacing R by R/ q;, without loss of generality we may assume that R is a
domain, [ is an ideal of R and q is a prime ideal with
G, R/ ) < cd(I, R/ q) = cd(I, R) = ¢

Then it is enough to prove that Anng Hi(R) = 0. Since for each integer n > 1
we have Supp R/ q(™ = Supp R/ q it follows from [6, Theorem 2.6] and [12]
Theorem 2.2] that
4. R/q™) = q(I, R/ q) < cd(I, R/ q) = cd(I, R/ q") = t.
Whence, by Theorem 2.9(iii), for each integer n > 1 we have
Annp Hi(R/q™) = g™
On the other hand, the exact sequence
0—q™ —-R—R/q"™ —0

induces the following exact sequence

H}(R) — H}{(R/q™) — H{ (q™).
But, in view of [12] Theorem 2.2], we have

Hi (g = 0.
Hence, we have the following exact sequence
H{(R) — H{(R/q™) — 0,

which implies that

Anng HY(R) C Ann HY(R/ ™) = g™ .

So, we have
oo

Anngp HY(R) C ﬂ q™.
n=1
Let ¢ : R — Ry be the natural homomorphism. Then, since for each
positive integer n by the definition we have q(™ = o Hq" R;) and by Krull’s
Intersection Theorem we have (02, g Ry = 0 it follows that p(°2, q™) = 0.
So, as the ideal J := 2, q™ is finitely generated, it is straightforward and
so left to reader, that sJ = 0 for some element s € (R \ q). As R is a domain
it follows that J = 0. Hence, Anng H!(R) = 0. This completes the proof. [
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The following lemma will be useful in the proof of Theorem 2.14.

LEMMA 2.13. Let R be a Noetherian ring and I be an ideal of R. Assume
that M is a non-zero finitely generated R-module such that fr(M) = 1. Then

Anng Hi (M) C U p.
pe(Assp M\V(I))

Proof. Assume the opposite. Then there is an element x € Anng H} (M)
such that

x ¢ U

pe(Assg M\V (1))
and so

¢ U

pEAssp M/T'1 (M)
By [10, Remark 2.2.7], there is an exact sequence
0 — M/T (M) — Di(M) — H} (M) — 0,
which using the Snake Lemma induces an exact sequence
(0:p,ary ) — (0 (M) x) — M/(xM +T'1(M)).

In view of [7, Lemma 3.7], we have Assg D;(M) = Assg M /T';(M) and hence
it follows from the hypothesis that

z ¢ U

peAssg D (M)

So, we have (0 :p,(ar) ) = 0 and (0 THL(M) z) = H} (M). Hence from the last
exact sequence we get the following exact sequence

0 — HH(M) — M/(zM +T;(M)),

that means the R-module H}(M ) is finitely generated. This is a contradiction,
because fr(M)=1. O

THEOREM 2.14. Let R be a Noetherian ring and I be an ideal of R.
Assume that M is a non-zero finitely generated R-module with cd(I, M) > 1.

Then fr(M) =1 if and only if Anng H] (M) C Use(assp m\vn) P



150 1. Bagheriyeh, K. Bahmanpour, and G. Ghasemi 18

Proof. By Lemma 2.13 it is enough to prove that if

Anngp Hi (M) C U p
pE(Assg M\V (1))
then f;(M) = 1. Assume that Anng H} (M) C Use(assp m\v () b and that
fr(M) # 1. Then as cd({,M) > 1 we can conclude that fr(M) > 2. So, the

I-torsion R-module H} (M) is finitely generated. Hence, there exists a positive
integer n such that I"H} (M) = 0 and so that

I" C Anng H} (M) C U p.
PE(Assp M\V(I)

Therefore, there is an element p € (Assg M \ V(I)) such that I C p, which is
a contradiction. [
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