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A ring R is Yaqub nil-clean if a+a3 or a−a3 is nilpotent for all a ∈ R. We prove
that a ring R is a Yaqub nil-clean ring if and only if R ∼= R1, R2, R3, R1 ×R2 or
R1×R3, where R1/J(R1) is Boolean, R2/J(R2) is a Yaqub ring, R3/J(R3) ∼= Z5

and each J(Ri) is nil, if and only if J(R) is nil and R/J(R) is isomorphic to a
Boolean ring R1, a Yaqub ring R2, Z5, R1×R2, or R1×Z5, if and only if for any
a ∈ R, there exists e3 = e such that a− e or a+ 3e is nilpotent and ae = ea, if
and only if R is an exchange Hirano ring. The structure of such rings is thereby
completely determined.
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1. INTRODUCTION

Throughout, all rings are associative with an identity. A ring R is strongly
nil-clean if a−a2 is nilpotent for all a ∈ R. A ring R is strongly weakly nil-clean
if a+ a2 or a− a2 is nilpotent for all a ∈ R. Strongly (weakly) nil-clean rings
are studied by many authors, e.g., [1, 2, 4, 6, 8] and [10, 12]. An element a in
a ring is tripotent if a3 = a. A ring is strongly 2-nil-clean if a− a3 is nilpotent
for all a ∈ R (see [3]). It is proved that a ring R is strongly 2-nil-clean if for
any a ∈ R there exists a tripotent e ∈ R such that a− e ∈ R is nilpotent and
ae = ea (see [3, Theorem 2.8]).

We say that a ring R is Yaqub nil-clean if a + a3 or a − a3 is nilpotent
for all a ∈ R. Clearly, strongly weakly nil-clean and strongly 2-nil-clean rings
are Yaqub nil-clean, but the converse is not true, e.g., Z5. The motivation of
this paper is to determine the structure of such rings.

A ring R is a Yaqub ring provided that it is a subdirect product of Z3’s
(see [3]). We prove that a ring R is a Yaqub nil-clean ring if and only if
R ∼= R1, R2, R3, R1 ×R2 or R1 ×R3, where R1/J(R1) is Boolean, R2/J(R2) is
a Yaqub ring, R3/J(R3) ∼= Z5 and each J(Ri) is nil, if and only if J(R) is nil
and R/J(R) is isomorphic to a Boolean ring R1, a Yaqub ring R2, Z5, R1×R2,

∗Corresponding author

MATH. REPORTS 25(75) (2023), 1, 153–165

doi: 10.59277/mrar.2023.25.75.1.153

http://dx.doi.org/10.59277/mrar.2023.25.75.1.153


154 H. Chen and M. Sheibani 2

or R1 × Z5, if and only if for any a ∈ R, there exists e3 = e such that a− e or
a+ 3e is nilpotent and ae = ea.

An element a in a ring R is (strongly) clean provided that it is the sum
of an idempotent and a unit (that commute). A ring R is (strongly) clean
in case every element in R is (strongly) clean. A ring R is an exchange ring
provided that for any a ∈ R, there exists an idempotent e ∈ R such that e ∈ aR
and 1 − e ∈ (1 − a)R. Every (strongly) clean ring is an exchange ring, but
the converse is not true (see [13, Proposition 1.8]). A ring R is a Hirano ring
provided that for any u ∈ U(R), 1 ± u2 is nilpotent. Furthermore, we prove
that a ring R is Yaqub nil-clean if and only if R is an exchange Hirano ring.
The structure of such rings is thereby completely determined.

We use N(R) to denote the set of all nilpotents in R and J(R) the Jacob-
son radical of R. N stands for the set of all natural numbers. a± b means that
a+ b or a− b. Z[u] = {f(u) | f(t) is a polynomial with integral coefficients}.

2. ELEMENTARY CHARACTERIZATIONS

The aim of this section is to investigate elementary characterizations of
Yaqub nil-clean rings. We begin with

Lemma 2.1. Let R be a ring. Then the following are equivalent:

(1) R is Yaqub nil-clean.

(2) For any a ∈ R, a2 ∈ R is strongly weakly nil-clean.

Proof. =⇒ Let a ∈ R. Then a± a3 ∈ N(R), and so a2 − a4 or a2 + a4 ∈
N(R). Thus, a2 − a4 or −a2 − (−a2)2 is nilpotent. That is, a2 ∈ R is weakly
nil-clean.

⇐= Suppose that a2 is strongly weakly nil-clean. Then a2 − a4 ∈ N(R)
or −a2 − (−a2)2 ∈ N(R). This implies that a(a− a3) or a(a+ a3) is nilpotent;
hence, (a− a3)2 or (a+ a3)2 is nilpotent. Therefore a± a3 ∈ N(R), as desired.

Theorem 2.2. Let R be a ring. Then R is Yaqub nil-clean if and only if

(1) J(R) is nil;

(2) R/J(R) has the identity x3 = ±x.

Proof. =⇒ Let x ∈ J(R). Then x± x3 ∈ N(R); hence, x ∈ N(R). This
shows that J(R) is nil.

Let a ∈ R. Then a ± a3 ∈ N(R), and so a3 ± a5 ∈ N(R). Thus,
a−a5 = (a±a3)+ (∓a3−a5) ∈ N(R). In light of [15, Theorem 2.11], R/J(R)
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has the identity x5 = x; hence, it is commutative. We infer that N(R) ⊆ J(R).
This shows that a3 = ±a in R/J(R).

⇐= Let a ∈ R. Then a3 ± a ∈ J(R) ⊆ N(R), as required.

Lemma 2.3. Every subring of any Yaqub nil-clean ring is Yaqub nil-clean.

Proof. Let S be a subring of a Yaqub nil-clean ring R. For any a ∈ S,
we see that a ∈ R, and so there exists some n ∈ N such that (a± a3)n = 0 in
R; hence, (a± a3)n = 0 in S. This implies that S is Yaqub nil-clean.

As a consequence of Lemma 2.3, every center of a Yaqub nil-clean ring is
Yaqub nil-clean. This generalizes [14, Theorem 2] as well.

Proposition 2.4. Every corner of any Yaqub nil-clean ring is Yaqub
nil-clean.

Proof. Let e ∈ R be an idempotent. It will suffice to prove that eRe is
Yaqub nil-clean. As eRe is a subring of R, we complete the proof by Lemma
2.3.

Theorem 2.5. Let {Ri | i ∈ I} be a family of rings. Then the direct
product R =

∏
i∈I

Ri of rings Ri is Yaqub nil-clean if and only if each Ri is

Yaqub nil-clean and at most one is not strongly 2-nil-clean.

Proof. =⇒ As homomorphic images of R, we see that all Ri are Yaqub
nil-clean rings. Suppose that Rk and Rl (k ̸= l) are not strongly 2-nil-clean.
Then we can find some a ∈ Rk such that a − a3 ̸∈ N(Rk) and 2 ̸∈ N(Rl).
Then (a, 1) ∈ Rk ×Rl and (a, 1)− (a, 1)3, (a, 1) + (a, 1)3 ̸∈ N(Rk ×Rl). Thus,
Rk ×Rl is not Yaqub nil-clean. This contradicts to the Yaqub nil-cleanness of
R. Therefore, at most one Ri is not strongly 2-nil-clean.

⇐= If each Ri is strongly 2-nil-clean, then so is R. If Rk is Yaqub
nil-clean and each Ri(i ̸= k) is strongly 2-nil-clean. One easily checks that
R ∼=

( ∏
i ̸=k

Ri

)
×Rk is Yaqub nil-clean, as asserted.

In particular, we have

Corollary 2.6. Let L =
∏
i∈I

Ri be the direct product of rings Ri
∼= R

and |I| ≥ 2. Then L is Yaqub nil-clean if and only if R is strongly 2-nil-clean
if and only if L is strongly 2-nil-clean.

Lemma 2.7. Let I be a nil ideal of a ring R. Then R is Yaqub nil-clean
if and only if R/I is Yaqub nil-clean.
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Proof. One direction is obvious. Conversely, assume that R/I is Yaqub
nil-clean. Let a ∈ R. Then a± a3 ∈ N(R/I), and so (a ± a3)m ∈ I for
some m ∈ N. As I is nil, we have n ∈ N such that (a ± −a3)mn = 0, i.e,
a± a3 ∈ N(R). This completes the proof.

We use Tn(R) to denote the ring of all n × n upper triangular matrices
over a ring R. We have

Theorem 2.8. Let R be a ring, and let n ≥ 2. Then the following are
equivalent:

(1) Tn(R) is Yaqub nil-clean.

(2) Tn(R) is strongly 2-nil-clean.

(3) R is strongly 2-nil-clean.

Proof. (1) ⇒ (3) Let

I =




0 a12 · · · a1n
0 · · · a2n

. . .
...
0

 ∈ Tn(R)| each aij ∈ R

 .

Then Tn(R)/I ∼=
∏
i∈I

Ri, where each Ri = R. Clearly,
∏
i∈I

Ri is Yaqub nil-clean.

In light of Corollary 2.6, R is strongly 2-nil-clean.

(3) ⇒ (2) This is proved in [3, Corollary 2.6].

(2) ⇒ (1) This is obvious.

3. STRUCTURE THEOREMS

The aim of this section is to investigate the structure of Yaqub nil-clean
rings. A ring R is periodic if for any a ∈ R there exist distinct m,n ∈ N such
that am = an. We now derive

Theorem 3.1. A ring R is Yaqub nil-clean if and only if

R ∼= R1, R2, R3, R1 ×R2 or R1 ×R3,

where

(1) R1/J(R1) is Boolean and J(R1) is nil;

(2) R2/J(R2) is a Yaqub ring and J(R2) is nil.

(3) R3/J(R3) ∼= Z5 and J(R3) is nil.
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Proof. ⇐= In view of [10, Theorem 2.7], R1 is strongly nil-clean. By
virtue of [3, Theorem 4.2], R2 is strongly 2-nil-clean. Hence, R1, R2 and R1×R2

are strongly 2-nil-clean, and then Yaqub nil-clean.
Let a ∈ R3. Since R3/J(R3) ∼= Z5, we easily check that a± a3 = 0 in

R3/J(R3); and so a± a3 ∈ J(R3) ⊆ N(R3). Thus, R3 is Yaqub nil-clean. Let
(a, b) ∈ R1 × R3. Then b ± b3 ∈ N(R3). Since R1/J(R1) is Boolean, we see
that (a, b)±(a, b)3 = (a−a3, b±b3) = (a−a2+a(a−a2), b±b3) ∈ N(R1×R3).
Hence, R1 ×R3 is Yaqub nil-clean. Therefore, R is Yaqub nil-clean.

=⇒ Let a ∈ R. Then a + a3 or a − a3 is nilpotent. If a + a3 ∈ N(R),
then a − a5 = (1 − a2)(a + a3) ∈ N(R). If a − a3 ∈ N(R), then a − a5 =
(1 + a2)(a− a3) ∈ N(R). In any case, we have a− a5 ∈ N(R). In light of [11,
Corollary 3.6], R ∼= R1, R2, R3, R1 ×R2 or R1 ×R3, where

(1) R1/J(R1) is Boolean and J(R1) is nil;

(2) R2/J(R2) is a Yaqub ring and J(R2) is nil.

(3) R3/J(R3) is the subdirect of some Z5 and J(R3) is nil.

In Z5 × Z5, we check that (1, 2) − (1, 2)3 = (0, 4), (1, 2) + (1, 2)3 = (2, 0)
are not nilpotent. This implies that R3/J(R3) ∼= Z5, as asserted.

Corollary 3.2. A ring R is Yaqub nil-clean if and only if

(1) a− a5 ∈ R is nilpotent for all a ∈ R;

(2) R has no homomorphic images Z3 × Z5,Z5 × Z5.

Proof. =⇒ Let a ∈ R. Then a± a3 ∈ N(R), and so a− a5 = (a± a3)∓
a2(a ± a3) ∈ N(R). By virtue of Theorem 3.1, we easily see that R has no
homomorphic images Z3 × Z5,Z5 × Z5.

⇐= In light of [15, Theorem 2.1], R ∼= A,B,C or product of such rings,
where A/J(A) is Boolean with J(A) is nil, B/J(B) is a subdirect product of
Z′
3s with J(B) is nil, and C/J(C) is a subdirect product of Z′

5s with J(C) is
nil. By hypothesis, we prove that R is Yaqub nil-clean, in terms of Theorem
3.1.

Corollary 3.3. A ring R is strongly 2-nil-clean if and only if

(1) 6 ∈ R is nilpotent;

(2) R is Yaqub nil-clean.

Proof. =⇒ In view of [3, Theorem 3.6], 6 ∈ N(R). (2) is obvious.
⇐= Since 6 ∈ N(R), we see that 5 ∈ U(R). In view of Theorem 3.1, R ∼=

R1, R2 or R1 ×R2, where R1/J(R1) is Boolean with J(R1) nil and R2/J(R2)
is a Yaqub ring with J(R2) nil. This completes the proof by [3, Theorem
4.5].
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Corollary 3.4. A ring R is strongly nil-clean if and only if

(1) 2 is nilpotent;

(2) R is a Yaqub nil-clean.

Proof. =⇒ (1) is follows from [8, Proposition 3.14].
(2) This is obvious, by [10, Corollary 2.5].

⇐= As R is Yaqub nil-clean and 6 ∈ N(R), R is strongly 2-nil-clean
by Corollary 3.3. Since 2 ∈ N(R), it follows by [3, Theorem 2.11] that R is
strongly nil-clean.

Example 3.5. Let R = Zn(n ≥ 2). Then R is a Yaqub nil-clean ring if
and only if n = 2k3l5s (k, l, s are nonnegative integers and ls = 0).

Proof. =⇒ Let p be a prime such that p|n. Then n = pq with (p, q) = 1.
Hence, R ∼= Zp × Zq. This shows that Zp is a Yaqub nil-clean ring. Hence,
p = 2, 3 or 5. If kl ̸= 0, then Z3 × Z5 is a Yaqub nil-clean, a contradiction.
Therefore, n = 2k3l5s for some nonnegative integers k, l, s and ls = 0.

⇐= Since n = 2k3l5s(ls = 0), we see that R ∼= Z2k × Z3l or Z2k × Z5l .
Clearly, J(Z2k) = 2Z2k , J(Z3l) = 3Z3l and J(Z5s) = 5Z5s are all nil. Moreover,

Z2k/J(Z2k)
∼= Z2,Z3l/J(Z3l)

∼= Z3 and Z5s/J(Z5s) ∼= Z5.

According to Theorem 3.1, R is a Yaqub nil-clean ring.

We are now ready to prove the following.

Theorem 3.6. A ring R is Yaqub nil-clean if and only if

(1) J(R) is nil;

(2) R/J(R) is isomorphic to a Boolean ring R1, a Yaqub ring R2, Z5, R1 ×
R2, or R1 × Z5.

Proof. =⇒ In view of Theorem 3.1, R ∼= R1, R2, R3, R1 ×R2 or R1 ×R3,
where

(i) R1/J(R1) is Boolean and J(R1) is nil;

(ii) R2/J(R2) is a Yaqub ring and J(R2) is nil.

(iii) R3/J(R3) ∼= Z5, J(R3) is nil.

Therefore, J(R) is nil and R/J(R) ∼= R1/J(R1), R2/J(R2), R3/J(R3),
R1/J(R1)×R2/J(R2) or R1/J(R1)×R3/J(R3), as required.

⇐= Let a ∈ R. By hypothesis, we easily check that a± a3 = 0. As J(R)
is nil, a± a3 ∈ J(R) ⊆ N(R), as desired.
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Corollary 3.7. A ring R is Yaqub nil-clean if and only if

(1) R is periodic;

(2) R/J(R) is isomorphic to a Boolean ring R1, a Yaqub ring R2, Z5, R1 ×
R2, or R1 × Z5.

Proof. =⇒ As in the proof of [3, Proposition 3.5], R is periodic.
(2) follows by Theorem 3.6.

⇐= Since R is periodic, we easily check that J(R) is nil. This completes
the proof by Theorem 3.6.

Lemma 3.8. Let R be a ring with 5 ∈ N(R), and let a ∈ R. Then the
following are equivalent:

(1) a+ a3 ∈ R is nilpotent.

(2) There exists e ∈ Z[a] such that a− e ∈ N(R) and e3 = 4e.

Proof. (1) ⇒ (2) Suppose that a+ a3 ∈ R is nilpotent. Set x = 3a. Then
x3 − x = −30a + w for some w ∈ N(R). This shows that x3 − x ∈ N(R). As
(5n, 2) = 1, we easily see that 2 · 1R ∈ U(R). In light of [10, Lemma 2.6], there
exists θ ∈ Z[x] such that θ3 = θ and x− θ ∈ N(R).

Take β = 2(x−θ)−5a. Then β ∈ N(R). Further, we see that β = a−2θ.
Set e = 2θ ∈ R. Then a − e ∈ N(R) and e ∈ Z[a]. Moreover, e3 − 4e =
8θ3 − 8θ = 0, as desired.

(2) ⇒ (1) Let a ∈ R. Then we have e ∈ Z[a] such that w := a−e ∈ N(R)
and e3 = 4e. Hence, a+ a3 = (e+w) + (e3 +3e2w+3ew2 +w3) = 5e+ (3e2 +
3ew + w2)w ∈ N(R), as required.

Lemma 3.9. Let R be a ring with 5 ∈ N(R), and let a ∈ R. Then the
following are equivalent:

(1) a+ a3 ∈ R is nilpotent.

(2) There exists e3 = e ∈ R such that a+ 3e ∈ N(R) and ae = ea.

Proof. (1) ⇒ (2) In view of Lemma 3.8, there exists f ∈ Z[a] such that
a− f ∈ N(R) and f3 = 4f . As 5 ∈ R is nilpotent, we see that 2 ∈ U(R). Set
e = f

2 . Then e3 = e and a + 3e = (a − 2e) + 5e = (a − f) + 5e ∈ N(R), as
desired.

(2) ⇒ (1) Let a ∈ R. Then we have e3 = e such that w := a+3e ∈ N(R)
and ae = ea. This implies that a+a3 = (3e+w)+(27e3+27e2w+9ew2+w3) =
30e+ (27e2 + 9ew + w2)w ∈ N(R), as needed.

We come now to the demonstration for which this section has been de-
veloped.
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Theorem 3.10. Let R be a ring. Then the following are equivalent:

(1) R is Yaqub nil-clean.

(2) For any a ∈ R, there exists e3 = e such that a− e or a+ 3e is nilpotent
and ae = ea.

Proof. (1) ⇒ (2) In light of Theorem 3.1, R ∼= R1, R2, R3, R1 × R2 or
R1 ×R3, where

(i) R1/J(R1) is Boolean and J(R1) is nil;

(ii) R2/J(R2) is a Yaqub ring and J(R2) is nil.

(iii) R3/J(R3) ∼= Z5 and J(R3) is nil.

Case I. R ∼= R1, R2 or R1 × R2. By virtue of [3, Theorem 4.5], R is
strongly 2-nil-clean. Then for any a ∈ R, there exists e3 = e such that a− e is
nilpotent.

Case II. R ∼= R1, R3 or R1 ×R3. Let a ∈ R1. As R1 is strongly nil-clean,
there exists an idempotent e ∈ R1 such that a− e ∈ N(R1) and ae = ea. Since
2 ∈ N(R1), we see that a+3e = a−e+4e ∈ N(R1). Let a ∈ R3. As 5 ∈ N(R3),
we see that 2 ∈ U(R3). Let a ∈ R3. Then a− a3 ∈ N(R3) or a+ a3 ∈ N(R3).
If a − a3 ∈ N(R3), by [10, Lemma 2.6], there exists e3 = e ∈ R3 such that
a − e ∈ N(R3) and ae = ea. If a + a3 ∈ N(R3), it follows by Lemma 3.9
that there exists e3 = e ∈ R3 such that a + 3e ∈ N(R3). Therefore for any
x ∈ R1 × R3, we can find f3 = f ∈ R1 × R3 such that x − f or x + 3f is
nilpotent in R1 ×R3 and xf = fx, as desired.

(2) ⇒ (1) By hypothesis, there exists e3 = e such that 2− e or 2 + 3e is
nilpotent. Hence, 23−2 or 23−2×9 is nilpotent. This shows that 2×3 ∈ N(R)
or 2× 5 ∈ N(R). We infer that 30 = 2× 3× 5 ∈ N(R).

Let a ∈ R. Then there exists f3 = f ∈ R such that a − f or a + 3f is
nilpotent and af = fa. If w := a−f ∈ N(R), then a−a3 = (f+w)−(f+w)3 ∈
N(R). If w := a + 3f ∈ N(R), then a + a3 = (−3f + w) + (−3f + w)3 =
−30f + (w2 − 18f)w ∈ N(R), and so a + a3 ∈ N(R). Therefore, R is Yaqub
nil-clean.

4. HIRANO RINGS

The goal of this section is to investigate elementary properties of Hirano
rings which will be used in the sequel. We now derive

Proposition 4.1.

(1) Every subring of any Hirano ring is a Hirano ring.

(2) If R is a Hirano ring, then eRe is a Hirano ring for all idempotents
e ∈ R.
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Proof. (1) Let S be a subring of a Yaqub ring R, and u ∈ U(S), so
u ∈ U(R) and 1R ± u2 ∈ N(R), this implies that ±u2 = 1R + w for some
nilpotent element w ∈ R. Thus, ±u2 = ±u2 × 1S = 1S + w × 1S . As u2 and
1S are in S, then w × 1S ∈ S, and therefore S is a Hirano ring.

(2) This is obvious as eRe is a subring of R.

We note that the finite direct product of Hirano rings may be not a Hirano
ring.

Example 4.2. Let R = Z5×Z5. Then Z5 is a Hirano ring, while R is not.

Proof. Clearly, Z5 is a Hirano ring. Choose u = (1, 2) ∈ R. Then u ∈
U(R). We see that (1, 1) + u2 = (2, 0) and (1, 1)− u2 = (0, 2); hence, 1R + u2

and 1R − u2 are not nilpotent. Thus, R is not a Hirano ring.

Example 4.3. R = Z5n [x] is a Hirano ring, but it is not clean.

Proof. Let f(x) = a0 + a1x + · · · + anx
n ∈ U(R). Then 5 ∤ a0 and

5|ai(i = 1, · · · , an). Clearly, Z5n is a Hirano ring and a0 ∈ U(Z5n). Thus,
1±a0 ∈ N(Z5n), i.e., 5|(1±a0). This shows that 5|(1±f(x)), and so 1±f(x) ∈
N(R). Therefore, R is a Hirano ring. But it is not clean, as x ∈ R cannot be
written as the sum of an idempotent and a unit in R.

Lemma 4.4. Let I be a nil ideal of a ring R. Then R is a Hirano ring if
and only if so is R/I.

Proof. =⇒ This is obvious.

⇐= Let u ∈ U(R), so ±ū2 = 1̄ + w̄ for w̄ ∈ N(R/I). Hence, ±u2 =
1 + w + r for some r ∈ I. Here w + r ∈ N(R). This yields the result.

Recall that a ring R is a 2-UU ring if for any u ∈ U(R), u2 is a unipotent,
i.e., 1− u2 ∈ N(R) [4]. We now derive

Lemma 4.5. Let L =
∏
i∈I

Ri be the direct product of rings Ri
∼= R and

|I| ≥ 2. Then L is a Hirano ring if and only if R is a 2-UU ring if and only if
L is a 2-UU ring.

Proof. In view of [4, Theorem 2.1], R is a 2-UU ring if and only if L is a
2-UU ring. If L is a 2-UU ring, we easily see that L is a Hirano ring.

Suppose that L is a Hirano ring. Then R is a Hirano ring as a subring of
L. If R is not a 2-UU ring, we can find some u ∈ U(R) such that u2−1 ̸∈ N(R).
Additionally, 2 ̸∈ N(R). Choose v := (u, 1, 1, · · · ) ∈ U(L). Then v2 − 1L, v

2 +
1L ̸∈ N(L). This implies that L is not a Hirano ring, a contradiction. Therefore
R is a 2-UU ring, as asserted.
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Theorem 4.6. Let R be a ring, and let n ≥ 2. Then the following are
equivalent:

(1) Tn(R) is a Hirano ring.

(2) Tn(R) is a 2-UU ring.

(3) R is a 2-UU ring.

Proof. (1) ⇒ (3) Choose I as in the proof of Theorem 2.8. Then I is a

nil ideal of R. As Tn(R)/I ∼=
n∏

i=1
Ri be the direct product of rings Ri

∼= R, it

follows by Lemma 4.4 that
n∏

i=1
Ri is a Hirano ring. In light of Lemma 4.5, R is

a 2-UU ring, as required.

(3) ⇒ (2) This is proved in [4, Theorem 2.1].

(2) ⇒ (1) This is trivial.

Example 4.7. The ring M2(Z2) is not a Hirano ring.

Proof. Choose U =

(
0 1
1 1

)
. As I2±U2 = I2±

(
1 1
1 2

)
=

(
0 1
1 1

)
,

we see that I2 + U2 and I2 − U2 are not nilpotent, as required.

5. EXCHANGE PROPERTIES

The class of exchange rings is very large. For instances, local rings, regular
rings, π-regular rings, (strongly) clean rings and C∗-algebras with real rank one
are all exchange rings. We now characterize Yaqub nil-clean rings by means of
their exchange properties.

Lemma 5.1. Let R be an exchange ring. Then −2 ∈ R is clean.

Proof. See [4, Lemma 4.2].

Lemma 5.2. Let R be an exchange Hirano ring. Then 30 ∈ R is nilpotent.

Proof. In view of Lemma 5.1, −2 ∈ R is clean. Then −2 = e + u for
some idempotent e and unit u. As R is a Hirano ring, 1 ± u2 = w for some
w ∈ N(R).

Case I: 1− u2 = w. Sine −1− e = u+ 1, then 1 + 3e = u2 + 1 + 2u, this
implies that 3e − 2u = 1 − w = 1 + (−w) = 1 + v for some v ∈ N(R). Hence
3e− 2(−2− e) = 1 + v, and so 5e = −3 + v. We see that 5(−2− u) = −3 + v,
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i.e., 5u = −7+v, and then 25u2 = 49+v2−14v = 49+v1 for some v1 ∈ N(R).
Thus 24 ∈ N(R), and so 6 ∈ N(R) which implies 30 ∈ N(R).

Case II: 1+u2 = w. As −2 = e+u, then 1+3e = u2+2u+1 = w+2u, so
3e−2u = w−1. Thus, 2u−3e = 1+(−w) = 1+w′, 2(−2−e)−3e = 1+w′, i.e.,
−5− 5e = w′. This implies that −5e = w′ +5, and then −5(−2− u) = w′ +5.
Hence, 5u = w′−5, so 25u2 = 25+w

′′
, which implies that 25(w−1) = 25+w′′.

We infer that 50 ∈ N(R), whence 2×5×5 ∈ N [R]. Accordingly, 2×5 ∈ N(R),
and therefore 30 ∈ N(R).

Lemma 5.3. Let R be an exchange Hirano ring. Then J(R) is nil.

Proof. In view of Lemma 5.2, 30 ∈ N(R). Write 30n = 0(n ∈ N). Then
we can write R = R1 × R2 × R3, where R1

∼= R/2nR,R2
∼= R/3nR and

R3
∼= R/5nR. As R is a Hirano ring, so is R1 by Proposition 4.1, Then for

any u ∈ U(R1), 1 ± u2 ∈ N(R1), also 2 ∈ N(R1). If 1 + u2 ∈ N(R1) we can
write (u − 1)2 = 1 + u2 − 2u ∈ N(R1) and so 1 − u ∈ N(R1), which implies
R1 is a UU ring. As in [5, Theorem 2.4], J(R1) is nil. If 1− u2 ∈ N(R1), then
−(1− u)2 = −u2 − 1 + 2u = 1− u2 − 2(1− u) ∈ N(R1), then 1− u ∈ N(R1)
and so J(R1) is nil. Let x ∈ J(R2), as R2 is a Hirano ring, ±(1 + x)2 = 1 + w
for some w ∈ N(R2), hence x(x+ 2) or x(x+ 2) + 2 is nilpotent.

Case I. w := x(x + 2) ∈ N(R). As 3 ∈ N(R2), we see that 2 ∈ U(R2),
and so x+ 2 = 2−1(1 + 2x) ∈ U(R2). We infer that x = (x+ 2)−1w ∈ N(R2).

Case II. w := x(x + 2) + 2 ∈ N(R). Then x(x + 2) = w − 2 ∈ U(R2),
and so x ∈ U(R2), a contradiction. This implies that J(R2) is nil. For R3, as
5 ∈ N(R3), we deduce that 2 ∈ U(R3). Thus, by the similar route for R2, we
see that J(R3) is nil. Therefore J(R) is nil, as asserted.

We have accumulated all the information necessary to prove the following.

Theorem 5.4. A ring R is Yaqub nil-clean if and only if R is a Hirano
exchange ring.

Proof. =⇒ By Corollary 3.7, R is periodic, and so it is an exchange ring.
Let u ∈ U(R). Then u± u3 ∈ N(R); hence, 1± u2 ∈ N(R). Therefore R is a
Hirano ring, as desired.

⇐= Let 0 ̸= x ∈ N(R), we can assume that x2 = 0. As R is an exchange
ring with J(R) = 0, by [15, Lemma 2.7], we can find some idempotent e ∈ R
and some ring T , such that eRe ∼= M2(T ), but as we see in Example 4.5, M2(T )
is not a Hirano ring, i.e, eRe is not a Hirano ring. This shows that R is not
a Hirano by Proposition 4.1, a contradiction. So we deduce that N(R) = 0,
and then R is a reduced ring. This implies that R is abelian. Since R is an
exchange ring, it follows by [13, Proposition 1.8] that R is clean.
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In light of Lemma 5.2, 30 ∈ N(R). Write 2n × 3n × 5n = 0(n ∈ N. Then
R ∼= R1, R2, R3 or products of these rings, where R1 = R/2nR,R2 = R/3nR
and R3 = R/5nR.

Case 1. 2 ∈ N(R1). Let a ∈ R1. Then we have a central idempotent
e ∈ R and a unit u ∈ R such that a = e+ u. As 1± u2 ∈ N(R1), we see that
u ∈ 1+N(R1). Hence, a

2 = e+2eu+u2, and so a−a2 ∈ N(R1). This implies
that a− a3 = (a− a2) + a(a− a2) ∈ N(R1), and so R1 is Yaqub nil-clean.

Case 2. 3 ∈ N(R2). Let a ∈ R2. Then we have a central idempotent
e ∈ R and a unit u ∈ R such that a = e + u. Hence, a3 = (e + u)3 =
e + 3eu + 3eu2 + u3. If 1 + u2 ∈ N(R2), then u + u3 ∈ N(R2), and so
a + a3 ∈ N(R2). If −1 + u2 ∈ N(R2), then u − u3 ∈ N(R2). Therefore
a − a3 ∈ N(R3). In any case, a ± a3 ∈ N(R2). This means that R2 is Yaqub
nil-clean.

Case 3. 5 ∈ N(R3). Let a ∈ R3. Then we have a central idempotent
e ∈ R3 and a unit u ∈ R3 such that a = e+ u. Then 1± u2 ∈ N(R3), and so
u−u5 ∈ N(R3). Further, a

5 = (e+u)5 = e5+5eu+10u2+10eu3++5eu4+u5,
whence, a−a5 ∈ N(R3). Choose u is (1, 2) in Z3×Z5 or Z5×Z5. Then 1±u2

is not nilpotent. This implies that R3 has no homomorphic images Z3 × Z5

and Z5 × Z5. According to Corollary 3.2, R3 is Yaqub nil-clean.
Case 4. R ∼= R1 × R2, R1 × R3. One easily checks that R is Yaqub

nil-clean.
Case 5. R ∼= R2×R3, R1×R2×R3. But R2×R3 is not a Hirano ring, as

(1, 2) ∈ U(R2 ×R3) and (1, 1)± (1, 2)2 ̸∈ N(R2 ×R3). Thus, this case cannot
appear.

Therefore, R is Yaqub nil-clean.

Corollary 5.5. A ring R is Yaqub nil-clean if and only if R is a Hirano
periodic ring.

Proof. =⇒ This follows from Corollary 3.7 and Theorem 5.4.
⇐= As every periodic ring is an exchange ring then, we get the result by

Theorem 5.4.
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[2] S. Breaz, G. Călugăreanu, P. Danchev, and T. Micu, Nil-clean matrix rings. Linear Al-
gebra Appl. 439 (2013), 3115–3119.

[3] H. Chen and M. Sheibani, Strongly 2-nil-clean rings. J. Algebra Appl. 16 (2017), 9. DOI:
10.1142/S021949881750178X.

[4] H. Chen and M. Sheibani, Strongly weakly nil-clean rings. J. Algebra Appl. 16 (2017),
12. DOI: 10.1142 /S0219498817502334.

[5] P.V. Danchev and T.Y. Lam, Rings with unipotent units. Publ. Math. Debrecen 88 (2016),
449–466.

[6] P.V. Danchev, Weakly UU rings. Tsukuba J. Math. 40 (2016), 101–118.

[7] P.V. Danchev, Weakly tripotent rings. Kragujevac J. Math. 43 (2019), 465–469.

[8] A.J. Diesl, Nil clean rings. J. Algebra 383 (2013), 197–211.

[9] Y. Hirano and H. Tominaga, Rings in which every element is a sum of two idempotents.
Bull. Aust. Math. Soc. 37 (1988), 161–164.

[10] M.T. Kosan, Z. Wang, and Y. Zhou, Nil-clean and strongly nil-clean rings. J. Pure Appl.
Algebra 220 (2016), 633–646.

[11] M.T. Kosan, T. Yildirim, and Y. Zhou, Rings with xn − x nilpotent. J. Algebra Appl.
19 (2020), 4. DOI: 10.1142/S02119498820500656.

[12] M.T. Kosan and Y. Zhou, On weakly nil-clean rings. Front. Math. China 11 (2016),
949–955.

[13] W.K. Nicholson, Lifting idempotents and exchange rings. Trans. Amer. Math. Soc. 229
(1977), 269–278.

[14] A. Stancu, A note on commutative weakly nil clean rings. J. Algebra Appl. 15 (2016),
10. DOI:10.1142/S0219498816200012.

[15] Y. Zhou, Rings in which elements are sum of nilpotents, idempotents and nilpotents. J.
Algebra Appl. 16 (2017). DOI: 10.1142/S0219498818500093.

[16] Y. Zhou, Rings in which elements are sums of nilpotents, idempotents and tripotents. J.
Algebra Appl. 17 (2018). DOI: 10.1142/S0219498818500093.

Received June 30, 2019 Huanyin Chen
Hangzhou Normal University

School of Mathematics
Hangzhou, China

huanyinchen@aliyun.com

Marjan Sheibani
Semnan University
Farzanegan Campus

Semnan, Iran
m.sheibani@semnan.ac.ir


	Introduction
	Elementary Characterizations
	Structure Theorems
	Hirano rings
	Exchange Properties

