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1. INTRODUCTION

Throughout this paper, all rings considered are integral domains, the
dimension of a ring R, denoted dimR, means its Krull dimension, and all
module are unital. Let R be a ring and M be an R-module. A submodule
N of M is called prime if N ̸= M and whenever r ∈ R and m ∈ M are such
that rm ∈ N , then rM ⊆ N or m ∈ N . Let R be a subring of a ring S. It
is clear that the set of prime ideals of S is included in the set of ideals which
are R-prime submodules of S and there are many examples of rings in which
this inclusion is strict (see Section 2). In this article, we investigate rings in
which there is equality between these two sets. We call each ideal of S that is
R-prime submodule of S an R-prime ideal of S. We say that R ⊂ S is a prime
submodule ideal extension (for short PSI-extension) if each R-prime ideal of
S is prime. We say that R ⊂ S is a PSI-pair if for each intermediate ring T
between R and S, R ⊂ T is a PSI-extension.

In the second section, we investigate elementary properties of PSI-exten-
sions and PSI-pairs. We compare them with extensions that are incomparable
(under inclusion) (for short, INC), INC-pair and residually algebraic pair.

The third section is devoted to study polynomial/power series PSI-ex-
tensions. We show that if R is a quasi-local integrally closed domain, then
R[[X]] ⊂ T [[X]] is a PSI-extension for each overring T of R if and only if R
is a valuation domain. Also, we show that if R is an integrally closed domain,
then R[X] ⊂ T [X] is a PSI-extension for each overring T of R if and only if R
is a Prüfer domain.
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2. PSI-EXTENSION

Let S be an integral domain, R a subring of S and M an R-module.
Recall that a proper submodule N of M is called a prime submodule of M if
whenever r ∈ R and m ∈ M such that rm ∈ N , we have rM ⊆ N or m ∈ N .

We call an R-prime ideal of S every ideal of S which is a prime R-
submodule of S. In other words, a subset I of S is called R-prime ideal of S
if:

1. I is a proper ideal of S.

2. For all r ∈ R and s ∈ S: [rs ∈ I ⇒ r ∈ I or s ∈ I].

We have the following implications:

I is a prime ideal of S ⇒ I is an R-prime ideal of S ⇒ I is a prime
R-submodule of S.

None of these implications is reversible: for the first one, an R-prime ideal
of S may be not a prime ideal of S. For example, take X an indeterminate
over an integral domain R, and let S = R[X]. Then the ideal X2S of S is not
prime but it is an R-prime ideal of S.

For the second one, a prime R-submodule of S may be not an R-prime
ideal of S. For example, ifK ⊂ L is a field extension, then every proper subfield
F of L containing K is a prime K-submodule of L but it is not an ideal of
L. Another example: let R be an integral domain and X an indeterminate
over R. Then RX := {rX, r ∈ R} is a prime R-submodule of R[X] but it
is not an ideal of R[X]. Indeed: clearly, RX is a subgroup of the additive
group R[X]. Since X ∈ R[X] and X ∈ RX but XX = X2 /∈ RX, RX is not
an ideal of R[X]. Clearly, RX is a proper R-submodule of R[X]. Let r ∈ R
and f = r0 + r1X + ... + rnX

n ∈ R[X] such that rf ∈ RX. Thus rf = aX
for some a ∈ R and so rr1 = a and rri = 0 for each i ̸= 1. If r = 0, then
rR[X] = 0 ⊆ RX. If r ̸= 0, then ri = 0 for each i ̸= 1 and so f = r1X ∈ RX.
Hence, RX is a prime R-submodule of R[X].

In order to study when the first implication is reversible, we give the
following definitions:

Definitions 2.1. We say that R ⊂ S is a prime submodule ideal ring
extension (for short, PSI-extension) if each ideal that is a prime R-submodule
of S is a prime ideal of S. We say that (R,S) is a PSI-pair if for each T ∈ [R,S]
(i.e., the set of intermediate rings between R and S), R ⊂ T is a PSI-extension.

For each ideal I of R or of S and each multiplicative set N of R, the
ideal of S denoted ΩS(I,N) = {x ∈ S such that rx ∈ IS for some r ∈ N}
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plays an important role in PSI-extension. If P is a prime ideal of R, we denote
ΩS(P ) := ΩS(P,R− P ).

It is well known that in a ring, the intersection and union of elements of
a chain (ordered by inclusion) of prime ideals are also prime ideals and every
proper ideal has a minimal prime ideal ([5, Theorem 9 and Theorem 10]). With
a similar proof, it is easy to see that if (Iλ)λ∈Λ is a chain of R-prime ideals of
S, then both ∪λ∈ΛIλ and ∩λ∈ΛIλ are R-prime ideals of S. Indeed: since each
Iλ is proper ideal of S, so is ∪λ∈ΛIλ and ∩λ∈ΛIλ. Let r ∈ R and s ∈ S such
that rs ∈ ∪λ∈ΛIλ. Thus rs ∈ Iv for some v ∈ Λ and so r or s ∈ Iv. Then r or
s ∈ ∪λ∈ΛIλ. Hence ∪λ∈ΛIλ is an R-prime ideal of S. Let r ∈ R and s ∈ S such
that rs ∈ ∩λ∈ΛIλ. Thus rs ∈ Iλ for each λ ∈ Λ. Assume that r /∈ ∩λ∈ΛIλ.
Thus r /∈ Iv for some v ∈ Λ. Thus s ∈ Iv. Let λ ∈ Λ. If Iλ ⊆ Iv, then r /∈ Iλ
and so s ∈ Iλ. If Iv ⊂ Iλ, then s ∈ Iλ. So s ∈ ∩λ∈ΛIλ. Hence, ∩λ∈ΛIλ is an
R-prime ideal of S.

Consequently by Zorn Lemma, every proper ideal of S has a minimal
R-prime ideal of S. Indeed: let J be a proper ideal of S and F be the set of
R-prime ideals of S containing J . Since J is contained (at least) in a maximal
(so prime) ideal of S, the set F is non-empty. Thus (F ,⊇) is a partially ordered
set. If (Iλ)λ∈Λ is a chain of elements of (F ,⊇), then F ∋ ∩λ∈ΛIλ ⊆ Iλ. Zorn
Lemma completes the proof.

We start with elementary results.

Lemma 2.2. Let S be an integral domain, R a subring of S and P a prime
ideal of R.

1. Every R-prime ideal of S lies over a prime ideal of R.

2. An intersection of a family of R-prime ideals of S that lies over the same
prime ideal of R is also an R-prime ideal of S.

3. Let T ∈ [R,S]. If R ⊂ S is a PSI-extension, then so is T ⊂ S.

4. For every multiplicative set N of R, R ⊂ RN is a PSI-extension.

5. If R ⊂ S is a PSI-extension, then so is R/(Q∩R) ⊂ S/Q for each prime
ideal Q of S.

6. ΩS(P ) = S or ΩS(P ) is an R-prime ideal of S that lies over P .

7. If I is an R-prime ideal of S and P is a minimal prime over I, then
P ∩R = I ∩R.

8. If I is an ideal of S that lies over P , then ΩS(I,R − P ) is an R-prime
ideal of S that lies over P .

9. If I is an ideal of S that lies over a maximal ideal of R, then I is an
R-prime ideal of S.
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Proof. 1) By [4, Lemma 1].
2) Straightforward.
3) Because every T -prime ideal of S is an R-prime ideal of S.
4) If I is an ideal of R such that IRN is an R-prime ideal of RN , then

ΩR(I,N) is a prime ideal of R and IRN = ΩR(I,N)RN .
5) R/(Q ∩ R)-prime ideals of S/Q are exactly J/Q where J ranges over

R-prime ideals of S containing Q.
6) Straightforward.
7) Let x ∈ P∩R. Thus xny ∈ I for some positive integer n and y ∈ S−P.

Then xn or y ∈ I. Since y /∈ I, x ∈ I.
8) Straightforward.
9) [4, Corollary 2].

PSI is a local property as the following proposition shows.

Proposition 2.3. The following statements are equivalent:

1. For every multiplicative set N of R, RN ⊂ SN is a PSI-extension.

2. For every prime ideal P of R, RP ⊂ SP is a PSI-extension.

3. For every maximal ideal M of R, RM ⊂ SM is a PSI-extension.

4. R ⊂ S is a PSI-extension.

Proof. 1) ⇒ 2) ⇒ 3) are trivial.

3) ⇒ 4) If I is an R-prime ideal of S and M is a maximal ideal of R such
that I ∩ R ⊆ M , then ISM is an RM -prime ideal of SM . So ISM = QSM for
some prime ideal Q of S such that Q ∩ R ⊆ M . If a ∈ I, then sa ∈ Q for
some s ∈ R −M and so a ∈ Q. Thus I ⊆ Q. If a ∈ Q, then sa ∈ I for some
s ∈ R−M . Since I is an R-prime ideal of S and s /∈ I, a ∈ I. Then I = Q.

4) ⇒ 1) follows from the fact that RN -prime ideals of SN have the form
JSN where J is an R-prime ideal of S such that J ∩N is empty.

Recall that R ⊂ S is said to be an INC-extension (i.e., satisfy incom-
parability) if whenever two distinct prime ideals Q1, Q2 of S are such that
Q1 ∩R = Q2 ∩R, then Q1 and Q2 are incomparable.

Theorem 2.4. The following statements are equivalent:

1. R ⊂ S is a PSI-extension.

2. R ⊂ S is an INC-extension and ΩS(P ) is prime in S or ΩS(P ) = S for
every prime ideal P of R.

3. ΩS(P ) = S or ΩS(P ) is the unique prime ideal of S that lies over P for
every prime ideal P of R.



5 When prime submodules are prime ideals? 171

Proof. 1) ⇒ 2) The second fact follows from Lemma 2.2. For the first
one: if not, then there exist two prime ideals P ⊂ P ′ of S such that P ∩ R =
P ′ ∩R =: P . Let x ∈ P ′ −P. Note that ΩS(P + x2S,R− P ) is a proper ideal
of S containing P + x2S (and so containing P ). Since (P + x2S) ∩ R = P ,
ΩS(P + x2S,R− P ) is an R-prime ideal of S that lies over P in R by Lemma
2.2-(8). Thus x ∈ ΩS(P+x2S,R−P ) and so rx−x2y ∈ P for some r ∈ R−P
and y ∈ S. Hence r ∈ P , a contradiction.

2) ⇒ 3) A prime ideal of S that lies over P in R contains ΩS(P ).

3) ⇒ 1) Let I be an R-prime ideal of S, P = I ∩R and P be a minimal
prime ideal of S over I. By Lemma 2.2-(1), P is a prime ideal of R. Then
ΩS(P ) ⊆ I ⊆ P. Thus ΩS(P ) ̸= S and so ΩS(P ) is the unique R-prime ideal
of S that lies over P by assumption. By Lemma 2.2-(7), P ∩ R = P and so
ΩS(P ) = P. Hence I = P is a prime ideal of S.

Corollary 2.5. If R ⊂ S is a PSI-extension and M is a maximal ideal
of R such that MS ̸= S, then MS is a maximal ideal of S.

Proof. One can check easily that MS = ΩS(M). By Lemma 2.2-(6), MS
is an R-prime ideal of S and so MS is a prime ideal of S. By Theorem 2.4,
R ⊂ S is an INC-extension. Then MS is a maximal ideal of S.

The following is an example of an INC-extension (in fact, an integral
extension) which is not a PSI-extension.

Example 2.6. Let K ⊂ L be a field extension and X an indeterminate
over L. It is well known that K[X] ⊂ L[X] is an INC-extension if and only if
L is algebraic (so integral) over K. So R[X] ⊂ C[X] is an INC-extension. The
ideal of C[X] generated by X2+1 is not prime but it is an R[X]-prime ideal of
C[X] (by Lemma 2.2-(9)) because it lies over the maximal ideal (X2 + 1)R[X]
of R[X]. Then R[X] ⊂ C[X] is not a PSI-extension. Later, we will show that
K[X] ⊂ L[X] is a PSI-extension if and only if K = L (Lemma 3.1).

Corollary 2.7. If R ⊂ S have the same prime ideals, then R ⊂ S is a
PSI-extension.

Proof. If the ideal of S, ΩS(P ) is proper, then it is included properly in
R and so is a prime ideal of R.

Examples of PSI-extensions:

Example 2.8. It is well known that if R is a pseudo-valuation domain
(for short, PVD) with associated valuation domain V , then R and V have the
same prime spectrum and so R ⊂ V is a PSI-extension. If R is an almost
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pseudo-valuation domain (for short, APVD) with associated valuation domain
V , then R ⊂ V is a PSI-extension if and only if R is a PVD (see [6, Lemma
2.1]).

Corollary 2.9. If R ⊂ T is an integral PSI-extension and T ⊂ S is a
PSI-extension, then R ⊂ S is a PSI-extension.

Proof. By Theorem 2.4, R ⊂ T and T ⊂ S are INC-extensions and so is
R ⊂ S by [3, Proposition 6.53]. Let I be an R-prime ideal of S, J = I ∩T and
P = I ∩R. Since J is an R-prime ideal of T , J is a prime ideal of T .

Claim. ΩS(J) ⊆ I. Assume that there exists x ∈ ΩS(J)− I. Thus tx ∈
JS for some t ∈ T−J . Since T is integral over R, tn+rn−1t

n−1+...+r1t+r0 = 0
for some positive integer n and rn−1, ..., r0 ∈ R. Thus r0x ∈ JS ⊆ I and so
r0 ∈ I. Then t(tn−1 + ...+ r1) = −r0 ∈ J and so tn−1 + ...+ r1 ∈ J because J
is a prime ideal of T . Since tx ∈ JS ⊆ I, r1x ∈ I and so r1 ∈ I. We repeat the
sketch: we will have each ri ∈ I. Thus tn ∈ J and so t ∈ J , a contradiction.
Therefore ΩS(J) ⊆ I.

Let P be a minimal prime ideal (of S) over I. By Lemma 2.2-(7), P∩R =
P . Since J ⊆ P ∩ T are prime ideals of T and each of them lies over P in R,
J = P ∩ T because R ⊂ T is an INC-extension by Theorem 2.4. Since T ⊂ S
is a PSI-extension and ΩS(J) ̸= S, ΩS(J) is the unique prime ideal of S that
lies over J in T by Theorem 2.4. Then ΩS(J) = P. Since ΩS(J) ⊆ I ⊆ P,
I = P is a prime ideal of S.

The converse is false as the following shows:

Examples 2.10. 1. Let Z be the ring of integers, Z[i] the ring of Gaussian
integers and C the field of complex numbers. Since zero is the only proper
ideal of C, Z ⊂ C and Z[i] ⊂ C are PSI-extensions. The ring Z[i] is integral
over Z but the extension Z ⊂ Z[i] is not PSI. Indeed: easily one can show
that ΩZ[i](2Z) = 2Z[i] which is a proper ideal of Z[i] but is not prime because:
(1 + i)(1 − i) = 2 ∈ 2Z[i] but 1 ± i /∈ 2Z[i]. Then Z ⊂ Z[i] is not PSI by
Theorem 2.4.

2. Let K ⊂ L be a proper field extension with finite degree (for instance,
take R and C) and let X,Y be two indeterminates over L. Take R = K[X] +
Y L(X)[Y ](Y ), T = L[X] + Y L(X)[Y ](Y ) and S = L(X)[Y ](Y ). Thus R ⊂ S
and T ⊂ S are PSI-extensions (see Proposition 2.13) and it is clear that T is
integral over R. By Lemma 3.1, K[X] ⊂ L[X] is not PSI and nor is R ⊂ T by
Lemma 2.2-(5).

We say that R ⊂ S is residually algebraic if for every prime ideal Q of
S, S/Q is algebraic over R/(Q ∩ R) [3, page 213]. We say that (R,S) is an
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INC-pair (respectively, residually algebraic pair) if for each ring T ∈ [R,S],
R ⊂ T is an INC-extension (respectively, residually algebraic). We say that
(R,S) is a normal pair if each ring T ∈ [R,S] is integrally closed in S.

Corollary 2.11. Suppose that R is integrally closed in S. The following
statements are equivalent:

1. (R,S) is a PSI-pair.

2. R ⊂ R[s] is a PSI-extension for all s ∈ S.

3. (R,S) is an INC-pair.

4. (R,S) is a residually algebraic pair.

5. (R,S) is a normal pair.

6. The prime ideals of each T ∈ [R,S] are extensions of prime ideals of R.

If moreover S is the quotient field of R, then each of (1)-(6) is equivalent to:

7. R is a Prüfer domain.

Proof. 1) ⇒ 2) Trivial.

2) ⇒ 3) By Theorem 2.4 and [1, Theorem 2.3].

3) ⇒ 4) ⇒ 5) ⇒ 6) By [1, Theorem 2.3 and Theorem 2.10].

6) ⇒ 1) Let T ∈ [R,S] and I be an R-prime ideal of T . Let Q be a
minimal prime ideal of T over I and P = Q ∩ R. Thus I ∩ R = P and so
I = PT = Q is prime.

7) ⇔ 1) By [1, Corollary 2.8].

Remarks 2.12. 1. R ⊂ S is a PSI-pair if and only if R ⊂ R[s, s′] is a
PSI-extension for all s, s′ ∈ S. Indeed: let T ∈ [R,S], I be an R-prime ideal
of T that is not prime and s, s′ ∈ T − I such that ss′ ∈ I. Then I ∩R[s, s′] is
an R-prime ideal of R[s, s′] that is not prime.

2. There exists an intermediate ring T between R and S such that T is
maximal (under inclusion) with respect to the following property: (R, T ) is a
PSI-pair. Indeed: let F = {T ∈ [R,S] such that (R, T ) is a PSI-pair}. Then
R ∈ F . Let (Tλ)λ∈Λ be a chain of elements of F and T = ∪λ∈ΛTλ. For all
s, s′ ∈ T , s, s′ ∈ Tλ for some λ ∈ Λ. Thus (R, T ) is a PSI-pair by (1) and so
T ∈ F . Hence, we may apply Zorn Lemma.

Proposition 2.13. Let S be a quasi-local domain with maximal ideal M ,
residue field K, ϕ : S −→ K the natural surjection, and R = ϕ−1(D) where D
is a subring of K. Then:

1. R ⊂ S is a PSI-extension.

2. (R,S) is a PSI-pair if and only if (D,K) is a PSI-pair.
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Proof. 1) If I is an R-prime ideal of S, then I ⊆ M and so I is an R-prime
ideal of R. Let a, b ∈ S such that ab ∈ I and a /∈ I. If a ∈ R, then b ∈ I
because I is an R-prime ideal of S. If a /∈ R, then a /∈ M (because M ⊂ R)
and so a is an invertible element of S. Thus b = a−1ab ∈ I.

2) Assume that (R,S) is a PSI-pair. Let A ∈ [D,K] and T = ϕ−1(A) ∈
[R,S]. If J is a D-prime ideal of A, then J = I/M for some R-prime ideal I of
T . By assumption, I is a prime ideal of T and hence J is a prime ideal of A.
For the converse, let T ∈ [R,S] and I be an R-prime ideal of T . Suppose that
M ⊈ I and let r ∈ M − I. If t, t′ ∈ T such that tt′ ∈ I and t′ /∈ I, then rtt′ ∈ I
and so rt ∈ I (because rt ∈ M ⊂ R). Thus t ∈ I. Suppose that M ⊆ I. Then
I/M is an R/M -prime ideal of T/M and so I is a prime ideal of T .

Example 2.14. If D is a Prüfer domain with quotient field K and X an in-
determinate overK, then (D+XK[[X]],K[[X]]) and (D+XK[X](X),K[X](X))
are PSI-pairs.

3. POLYNOMIAL/POWER SERIES PSI-EXTENSION

Lemma 3.1. Suppose that R is a field. Then R[X] ⊂ S[X] is a PSI-
extension if and only if R = S.

Proof. Let a ∈ S. By Theorem 2.4 and [3, Lemma 6.6.1], S is algebraic
over R and so S is a field. Thus (X − a)S[X]∩R[X] = πR[X] for some monic
irreducible element π of R[X]. Since πR[X] is a maximal ideal of R[X], πS[X]
is a maximal ideal of S[X] by Corollary 2.5. Thus πS[X] = (X − a)S[X] and
so π = X − a. Hence a ∈ R.

If A is a ring and P is a prime ideal of A, then set KA(P ) to be the
quotient field of A/P . Let α be a monic irreducible element of KA(P )[X].
Following McAdam [8], we will write < P,α > to denote the set {h ∈ A[X]
such that α divides h} where h is the result of reducing h modulo P .

Theorem 3.2. The following statements are equivalent:

1. R[X] ⊂ S[X] is a PSI-extension.

2. R ⊂ S is a PSI-extension and KR(P ) = KS(P
′) for all P ′ ∈ Spec(S) and

P = P ′ ∩R.

3. For any prime ideal P of R such that ΩS(P ) survives in S, S/ΩS(P ) is
an overring of R/P .
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Proof. 1) ⇒ 2) The first one follows from the fact that for any R-prime
ideal I of S, I[X] is a R[X]-prime ideal of S[X]. The second one follows from
Lemma 3.1 and the fact thatRN ⊂ SN andR/(J∩R) ⊂ S/J are PSI-extensions
for each multiplicative set N of R and each prime ideal J of S.

2) ⇒ 3) By Theorem 2.4.

3) ⇒ 1) We will apply Theorem 2.4-(3). Let Q be a nonzero prime ideal
of R[X] such that ΩS[X](Q) ̸= S[X]. Let P = Q∩R. Since ΩS(P ) ⊆ ΩS[X](Q),
ΩS(P ) ̸= S. Thus S/ΩS(P ) is an overring of R/P by assumption (so, in
particular, ΩS(P ) is a prime ideal of S because S/ΩS(P ) is a domain).

Claim: There exists a unique prime ideal Q′ of S[X] that lies over Q in
R[X]. Indeed: Denote A = R/P , B = S/ΩS(P ), Q = Q/P [X] which a prime
ideal of R[X]/P [X] ∼= (R/P )[X] = A[X]. Since Q ∩ A = 0, there exists a
unique prime ideal of B[X] that lies over Q by [7, Lemma 4] (the case Q = 0
is trivial because B is an overring of (so algebraic over) A). Thus there exists
a unique prime ideal Q′ of S[X] that lies over Q in R[X].

Then ΩS[X](Q) ⊆ Q′ and so it suffices to show that ΩS[X](Q) = Q′.
Set P ′ = Q′ ∩ S. Since ΩS(P ) ⊆ P ′ and S/ΩS(P ) is algebraic over R/P ,
P ′ = ΩS(P ) because P ′ ∩ R = P . Since ΩS[X](P [X]) = ΩS(P )[X], we can
assume that Q =< P, f > for some monic irreducible element f in KR(P )
by [8, Theorem 1]. Thus Q′ =< P ′, g > for some monic irreducible element
g in KS(P

′) = KR(P ) and g divides f by [8, Theorem 2]. So g = f . Thus
Q′ = Q′/P ′[X] ⊆ QA−(0) and Q′ ⊆ QR−P . Hence Q′ ⊆ ΩS[X](Q).

Corollary 3.3. If R is integrally closed in S such that (R[X], S[X]) is
a PSI-pair, then R = S.

Proof. S is integral over R by [2, Theorem 2.5].

Corollary 3.4. Let R be an integrally closed domain with quotient field
K. The following statements are equivalent:

1. R[X] ⊂ T [X] is a PSI-extension for each overring T of R.

2. R is a Prüfer domain.

Proof. 1) ⇒ 2) Let I be an R-prime ideal of T . Thus I[X] is a R[X]-
prime ideal of T [X] and so it is prime. Then I is a prime ideal of T . Hence
(R,K) is a PSI-pair and so R is a Prüfer domain.

2) ⇒ 1) Let T be an overring of R. By Corollary 2.11, R ⊂ T is a PSI-
extension. By Theorem 3.2, it suffices to show that KR(P ) = KT (PT ) for all
prime ideal P of R such that PT ̸= T . But this follows from the fact that I =
(I∩R)T for each ideal I of T (also from the fact that RP = TPT for each prime
ideal P of R such that PT ̸= T and the fact that KR(P ) ∼= (RP )/PRP ).
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Theorem 3.5. Let R be a quasi-local integrally closed domain with quo-
tient field K. The following statements are equivalent:

1. R[[X]] ⊂ T [[X]] is a PSI-extension for each overring T of R.

2. R is a valuation domain.

Proof. 1) ⇒ 2) Let T be an overring of R, I be an R-prime ideal of T and
P = I ∩ R. Thus I[[X]] is a R[[X]]-prime ideal of T [[X]]. Then I is a prime
ideal of T . Hence (R,K) is a PSI-pair and so R is a valuation domain.

2) ⇒ 1) Let Q be a R[[X]]-prime ideal of T [[X]]. If X ∈ Q, then Q =
(Q∩T )+XT [[X]] is a prime ideal of T [[X]]. Let P be the maximal ideal of T .
Suppose that Q ⊆ P [[X]] and let f, g ∈ T [[X]] such that fg ∈ Q. Since f or
g ∈ P [[X]] ⊂ R[[X]], f or g ∈ Q and so Q is a prime ideal of T [[X]]. Assume
that X /∈ Q and Q ⊈ P [[X]].

Claim: P ⊈ Q. If not: P ⊆ Q. Let P be a minimal prime ideal of T [[X]]
over Q. Thus P ⊆ P ⊈ P [[X]] and so X ∈ P (in fact P = P +XT [[X]] which
is the maximal ideal of T [[X]]). Then Xnu ∈ Q for some positive integer n
and some unit u of T [[X]]. Thus Xn ∈ Q and so X ∈ Q, a contradiction.

Let a ∈ P − Q. Note that aT [[X]] ⊆ P [[X]] ⊂ R[[X]]. Let f, g ∈ T [[X]]
such that fg ∈ Q and g /∈ Q. Since af ∈ R[[X]] and afg ∈ Q, af ∈ Q and so
f ∈ Q (because a ∈ R). Hence, Q is a prime ideal of T [[X]].
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