
ON THE INDEPENDENT RAINBOW DOMINATION STABLE
GRAPHS

ELHAM GHOLAMI, NADER JAFARI RAD∗, and ABOLFAZL TEHRANIAN

Communicated by Ioan Tomescu

For a graph G and an integer k ≥ 2, let f : V (G) → P({1, 2, ..., k}) be a func-
tion. If for each vertex v ∈ V (G) such that f(v) = ∅ we have ∪u∈N(v)f(u) =
{1, 2, ..., k}, then f is called a k-rainbow dominating function (or simply kRDF)
of G. The weight of a kRDF f is defined as w(f) =

∑
v∈V (G) |f(v)|. The min-

imum weight of a kRDF of G is called the k-rainbow domination number of
G, and is denoted by γrk(G). An independent k-rainbow dominating function
(IkRDF) is a kRDF f with the property that {v : f(v) ̸= ∅} is an indepen-
dent set. The minimum weight of an IkRDF of G is called the independent
k-rainbow domination number of G, and is denoted by irk(G). A graph G is
k-rainbow domination stable if the k-rainbow domination number of G remains
unchanged under removal of any vertex. Likewise, a graph G is independent
k-rainbow domination stable if the independent k-rainbow domination number
of G remains unchanged under removal of any vertex. In this paper, we prove
that determining whether a graph is k-rainbow domination stable or indepen-
dent k-rainbow domination stable is NP-hard even when restricted to bipartite
or planar graphs, thus answering a question posed in [11].
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1. INTRODUCTION

We refer to [10] for notation and terminology not given here. Let G =
(V,E) be a simple graph of order n with vertex set V = V (G) and edge set E =
E(G). For a vertex v ∈ V (G), let NG(v) = {u|uv ∈ E(G)} denotes the open
neighborhood of v and NG[v] = NG(v)∪{v} denotes the closed neighborhood of
v. For a set S ⊆ V (G), we denote N(S) = ∪v∈SN(v) and N [S] = ∪v∈SN [v].
The degree of a vertex v, degG(v), or just deg(v), in a graph G denotes the
number of neighbors of v in G. We refer to ∆(G) and δ(G) as the maximum
degree and the minimum degree among the vertices of G, respectively. A subset
S of vertices is called an independent set if no pair of vertices of S are adjacent.
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A subset S of vertices of a graph G is a dominating set of G, if N [S] = V (G).
The domination number of G, denoted by γ(G), is the minimum cardinality
of a dominating set in G. A dominating set of cardinality γ(G) is called a
γ(G)-set. We say that a vertex v is dominated by a set S if v ∈ N [S].

Brešar et al. [3, 4] introduced the concept of rainbow domination in
graphs. For a graph G, let f : V (G) → P({1, 2, ..., k}) be a function. If for
each vertex v ∈ V (G) such that f(v) = ∅ we have ∪u∈N(v)f(u) = {1, 2, ..., k},
then f is called a k-rainbow dominating function (or simply kRDF) of G.

The weight, w(f), of f is defined as w(f) =
∑

v∈V (G) |f(v)|. The min-
imum weight of a kRDF of G is called the k-rainbow domination number of
G, and is denoted by γrk(G). Shao et al. [16] considered independent k-
rainbow dominating functions as those k-rainbow dominating functions f with
the property that {v : f(v) ̸= ∅} is an independent set.

An independent k-rainbow dominating function (IkRDF) is a kRDF f
with the property that {v : f(v) ̸= ∅} is an independent set. The minimum
weight of an IkRDF of G is called the independent k-rainbow domination num-
ber of G, and is denoted by irk(G). The complexity of rainbow domination
and independent rainbow domination in graphs are studied in [5] and [16],
respectively.

Much have been written about the effect of the removal of a vertex on
the domination number. This is a well-studied concept and is considered to
several domination parameters. Bauer et al. [2] introduced the concept of
domination stability in graphs. The domination stability stγ(G) of a graph
G is the minimum number of vertices whose removal changes the domination
number. A graph G is called domination stable if the domination number of G
remains unchanged under removal of any vertex. The concept of stability has
been considered for different types of domination, see for example, [6, 7, 9, 13,
15]. The complexity of whether a graph is domination stable is studied in [12],
where the authors showed that determining whether a graph is domination
stable is NP-hard even for bipartite graphs. The complexity of stability for
some other variants of domination is considered by several authors, see for
example [1, 7].

Li et al. [11] introduced the concept of 2-rainbow domination stability
in graphs. A graph G is 2-rainbow domination stable if γr2(G − v) = γr2(G)
for any vertex v. They proved that determining whether a graph is 2-rainbow
domination stable is NP-hard in general graphs. They also posed the following
open problem.

Problem 1 (Li et al. [11]). Determine the computational complexity of
the 2-rainbow domination stable graph problem on some special classes of
graphs, such as planar graphs or bipartite graphs.
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In this paper, we determine the complexity of two more generalized prob-
lems, namely k-rainbow domination stability and independent k-rainbow dom-
ination stability. For an integer k ≥ 2, a graph G is k-rainbow domination
stable if γrk(G − v) = γrk(G) for any vertex v. A graph G is independent
k-rainbow domination stable if irk(G− v) = irk(G) for any vertex v.

We show that determining whether a graph is k-rainbow domination sta-
ble or independent k-rainbow domination stable is NP-hard even when re-
stricted to bipartite or planar graphs. The special case k = 2 for k-rainbow
domination provides an answer to Problem 1.

For a function f : V (G) → P({1, 2, ..., k}), and a vertex v ∈ V (G)
with f(v) = ∅, we say that v is k-rainbow dominated by f if ∪u∈N(v)f(u) =
{1, 2, ..., k}.

2. PRELIMINARY

We define the k-rainbow domination stability number of a graph G, de-
noted by stγrk(G), as the minimum number of vertices whose removal changes
the k-rainbow domination number of G. Likewise, the independent k-rainbow
domination stability number of a graph G, denoted by stirk(G), is the min-
imum number of vertices whose removal changes the independent k-rainbow
domination number of G.

Note that the k-rainbow domination-stability number and independent
k-rainbow domination-stability number are defined for every graph G with
γrk(G) > 1 and irk(G) > 1, respectively, since the removal of |V (G)| − 1
vertices of G results a K1 with k-rainbow domination number and indepen-
dent k-rainbow domination number equal to one. We also define stγrk(K1) =
stirk(K1) = 0.

Observation 1. 1) A graph G is k-rainbow domination stable if and only
if stγrk(G) > 1.

2) A graph G is independent k-rainbow domination stable if and only if
stirk(G) > 1.

3. NP-HARDNESS RESULTS

The decision problem of k-rainbow domination stability number problem
is stated in this paper as follows:

k-rainbow domination stability number problem (krDSNP)
Instance: GraphG=(V,E) and the k-rainbow domination number γrk(G).
Question: Is stγrk(G) > 1?
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We use a transformation from 3-SAT, which was proven to be NP-complete
in [8]. The problem 3-SAT is the problem of determining if there exists an in-
terpretation that satisfies a given Boolean formula. The formula in 3-SAT is
given in conjunctive normal form, where each clause contains three literals. We
assume that the formula contains the instance of any literal u and its negation
ū (in the other case, all clauses containing the literal u are satisfied by the true
assignment of u).

Theorem 2. krDSNP is NP-hard even for bipartite graphs.

Proof. Let Φ = {C,U} be an instance in the 3-SAT Problem, that is, Φ is
boolean formula in 3-conjunctive normal form. Let U = {u1, u2, . . . , un} be the
set of literals and the C = {C1, C2, . . . , Cm} be the set of clauses. We construct
the following graph GΦ associated to Φ. For each literal ui construct a graph
Gi with vertex set V (Gi) = {ui, a1i , a2i , ..., aki , ūi, di, e1i , e2i , ..., eki , bi} and edge

set E(Gi) = {uibi, ūidi, uiaji , ūia
j
i , bie

j
i , die

j
i : j = 1, 2, ..., k}. Figure 1 shows the

graph Gi for k = 3.

Figure 1 – The graph Gi for k = 3

For each clause Cj we add a clause vertex cj , where vertex cj is adjacent
to the literal vertices that correspond to the three literals it contains. For
example, if Cj = (u1 ∨ ū2 ∨ u3), then the clause vertex cj is adjacent to the
literal vertices u1, ū2 and u3. Then add a star K1,k with center x and leaves
x1, x2, ..., xk, and join x to every clause vertex cj , for i = 1, 2, ...,m. Hence x
is of degree m+ k. Clearly, we can see that GΦ is a bipartite graph and it can
be built in polynomial time.

Let f be a γkr(GΦ)-function. Clearly,
∑

u∈V (Gi)
|f(u)| ≥ 2k for i =

1, 2, ..., n. Since |f(x)|+ |f(x1)|+ ...+ |f(xk)| ≥ k, we obtain that γrk(GΦ) ≥
2nk + k. On the other hand, assigning {1, 2, ..., k} to x, ui and di for i =
1, 2, ..., n, and ∅ to other vertices of GΦ yields a krDF for GΦ, implying that
γrk(GΦ) ≤ (2n+ 1)k. We deduce that γrk(GΦ) = (2n+ 1)k.
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Assume that C has a satisfying truth assignment t. We show that

stγrk(GΦ) > 1.

Let v ∈ V (GΦ), and g be a γrk(GΦ−v)-function. Assume that v ∈ V (Gi)
for some integer i. Since each vertex of {aji , e

j
i : j = 1, 2, ..., k} − {v} is k-

rainbow dominated by g, we find that
∑

u∈V (Gi)−{v} |g(v)| ≥ 2k. Furthermore,∑
u∈V (Gj)

|g(u)| ≥ 2k for each j ∈ {1, 2, ..., n} − {i} and |g(x)|+ |g(x1)|+ ...+

|g(xk)| ≥ k. Thus, w(g) = γrk(GΦ − v) ≥ (2n+ 1)k.

We show that γrk(GΦ − v) ≤ (2n + 1)k. If v = ui, then assigning
{1, 2, ..., k} to x, ui, bi and uj , dj for each j ∈ {1, 2, ..., n}− {i}, and ∅ to other
vertices of GΦ − v, yields a krDF for GΦ − v, and so γrk(GΦ − v) ≤ (2n+ 1)k.
Similarly, γrk(GΦ − v) ≤ (2n + 1)k if v ∈ {ui, bi, di}. If v = aji , for some
j ∈ {1, 2, ..., k}, then assigning {1, 2, ..., k} to x, ui and di for i = 1, 2, ..., n, and
∅ to other vertices of GΦ yields a krDF for GΦ, implying that γrk(GΦ − v) ≤
(2n+1)k. Similarly γrk(GΦ−v) ≤ (2n+1)k if v = eji , for some j ∈ {1, 2, ..., k}.
We deduce that γrk(GΦ − v) = (2n+ 1)k = γrk(GΦ).

Next assume that v ∈ {c1, c2, ...., cm}. Since
∑

u∈V (Gj)
|g(u)| ≥ 2k for

each j ∈ {1, 2, ..., n} and |g(x)| + |g(x1)| + ... + |g(xk)| ≥ k, we have w(g) =
γrk(GΦ − v) ≥ (2n + 1)k. On the other hand, assigning {1, 2, ..., k} to x, ui
and di for i = 1, 2, ..., n, and ∅ to other vertices of GΦ − v yields a krDF for
GΦ − v, implying that γrk(GΦ − v) ≤ (2n+ 1)k. Consequently, γrk(GΦ − v) =
(2n+ 1)k. If v ∈ {x1, x2, ..., xk}, then similarly we obtain that γrk(GΦ − v) =
(2n + 1)k. It remains to assume that v = x. Clearly w(g) ≥ (2n + 1)k, since∑

u∈V (Gi)
|g(u)| ≥ 2k for i = 1, 2, ..., n, and |g(x1)|+ |g(x2)|+ ...+ |g(xk)| = k.

We form a set D as follows. For each i = 1, 2, ..., n if t(ui) = T then
ui, di ∈ D, and if t(ui) = F then ui, bi ∈ D. Clearly |D| = 2n. We define a
function h on V (GΦ)−{v} by assigning {1, 2, ..., k} to every vertex of D, {1} to
x1, x2, ..., xk, and ∅ to each other vertex of GΦ−v. Since t is a truth assignment,
h is a krDF for GΦ − v, implying that γrk(GΦ − v) ≤ (2n + 1)k = γrk(GΦ),
and so γrk(GΦ − v) = γrk(GΦ). We conclude that γrk(GΦ − v) = γrk(GΦ).
Consequently, stγrk(GΦ) > 1.

Assume now that C does not have a satisfying truth assignment. We
consider the graph GΦ−x. Let h1 be a γrk(GΦ−x)-function. Clearly |h1(x1)| =
|h1(x2)| = ... = |h1(xk)| = 1, and

∑
u∈V (Gi)

|h1(u)| ≥ 2k for each i = 1, 2, ..., n,
and thus w(h1) ≥ (2n + 1)k. Assume that w(h1) = (2n + 1)k. Clearly there
is no integer i ∈ {1, 2, ..., n} such that h1(ui) = h1(ui) = {1, 2, ..., k}, since
then e1i , ..., e

k
i are not k-rainbow dominated by h1. Let A = {ui : h1(ui) =

{1, 2, ..., k}, i = 1, 2, ..., k} ∪ {ui : h1(ui) = {1, 2, ..., k}, i = 1, 2, ..., n}. Since h1
is a k-rainbow dominating function for GΦ − v, any vertex of {c1, c2, ..., cm} is
dominated by a vertex of A. Now we define an assignment t1 : U → {T, F} by
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t1(ui) = T if ui ∈ A and t1(ui) = F if ui ∈ A. Then t1 is a truth assignment
for C, a contradiction. Thus w(h1) > 4n+2. We conclude that stγrk(GΦ) = 1,
as desired.

A natural graph to associate with the 3-SAT Problem is the bipartite
graph G{C,U} that has C ∪ U as its vertex set and has an edge between the
vertices ui and cj if cj contains either ui or ūi. PLANAR 3-SAT is 3-SAT
restricted to those instances {C,U} for which G{C,U} is planar. It is well-know
that the PLANAR 3-SAT Problem is NP-complete [14]. The same proof of
Theorem 2 using a transformation from PLANAR 3-SAT Problem yields the
following.

Theorem 3. krDSNP is NP-hard even for planar graphs.

It is clear that if a γrk(G)-function f is an IkRDF, then γrk(G) = irk(G).

Lemma 4. Let GΦ be the graph defined in the proof of Theorem 2. Then
irk(GΦ) = γrk(GΦ) = irk(GΦ − v) = γrk(GΦ − v) for any vertex v ∈ V (GΦ).

Proof. Clearly irk(GΦ) ≥ γrk(GΦ) = (2n + 1)k. On the other hand, the
function assigning {1, 2, ..., k} to x, ui and di for i = 1, 2, ..., n, and ∅ to other
vertices of GΦ is an IkrDF for GΦ, implying that irk(GΦ) ≤ (2n + 1)k. We
deduce that irk(GΦ) = γrk(GΦ) = (2n+ 1)k.

Now let v ∈ V (GΦ). Clearly irk(GΦ − v) ≥ γrk(GΦ − v) = (2n+ 1)k. On
the other hand, each γrk(GΦ − v)-function defined in the proof of Theorem 2
is independent. Consequently, irk(GΦ − v) = γrk(GΦ − v) = (2n+ 1)k.

Consider the following decision problem associated to independent k-
rainbow domination stability:

Independent k-rainbow domination stability number problem

(IkrDSNP)

Instance: Graph G = (V,E) and the independent k-rainbow domination

number irk(G).

Question: Is irk(G− v) = irk(G) for every vertex v ∈ V (G)?

As a consequence of Theorems 2 and 3 and Lemma 4 we obtain the
following.

Theorem 5. IkrDSNP is NP-hard even for bipartite or planar graphs.



7 On the independent rainbow domination stable graphs 185

4. CONCLUDING REMARKS

Using a transformation of the 3-SAT problem, it is proven in [12] that
determining whether a graph is domination stable is NP-hard even for bipar-
tite graphs, it is proven in [1] that determining whether a graph is Roman
domination stable is NP-hard even for bipartite graphs, and it is proven in [7]
that determining whether a graph is subdivision domination stable is NP-hard
even for bipartite graphs [7]. The same proofs using a transformation from the
PLANAR 3-SAT Problem imply that the above three decision problems are
NP-hard even for planar graphs.

REFERENCES

[1] M. Amraee, N. Jafari Rad, and M. Maghasedi, Roman domination stability in graphs.
Math. Rep. (Bucur.) 21(72) (2019), 2,193–204.

[2] D. Bauer, F. Harary, J. Nieminen, and C. Suffel, Domination alternation sets in graphs.
Discrete Math. 47 (1983), 153–161.
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