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For a graph G and an integer k > 2, let f : V(G) — P({1,2,...,k}) be a func-
tion. If for each vertex v € V(G) such that f(v) = 0 we have Uyen(w) f(u) =
{1,2,...,k}, then f is called a k-rainbow dominating function (or simply kRDF)
of G. The weight of a kRDF f is defined as w(f) = >, cy (g [f(v)]. The min-
imum weight of a kRDF of G is called the k-rainbow domination number of
G, and is denoted by v,1(G). An independent k-rainbow dominating function
(IKRDF) is a kRDF f with the property that {v : f(v) # 0} is an indepen-
dent set. The minimum weight of an IkRDF of G is called the independent
k-rainbow domination number of G, and is denoted by i,+(G). A graph G is
k-rainbow domination stable if the k-rainbow domination number of G remains
unchanged under removal of any vertex. Likewise, a graph G is independent
k-rainbow domination stable if the independent k-rainbow domination number
of G remains unchanged under removal of any vertex. In this paper, we prove
that determining whether a graph is k-rainbow domination stable or indepen-
dent k-rainbow domination stable is NP-hard even when restricted to bipartite
or planar graphs, thus answering a question posed in [I1].
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1. INTRODUCTION

We refer to [10] for notation and terminology not given here. Let G =
(V, E) be a simple graph of order n with vertex set V' = V(G) and edge set E =
E(G). For a vertex v € V(G), let Ng(v) = {u|uv € E(G)} denotes the open
neighborhood of v and Ng[v] = Ng(v)U{v} denotes the closed neighborhood of
v. For a set S C V(G), we denote N(S) = UpyesN(v) and N[S] = UpesN[v].
The degree of a vertex v, degg(v), or just deg(v), in a graph G denotes the
number of neighbors of v in G. We refer to A(G) and §(G) as the mazimum
degree and the minimum degree among the vertices of GG, respectively. A subset
S of vertices is called an independent set if no pair of vertices of S are adjacent.
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A subset S of vertices of a graph G is a dominating set of G, if N[S] = V(G).
The domination number of G, denoted by ~(G), is the minimum cardinality
of a dominating set in G. A dominating set of cardinality v(G) is called a
7(G)-set. We say that a vertex v is dominated by a set S if v € N[S].

Bresar et al. [3, 4] introduced the concept of rainbow domination in
graphs. For a graph G, let f : V(G) — P({1,2,...,k}) be a function. If for
each vertex v € V(G) such that f(v) = 0 we have Uyen(w) f(u) = {1,2,...,k},
then f is called a k-rainbow dominating function (or simply kRDF) of G.

The weight, w(f), of f is defined as w(f) = > ey () [f(v)]. The min-
imum weight of a kRDF of G is called the k-rainbow domination number of
G, and is denoted by 7,x(G). Shao et al. [16] considered independent k-
rainbow dominating functions as those k-rainbow dominating functions f with
the property that {v: f(v) # 0} is an independent set.

An independent k-rainbow dominating function (IkRDF) is a kRDF f
with the property that {v : f(v) # 0} is an independent set. The minimum
weight of an IkRDF of G is called the independent k-rainbow domination num-
ber of G, and is denoted by i,1(G). The complexity of rainbow domination
and independent rainbow domination in graphs are studied in [5] and [16],
respectively.

Much have been written about the effect of the removal of a vertex on
the domination number. This is a well-studied concept and is considered to
several domination parameters. Bauer et al. [2] introduced the concept of
domination stability in graphs. The domination stability st,(G) of a graph
G is the minimum number of vertices whose removal changes the domination
number. A graph G is called domination stable if the domination number of G
remains unchanged under removal of any vertex. The concept of stability has
been considered for different types of domination, see for example, [6] [7, 9] 13
15]. The complexity of whether a graph is domination stable is studied in [12],
where the authors showed that determining whether a graph is domination
stable is NP-hard even for bipartite graphs. The complexity of stability for
some other variants of domination is considered by several authors, see for
example [11 [7].

Li et al. [11] introduced the concept of 2-rainbow domination stability
in graphs. A graph G is 2-rainbow domination stable if v,2(G — v) = Y2(G)
for any vertex v. They proved that determining whether a graph is 2-rainbow
domination stable is NP-hard in general graphs. They also posed the following
open problem.

Problem 1 (Li et al. [11]). Determine the computational complexity of
the 2-rainbow domination stable graph problem on some special classes of
graphs, such as planar graphs or bipartite graphs.
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In this paper, we determine the complexity of two more generalized prob-
lems, namely k-rainbow domination stability and independent k-rainbow dom-
ination stability. For an integer k > 2, a graph G is k-rainbow domination
stable if v,.x(G — v) = v,(G) for any vertex v. A graph G is independent
k-rainbow domination stable if i,;,(G — v) = i,,(G) for any vertex v.

We show that determining whether a graph is k-rainbow domination sta-
ble or independent k-rainbow domination stable is NP-hard even when re-
stricted to bipartite or planar graphs. The special case k¥ = 2 for k-rainbow
domination provides an answer to Problem [T}

For a function f : V(G) — P({1,2,...,k}), and a vertex v € V(G)
with f(v) = 0, we say that v is k-rainbow dominated by f if Uyen()f(u) =
{1,2,...,k}.

2. PRELIMINARY

We define the k-rainbow domination stability number of a graph G, de-
noted by st,, (G), as the minimum number of vertices whose removal changes
the k-rainbow domination number of G. Likewise, the independent k-rainbow
domination stability number of a graph G, denoted by st; , (G), is the min-
imum number of vertices whose removal changes the independent k-rainbow
domination number of G.

Note that the k-rainbow domination-stability number and independent
k-rainbow domination-stability number are defined for every graph G with
Yie(G) > 1 and i,5(G) > 1, respectively, since the removal of |[V(G)| — 1
vertices of G results a Ky with k-rainbow domination number and indepen-
dent k-rainbow domination number equal to one. We also define st , (K;) =
Stirk (Kl) =0.

Observation 1. 1) A graph G is k-rainbow domination stable if and only
if st,,, (G) > 1.

2) A graph G is independent k-rainbow domination stable if and only if
Sti,«k (G) > 1.

3. NP-HARDNESS RESULTS

The decision problem of k-rainbow domination stability number problem
is stated in this paper as follows:

k-RAINBOW DOMINATION STABILITY NUMBER PROBLEM (krDSNP)

Instance: Graph G=(V, E) and the k-rainbow domination number v, (G).
Question: Is sty , (G) > 17
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We use a transformation from 3-SAT, which was proven to be NP-complete
n [8]. The problem 3-SAT is the problem of determining if there exists an in-
terpretation that satisfies a given Boolean formula. The formula in 3-SAT is
given in conjunctive normal form, where each clause contains three literals. We
assume that the formula contains the instance of any literal u and its negation
@ (in the other case, all clauses containing the literal u are satisfied by the true
assignment of u).

THEOREM 2. krDSNP is NP-hard even for bipartite graphs.

Proof. Let ® = {C,U} be an instance in the 3-SAT Problem, that is, ® is
boolean formula in 3-conjunctive normal form. Let U = {u1, ua, ..., u,} be the
set of literals and the C' = {C4, Cq, ..., Cp,} be the set of clauses. We construct
the following graph Gg associated to ®. For each literal u; construct a graph
G; with vertex set V(G;) = {ul,az,af, . af i, d;, el 2, ... ek b} and edge
set B(G;) = {ulbl,uldz,ula uza b; e ,d; e 17 =1,2,...,k}. Figure 1 shows the
graph G; for k = 3.

Figure 1 — The graph G; for kK =3

For each clause C; we add a clause vertex cj, where vertex c; is adjacent
to the literal vertices that correspond to the three literals it contains. For
example, if Cj = (u1 V U2 V u3), then the clause vertex c¢; is adjacent to the
literal vertices w1, 42 and u3. Then add a star Kij with center x and leaves
x1,T2,..., 2, and join  to every clause vertex c;, for i = 1,2,...,m. Hence x
is of degree m + k. Clearly, we can see that G is a bipartite graph and it can
be built in polynomial time.

Let f be a 7y, (Go)-function. Clearly, > cy (g, |f(w)| = 2k for i
1,2,...,n. Since |f(x)| + |f(z1)| + ... + | f(zr)| > k, we obtain that v,4(Ga)
2nk + k. On the other hand, assigning {1,2,...,k} to z, u; and d; for i
1,2,...,n, and 0 to other vertices of Gg yields a krDF for Gg¢, implying that
'yrk(Gq>) (2n + 1)k. We deduce that v,£(Gs) = (2n + 1)k.

v
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Assume that C has a satisfying truth assignment ¢. We show that
St%k(G:;p) > 1.

Let v € V(Gg), and g be a v,(Gp — v)-function. Assume that v € V(G;)
for some integer i. Since each vertex of {a/,e! : j = 1,2,...k} — {v} is k-
rainbow dominated by g, we find that ) weV (G \ g(v)| > 2k. Furthermore,
ZUEV @) lg(w)| > 2k for each j € {1,2,. n} {z} and |g(z)| + |g(z1)]| + ... +
9(z)| > k. Thus, w(g) = 14(Ca —v) > (2n+ k.

We show that v,x(Ge —v) < (2n+ 1)k. If v = w,;, then assigning
{1,2,...,k} to x, w;, b; and w;, d; for each j € {1,2,...,n} — {i}, and 0 to other
vertices of G — v, yields a krDF for Gg — v, and so v,4(Go — v) < (2n+1)k.
Similarly, v,4(Ge —v) < (2n + )k if v € {u;,b;,d;}. If v = al, for some
j€{1,2,...,k}, then assigning {1,2,...,k} to z, u; and d; for i = 1, 2 ..,n, and
() to other vertices of G¢ yields a krDF for G, implying that ’}/Tk(Gq;. —v) <
(2n+1)k. Similarly v,x(Go —v) < 2n+1)kifv = ef, for some j € {1,2,...,k}.
We deduce that v,.x(Ge —v) = (2n + 1)k = 7,£(Go).

Next assume that v € {c1,co,....,cn}. Since EueV(Gj) lg(w)| > 2k for
each j € {1,2,...,n} and |g(x)| + |g(z1)| + ... + |g(xk)| > k, we have w(g) =
Yk(Ge —v) > (2n + 1)k. On the other hand, assigning {1,2,...,k} to z, u;
and d; for i = 1,2,...,n, and () to other vertices of G — v yields a krDF for
Gg — v, implying that v,4(Ge — v) < (2n + 1)k. Consequently, v,1(Go —v) =
(2n+ k. If v € {z1, 22, ...,z }, then similarly we obtain that v,1(Ge — v) =
(2n 4+ 1)k. It remains to assume that v = x. Clearly w(g) > (2n + 1)k, since
Y uev(cy l9(W)| = 2k for i =1,2,...,n, and |g(z1)] + |g(z2)| + ... + |g(zk)| = .

We form a set D as follows. For each i = 1,2,....n if ¢t(u;) = T then
u;,d; € D, and if t(u;) = F then w;,b; € D. Clearly |D| = 2n. We define a
function h on V(Gg)—{v} by assigning {1,2, ..., k} to every vertex of D, {1} to
x1, T2, ..., T, and () to each other vertex of Gy —v. Since t is a truth assignment,
h is a krDF for G — v, implying that v,4(Ge — v) < (2n + 1)k = v,4(Gs),
and so 1,x(Ge — v) = 1.x(Ga). We conclude that v,4(Go — v) = 7k(Go).
Consequently, st , (Ga) > 1.

Assume now that C' does not have a satisfying truth assignment. We
consider the graph Gg —z. Let hy be a v, (Go —x)-function. Clearly |hi(z1)| =
|hi(@2)| = ... = [h(zx)| =1, and 3_ ey (g, [P (w)| = 2k for each i = 1,2,...,n,
and thus w(hi) > (2n + 1)k. Assume that w(h;) = (2n + 1)k. Clearly there
is no integer i € {1,2,...,n} such that hi(u;) = h1(w;) = {1,2,...,k}, since
then eil, ...,ef are not k-rainbow dominated by h;. Let A = {u; : hi(u;) =
(1,2, k}i=1,2, . kYU {@ : hi(@) = {1,2,....,k},i =1,2,....,n}. Since hy
is a k-rainbow dominating function for G¢ — v, any vertex of {c1,ca,...,cp} is
dominated by a vertex of A. Now we define an assignment t; : U — {T, F'} by
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ti(u;)) =T if u; € A and t1(u;) = F if u; € A. Then ¢ is a truth assignment
for C, a contradiction. Thus w(hi) > 4n+ 2. We conclude that st , (Go) = 1,
as desired. [

A natural graph to associate with the 3-SAT Problem is the bipartite
graph Gcy that has C'UU as its vertex set and has an edge between the
vertices u; and c¢; if ¢; contains either u; or w;. PLANAR 3-SAT is 3-SAT
restricted to those instances {C, U} for which G¢ yy is planar. It is well-know
that the PLANAR 3-SAT Problem is NP-complete [I4]. The same proof of
Theorem [2] using a transformation from PLANAR 3-SAT Problem yields the
following.

THEOREM 3. krDSNP is NP-hard even for planar graphs.
It is clear that if a 7,1 (G)-function f is an IkRDF, then 7,1 (G) = i, (G).

LEMMA 4. Let Gg be the graph defined in the proof of Theorem[3 Then
irk(Go) = Vrk(Go) = i (G — v) = Yk (Go — v) for any vertex v € V(Gg).

Proof. Clearly i,(Go) > v£(Gs) = (2n + 1)k. On the other hand, the
function assigning {1,2,...,k} to =, u; and d; for i = 1,2, ...,n, and () to other
vertices of Gg is an TkrDF for Gg, implying that i,1(Ge) < (2n + 1)k. We
deduce that i, (Ge) = 1k(Ga) = (2n + 1)k.

Now let v € V(Gg). Clearly i, (Go —v) > 1x(Go —v) = (2n+ 1)k. On
the other hand, each 7,1(Go — v)-function defined in the proof of Theorem
is independent. Consequently, i,x(Go —v) = yx(Ge —v) = 2n+ 1)k. O

Consider the following decision problem associated to independent k-
rainbow domination stability:

INDEPENDENT k-RAINBOW DOMINATION STABILITY NUMBER PROBLEM
(IkrDSNP)

Instance: Graph G = (V, E) and the independent k-rainbow domination
number i, (G).

Question: Is i, (G — v) = i,1(G) for every vertex v € V(G)?

As a consequence of Theorems [2] and [3] and Lemma [4] we obtain the
following.

THEOREM 5. IkrDSNP is NP-hard even for bipartite or planar graphs.
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4. CONCLUDING REMARKS

Using a transformation of the 3-SAT problem, it is proven in [12] that
determining whether a graph is domination stable is NP-hard even for bipar-
tite graphs, it is proven in [I] that determining whether a graph is Roman
domination stable is NP-hard even for bipartite graphs, and it is proven in [7]
that determining whether a graph is subdivision domination stable is NP-hard
even for bipartite graphs [7]. The same proofs using a transformation from the
PLANAR 3-SAT Problem imply that the above three decision problems are
NP-hard even for planar graphs.
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