GENERALIZATIONS OF C3 MODULES AND C4 MODULES

ZHANMIN ZHU

Communicated by Sorin Dăscălescu

Abstract

Let \mathscr{A} be a class of right R-modules that is closed under isomorphisms, and let M be a right R-module. Then M is called \mathscr{A}-C3 if, whenever N and K are direct summands of M with $N \cap K=0$ and $K \in \mathscr{A}$, then $N \oplus K$ is also a direct summand of $M ; M$ is called an \mathscr{A}-C4 module, if whenever $M=A \oplus B$ where A and B are submodules of M and $A \in \mathscr{A}$, then every monomorphism $f: A \rightarrow B$ splits. Some characterizations and properties of these classes of modules are investigated. As applications, some new characterizations of semisimple artinian rings, right V-rings, quasi-Frobenius rings and von Neumann regular rings are given.

AMS 2020 Subject Classification: 16D50, 16E50, 16P20.
Key words: \mathscr{A} - C 3 modules, \mathscr{A} - C 4 modules, semisimple artinian rings, right Vrings, von Neumann regular rings.

1. INTRODUCTION

Throughout, R is an associative ring with identity and all modules are unitary. Unless otherwise specified, \mathscr{A} is a class of some right R-modules which is closed under isomorphisms. Recall that a right R-module M is called a $C 2$ module [8] if every submodule K of M that is isomorphic to a direct summand of M is itself a direct summand of M; a right R-module M is called a $C 3$ module [8, 2] if, whenever N and K are direct summands of M with $N \cap K=0$, then $N \oplus K$ is also a direct summand of M. Clearly, C2 modules are C3 modules. In [4], Ding, Ibrahim, Yousif and Zhou generalized the concept of C3 modules to C4 modules. According to [4], a right R-module M is called a C4 module, if whenever $M=A \oplus B$ where A and B are submodules of M, then every monomorphism $f: A \rightarrow B$ splits. In this paper, we shall generalize the concepts of $\mathrm{C} i$ modules $(i=2,3,4)$ to \mathscr{A} - $\mathrm{C} i$ modules $(i=2,3,4)$, respectively, and give some interesting results on these modules. As applications, some new characterizations of semisimple artinian rings, right V-rings, quasi-Frobenius rings and von Neumann regular rings will be given.

MATH. REPORTS 25(75) (2023), 1, 187-197
doi: $10.59277 /$ mrar.2023.25.75.1.187

2. \mathscr{A}-C2 MODULES AND \mathscr{A}-C3 MODULES

Recall that a right R-module M is called pseudo-injective (resp., pseudo $F Q$-injective, pseudo $P Q$-injective, pseudo $Q P$-injective) if every monomorphism from a submodule (resp., finitely generated submodule, principal submodule, M-cyclic submodule) of M to M extends to an endomorphism of M; a right R-module M is called minimal quasi-injective if every homomorphism from a minimal submodule of M to M extends to an endomorphism of M. These concepts can be found in [5, 13, 12, 14] and [10], respectively. Motivated by these concepts, we start this section with the following definitions.

Definition 2.1. Let \mathscr{A} be a class of right R-modules, and let M and N be two right R-modules. Then M is called pseudo \mathscr{A} - N-injective if every monomorphism from a submodule $K \in \mathscr{A}$ of N to M extends to an homomorphism of N to $M . M$ is called pseudo \mathscr{A}-injective if it is pseudo \mathscr{A} - M-injective.

Example 2.2. Let \mathscr{A} be the class of all (resp., all finitely generated, all principal, all minimal, all M-cyclic) right R-modules. Then M is pseudo \mathscr{A} injective if and only if it is pseudo-injective (resp., pseudo FQ-injective, pseudo PQ-injective, minimal quasi-injective, pseudo QP-injective).

Proposition 2.3. Let \mathscr{A} be a class of right R-modules, M, N be two right R-modules and N^{\prime} be a submodule of N. If M is pseudo $\mathscr{A}-N$-injective, then
(1) Every direct summand of M is pseudo $\mathscr{A}-N$-injective.
(2) M is pseudo $\mathscr{A}-N^{\prime}$-injective.

Proof. (1) Let $M=M_{1} \oplus M_{2}$. Then for every submodule $K \in \mathscr{A}$ of N and every monomorphism f of K to M_{1}, since M is pseudo \mathscr{A} - N-injective, f extends to a homomorphism of N to M. Which follows that f extends to a homomorphism of N to M_{1} because M_{1} is a direct summand of M.
(2) It is obvious.

By Proposition 2.3, we have immediately the following corollary.
Corollary 2.4. Let \mathscr{A} be a class of right R-modules. Then every direct summand of a pseudo \mathscr{A}-injective module is pseudo \mathscr{A}-injective.

The concepts of C 2 modules and C 3 modules have been extended in several ways. For example, a module M is called $F C 2$ (resp., $P C 2$, MinC2, soc-C2) if every finitely generated (resp., principle, minimal, semisimple) submodule of M that is isomorphic to a direct summand of M is itself a direct summand of M; a module M is called $F C 3$ (resp., PC3, Min- C3) if, whenever N and K are direct summands of M with $N \cap K=0$ and N is finitely
generated (resp., principle, minimal) then $N \oplus K$ is also a direct summand of M; a module M is called $G C 2$ if every submodule of M that is isomorphic to M is itself a direct summand of M; a module M is called $G C 3$ if, whenever N and K are direct summands of M with $N \cap K=0$ and N is isomorphic to M, then $N \oplus K$ is also a direct summand of M. These concepts can be found in [13, 12, 10, 9, 11 and [1], respectively. We call a module M soc- $C 3$ if, whenever N and K are direct summands of M with $N \cap K=0$ and N is semisimple, then $N \oplus K$ is also a direct summand of M. Note that our definition of soc-C3 modules is different from that defined in [1]. Now we extend these concepts as follows.

Definition 2.5. Let \mathscr{A} be a class of right R-modules that is closed under isomorphisms, and let M be a right R-module. Then M is called \mathscr{A}-C2 if every submodule $K \in \mathscr{A}$ of M that is isomorphic to a direct summand of M is itself a direct summand of $M . M$ is called \mathscr{A}-C3 if, whenever N and K are direct summands of M with $N \cap K=0$ and $K \in \mathscr{A}$, then $N \oplus K$ is also a direct summand of M.

It is easy to see that pseudo injective $\Rightarrow C 2 \Rightarrow C 3$. In general, we have the following results.

THEOREM 2.6. Let \mathscr{A} be a class of right R-modules that is closed under isomorphisms, and let M be a right R-module. Consider the following conditions:
(1) M is pseudo \mathscr{A}-injective.
(2) M is $\mathscr{A}-C 2$.
(3) M is $\mathscr{A}-C 3$.

Then, the following implications hold
$(1) \Rightarrow(2) \Rightarrow(3)$.
Proof. (1) $\Rightarrow(2)$. Let M_{R} be pseudo \mathscr{A}-injective with $S=\operatorname{End}\left(M_{R}\right)$. If K is a submodule of $M, K \in \mathscr{A}$ and $K \cong e M$, where $e^{2}=e \in S$, then $e M$ is pseudo \mathscr{A} - M-injective by Proposition 2.3 and hence, K is also pseudo $\mathscr{A}-M$-injective, this follows that K is a direct summand of M because $K \in \mathscr{A}$. This proves (2).
$(2) \Rightarrow(3)$. Let N and K be direct summands of M with $N \cap K=0$ and $K \in \mathscr{A}$. Write $N=e M$ and $K=f M$, where e, f are idempotents in S, then $e M \oplus f M=e M \oplus(1-e) f M$. Since $(1-e) f M \cong f M \in \mathscr{A},(1-e) f M=h M$ for some $h^{2}=h \in S$ by (2). Let $g=e+h-h e$. Then $g^{2}=g$ and $e M \oplus f M=g M$, as required.

Proposition 2.7. Let \mathscr{A} be a class of right R-modules that is closed under isomorphisms and direct summands, and let $M \in \mathscr{A}$ be a right R-module.

Then M is a C2 module if and only if M is an \mathscr{A}-C2 module, M is a C3 module if and only if M is an \mathscr{A}-C3 module.

Proof. Obvious.
Corollary 2.8. (1) If M is a finitely generated module, then M is a C2 module if and only if it is a FC2 module, M is a C3 module if and only if it is a FC3 module.
(2) If M is a cyclic module, then M is a C2 module if and only if it is a PC2 module, M is a C3 module if and only if it is a PC3 module.
(3) If M is a finitely generated $P F Q$-injective (resp., cyclic $P P Q$-injective) module, then it is a C2 module.

It is well known that C2 modules and C3 modules are inherited by direct summands [8, Proposition 1.30]. The next results show that \mathscr{A}-C2 modules and \mathscr{A}-C3 modules are also inherited by direct summands.

Theorem 2.9. (1) A direct summand of an \mathscr{A}-C2 module is again an \mathscr{A}-C2 module.
(2) A direct summand of an $\mathscr{A}-C 3$ module is again an \mathscr{A}-C3 module.

Proof. (1) Let M be an \mathscr{A}-C2 module and $N \subseteq^{\oplus} M$. We need to show that N is also $\mathscr{A}-\mathrm{C} 2$. Let $A \in \mathscr{A}$ be a submodule of N that is isomorphic to a direct summand of N. Since M is $\mathscr{A}-\mathrm{C} 2, A \subseteq{ }^{\oplus} M$. Write $M=A \oplus M_{1}$. Then $N=M \cap N=\left(A \oplus M_{1}\right) \cap N=A \oplus\left(M_{1} \cap N\right)$, as required.
(2) Let M be an \mathscr{A}-C3 module and $N \subseteq{ }^{\oplus} M$. We prove that N is also \mathscr{A}-C3. Let A and B be two direct summands of N with $A \cap B=0$ and $A \in \mathscr{A}$. Since M is \mathscr{A}-C3, $A \oplus B \subseteq \subseteq^{\oplus}$. Write $M=(A \oplus B) \oplus C$. Then $N=M \cap N=(A \oplus B \oplus C) \cap N=(A \oplus B) \oplus(C \cap N)$, as required.

Corollary 2.10. (1) A direct summand of a C2 (resp., GC2, PC2, FC2, Min-C2, soc-C2) module is again a C2 (resp., GC2, PC2, FC2, Min-C2, soc-C2) module.
(2) A direct summand of a C3 (resp., GC3, PC3, FC3, Min-C3, soc-C3) module is again a C3 (resp., GC3, PC3, FC3, Min-C3, soc-C3) module.

The following theorem extends the results of [2, Proposition 2.2].
Theorem 2.11. Let \mathscr{A} be a class of right R-modules that is closed under isomorphisms, and let M be a right R-module. Consider the following conditions:
(1) M is an $\mathscr{A}-C 3$ module.
(2) If $A \subseteq{ }^{\oplus} M, B \subseteq{ }^{\oplus} M, A \in \mathscr{A}$ and $A \cap B=0$, then $M=A_{1} \oplus B=$ $A \oplus B_{1}$ for some submodules $A_{1} \supseteq A$ and $B_{1} \supseteq B$.
(3) If $A \subseteq \subseteq^{\oplus} M, B \subseteq^{\oplus} M, A \in \mathscr{A}$ and $A \cap B \subseteq{ }^{\oplus} M$, then $A+B \subseteq{ }^{\oplus} M$. Then, the following implications hold
$(3) \Rightarrow(1) \Leftrightarrow(2)$.
Moreover, if \mathscr{A} is closed under direct summands, then the above three conditions are equivalent.

Proof. (1) \Rightarrow (2). Let $A \subseteq{ }^{\oplus} M, B \subseteq \subseteq^{\oplus} M, A \in \mathscr{A}$ and $A \cap B=0$. Then by (1), $A \oplus B \subseteq \oplus$, and so $M=(A \oplus B) \oplus C$ for a submodule $C \subseteq M$. Write $A_{1}=A \oplus C, B_{1}=B \oplus C$. Then, we have $A_{1} \supseteq A, B_{1} \supseteq B$ and $M=A_{1} \oplus B=A \oplus B_{1}$.
(2) \Rightarrow (1). Let $A \subseteq{ }^{\oplus} M, B \subseteq{ }^{\oplus} M, A \in \mathscr{A}$ and $A \cap B=0$. Then by (2), we have $M=A_{1} \oplus B=A \oplus B_{1}$ for some submodules $A_{1} \supseteq A$ and $B_{1} \supseteq B$. Now $B_{1}=B_{1} \cap M=B_{1} \cap\left(A_{1} \oplus B\right)=B \oplus\left(A_{1} \cap B_{1}\right)$, and so $M=A \oplus B_{1}=A \oplus B \oplus\left(A_{1} \cap B_{1}\right)$, as required.
$(3) \Rightarrow(1)$. It is clear.
Now suppose that \mathscr{A} is closed under direct summands, we need to prove (1) \Rightarrow (3). Since $A \cap B \subseteq{ }^{\oplus} M, M=(A \cap B) \oplus K$ for some submodule K of M. So $A=(A \cap B) \oplus(A \cap K)$ and $B=(A \cap B) \oplus(B \cap K)$, and hence both $A \cap K$ and $B \cap K$ are direct summands of M because both A and B are direct summands of M. Clearly $(A \cap K) \cap(B \cap K)=0$. Note that \mathscr{A} is closed under direct summands, $A \cap K \in \mathscr{A}$. By (1), we have that $T=:(A \cap K) \oplus(B \cap K)$ is a direct summand of M. Again, since both T and $A \cap B$ are direct summands of M, and $(A \cap B) \cap T \subseteq(A \cap B) \cap K=0$ as well as $A \cap B \in \mathscr{A}$, by (1), we have $(A \cap B) \oplus T$ is a direct summand of M. Thus, $A+B=[(A \cap B) \oplus(A \cap K)]+[(A \cap B) \oplus(B \cap K)]=(A \cap B) \oplus T$ is a direct summand of M.

Lemma 2.12 ([6, Lemma 2.6(1)(2)]). Let $M=A \oplus B, X \leq A$ and $f: X \rightarrow B$. Then
(1) $X \oplus B=\langle f\rangle \oplus B$, where $\langle f\rangle=\{x-f(x) \mid x \in X\}$.
(2) $\operatorname{Ker} f=\langle f\rangle \cap A$.

The following theorem extends the results of [2, Proposition 2.3, Corollary 2.4].

THEOREM 2.13. Let \mathscr{A} be a class of right R-modules that is closed under isomorphisms. If M is an \mathscr{A}-C3 module, $M=A \oplus B$ for some submodules A and B where $A \in \mathscr{A}$, and $f: A \rightarrow B$ is an R-homomorphism, then
(1) If f is an R-monomorphism, then $\operatorname{Im} f \subseteq{ }^{\oplus} B$.
(2) If \mathscr{A} is closed under direct summands and $\operatorname{Ker} f \subseteq{ }^{\oplus} A$, then $\operatorname{Im} f \subseteq{ }^{\oplus} B$.

Proof. (1) By Lemma 2.12(1), we have $M=\langle f\rangle \oplus B$. Since f is an R-monomorphism, by Lemma 2.12(2), $\langle f\rangle \cap A=0$.

Since M is \mathscr{A}-C3, $\langle f\rangle \oplus A \subseteq{ }^{\oplus} M$. Now we show that $\operatorname{Im} f \oplus A=\langle f\rangle \oplus A$. For, if $b \in \operatorname{Im} f$, then $b=f(a)$ for some $a \in A$, so $b=a-a+f(a) \in A+\langle f\rangle$, and hence $\operatorname{Im} f \oplus A=\langle f\rangle \oplus A$. Since $\langle f\rangle \oplus A \subseteq{ }^{\oplus} M$, $\operatorname{Im} f \subseteq{ }^{\oplus} M$, it implies that $\operatorname{Im} f \subseteq{ }^{\oplus} B$.
(2) Let $f: A \rightarrow B$ be an R-homomorphism with $\operatorname{Ker} f \subseteq{ }^{\oplus} A$. If $A=$ $\operatorname{Ker} f \oplus A^{\prime}$ for a submodule A^{\prime} of A, then by hypothesis, $A^{\prime} \in \mathscr{A}, M=A \oplus B=$ $\operatorname{Ker} f \oplus A^{\prime} \oplus B$, and the restriction map $\left.f\right|_{A^{\prime}}: A^{\prime} \rightarrow B$ is a monomorphism. Since $A^{\prime} \oplus B$ is an \mathscr{A}-C3 module by Theorem 2.9(2), we infer from (1) that $\operatorname{Im} f=\operatorname{Im}\left(\left.f\right|_{A^{\prime}}\right) \subseteq^{\oplus} B$.

3. \mathscr{A}-C4 MODULES

Now, we extend the concept of C 4 modules as following.
Definition 3.1. (1) Let \mathscr{A} be a class of right R-modules that is closed under isomorphisms. A right R-module M is called an \mathscr{A} - C 4 module, if whenever $M=A \oplus B$ where A and B are submodules of M and $A \in \mathscr{A}$, then every monomorphism $f: A \rightarrow B$ splits.
(2) A right R-module M is called a PC4 (resp., FC4, GC4, Min-C4, socC4, pro-C4) module if it is an \mathscr{A} - C 4 module, where \mathscr{A} is the class of all cyclic (resp., finitely generated, isomorphic to M, simple, semisimple, projective) right R-modules.

It is easy to see that $\mathrm{C} i \Rightarrow \mathrm{FC} i \Rightarrow \mathrm{PC} i \Rightarrow \mathrm{Min}-\mathrm{C} i ; \mathrm{Ci} \Rightarrow$ soc- $\mathrm{C} i \Rightarrow$ Min- $\mathrm{C} i$ and $\mathrm{Ci} \Rightarrow \mathrm{GC} i, i=2,3,4$.

Lemma 3.2. Let A, B, T be submodules of $M, A \cap B=0, M=A \oplus T$, and $\pi: A \oplus T \rightarrow T$ be the natural projection. Then $A \oplus B=A \oplus \pi(B)$.

Proof. For any $b \in B$, there exists $a \in A$ and $t \in T$ such that $b=a+t=$ $a+\pi(b) \in A \oplus \pi(B)$, so $\pi(b)=t=-a+b \in A \oplus B$. This proves the result.

Now, we give some characterizations of \mathscr{A} - C 4 modules as follows.
Theorem 3.3. Let \mathscr{A} be a class of right R-modules that is closed under isomorphisms, and let M be a right R-module. Consider the following conditions:
(1) M is an $\mathscr{A}-C 4$ module.
(2) If $M=A \oplus B$ where A and B are submodules of M and $A \in \mathscr{A}$, and $f: A \rightarrow B$ is a monomorphism, then $\operatorname{Im} f \subseteq{ }^{\oplus} B$.
(3) If $B \cong A \subseteq \oplus{ }^{\oplus} M, B \subseteq M, A \in \mathscr{A}$ and $A \cap B=0$, then $A \oplus B \subseteq{ }^{\oplus} M$.
(4) If $B \cong A \subseteq{ }^{\oplus} M, B \subseteq M, A \in \mathscr{A}$ and $A \cap B=0$, then $B \subseteq{ }^{\oplus} M$.
(5) If $M=A \oplus A^{\prime}=B \oplus B^{\prime}, A \in \mathscr{A}$ and $A \cap B=A \cap B^{\prime}=0$, then $A \oplus B \subseteq{ }^{\oplus} M$.
(6) If $B \subseteq M, A \subseteq \oplus M, A \in \mathscr{A}, A \cong B$ and $A \cap B=0$, then $A \oplus B \subseteq{ }^{\oplus} M$.
(7) If $M=A \oplus B$ for some submodules A and B where $A \in \mathscr{A}$, and $f: A \rightarrow B$ is an R-homomorphism such that $\operatorname{Ker} f \subseteq^{\oplus} A$, then $\operatorname{Im} f \subseteq^{\oplus} B$.

Then, the following implications hold:
$(7) \Rightarrow(1) \Leftrightarrow(2) \Leftrightarrow(3) \Leftrightarrow(4) \Leftrightarrow(5) \Leftrightarrow(6)$.
Moreover, if \mathscr{A} is closed under direct summands, then the above conditions are equivalent.

Proof. (1) \Leftrightarrow (2). It is obvious.
(2) \Rightarrow (3). Let $B \stackrel{\sigma}{\approx} A \subseteq^{\oplus} M, B \subseteq M, A \in \mathscr{A}$ and $A \cap B=0$. We need to prove that $A \oplus B \subseteq \subseteq^{\oplus} M$. Write $M=A \oplus T$ for a submodule T of M, and let π : $A \oplus T \rightarrow T$ be the natural projection. Then by Lemma 3.2, $A \oplus B=A \oplus \pi(B)$. Since $A \cap B=0, B \stackrel{\left.\pi\right|_{B}}{\cong} \pi(B)$. Since $M=A \oplus T$ and $\left.\pi\right|_{B} \circ \sigma^{-1}: A \rightarrow T$ is a monomorphism, by (2), we have that $\operatorname{Im}\left(\left.\pi\right|_{B} \circ \sigma^{-1}\right)=\pi(B) \subseteq^{\oplus} T$. Let $T=\pi(B) \oplus C$. Then $M=A \oplus T=(A \oplus \pi(B)) \oplus C=(A \oplus B) \oplus C$, as required.
$(3) \Rightarrow(4)$. It is obvious.
(4) $\Rightarrow(5)$. Let $\pi: B \oplus B^{\prime} \rightarrow B^{\prime}$ be the natural projection. Then by Lemma 3.2, we have $A \oplus B=\pi(A) \oplus B$. Since $A \cap B=0, \pi(A) \cong A \subseteq \oplus$ $M, A \in \mathscr{A}$ and $\pi(A) \cap A \subseteq B^{\prime} \cap A=0$, by (4), $\pi(A) \subseteq \subseteq^{\oplus} M$, and so $\pi(A) \subseteq^{\oplus} B^{\prime}$. write $B^{\prime}=\pi(A) \oplus T$. Then $M=B \oplus B^{\prime}=B \oplus(\pi(A) \oplus T)=(B \oplus \pi(A)) \oplus T=$ $(A \oplus B) \oplus T$, and then $A \oplus B \subseteq \subseteq^{\oplus}$.
(5) \Rightarrow (6). Write $M=A \oplus A^{\prime}$, and let $\pi: A \oplus A^{\prime} \rightarrow A^{\prime}$ be the natural projection and $A \stackrel{f}{\approx} B$. Then by Lemma 2.12(1), we have $M=A \oplus A^{\prime}=$ $\langle\pi f\rangle \oplus A^{\prime}$, where $\langle\pi f\rangle=\{a-\pi f(a) \mid a \in A\}$. Since $A \cap B=0$, it is easy to see that the map πf is monic, and so $A \cap\langle\pi f\rangle=0$ by Lemma 2.12(2). Thus, by (5), we have that $A \oplus B=A \oplus \pi(B)=A \oplus\langle\pi f\rangle \subseteq{ }^{\oplus} M$.
(6) \Rightarrow (2). Let $M=A \oplus B$ where A and B are submodules of $M, A \in \mathscr{A}$, and $f: A \rightarrow B$ be a monomorphism. We need to prove that $\operatorname{Im} f \subseteq^{\oplus} B$. By Lemma 2.12, we have $A \oplus B=\langle f\rangle \oplus B$ and $\langle f\rangle \cap A=0$. Clearly, $A \cong\langle f\rangle$. So (6) implies that $A \oplus\langle f\rangle \subseteq \subseteq^{\oplus}$. Observing that $A \oplus\langle f\rangle=A \oplus \operatorname{Im} f$, we have that $\operatorname{Im} f \subseteq{ }^{\oplus} B$.
$(7) \Rightarrow(2)$. It is obvious.
Now suppose that \mathscr{A} is closed under direct summands, we need to prove (2) \Rightarrow (7). Let $M=A \oplus B$ for some submodules A and B where $A \in \mathscr{A}$, and let $f: A \rightarrow B$ be an R-homomorphism with $\operatorname{Ker} f \subseteq^{\oplus} A$. Write $A=\operatorname{Ker} f \oplus C$. Then $M=A \oplus B=(\operatorname{Ker} f \oplus C) \oplus B=C \oplus(\operatorname{Ker} f \oplus B)$. Since $A \in \mathscr{A}$ and
\mathscr{A} is closed under direct summands, $C \in \mathscr{A}$. Clearly, $\left.f\right|_{C}$ is a monomorphism from C to $\operatorname{Ker} f \oplus B$. So, by (2), $\operatorname{Im} f=\operatorname{Im}\left(\left.f\right|_{C}\right) \subseteq{ }^{\oplus}(\operatorname{Ker} f \oplus B)$, and hence $\operatorname{Im} f \subseteq{ }^{\oplus} B$, as required.

Corollary 3.4. If \mathscr{A} is closed under isomorphisms and direct summands, M is an \mathscr{A}-C4 module and $M \in \mathscr{A}$, then M is a $C 4$ module.

Proof. It follows from Theorem 3.3(2).
Corollary 3.5. Every cyclic (resp., finitely generated, semisimple, projective) PC4 (resp., FC4, soc-C4, pro-C4) module is a C4 module.

Recall that an R-module M is said to have the internal finite exchange property [7] if, for any direct summand X of M and any decomposition $M=$ $\oplus_{I} M_{\alpha}$, where I is a finite index set, there exist submodules $M_{\alpha}^{\prime} \subseteq M_{\alpha}$ such that $M=X \oplus\left(\oplus_{I} M_{\alpha}^{\prime}\right)$.

Proposition 3.6. If M is an \mathscr{A}-C3 module, then it is an \mathscr{A}-C4 module. Conversely, if \mathscr{A} is closed under direct summands and M is an \mathscr{A}-C4 module with the internal finite exchange property, then it is an \mathscr{A}-C3 module.

Proof. If M is an \mathscr{A}-C3 module, then it follows immediately from Theorem 2.13(1) that M is an \mathscr{A}-C4 module. Now assume that M is an \mathscr{A}-C4 module with the internal finite exchange property. Let A and B are direct summands of M with $A \cap B=0$ and $A \in \mathscr{A}$. Write $M=A \oplus C=B \oplus D$. Then by the internal finite exchange property, there exists a submodule A^{\prime} of A and a submodule C^{\prime} of C such that $M=B \oplus A^{\prime} \oplus C^{\prime}$, and so, by modular law, we have $A=A^{\prime} \oplus A^{\prime \prime}$ and $C=C^{\prime} \oplus C^{\prime \prime}$, where $A^{\prime \prime}=\left(B \oplus C^{\prime}\right) \cap A, C^{\prime \prime}=\left(B \oplus A^{\prime}\right) \cap C$. It is easy to see that $A^{\prime \prime} \in \mathscr{A}, M=A^{\prime \prime} \oplus\left(A^{\prime} \oplus C\right)=C^{\prime} \oplus\left(B \oplus A^{\prime}\right), A^{\prime \prime} \cap C^{\prime}=0, A^{\prime \prime} \cap$ $\left(B \oplus A^{\prime}\right)=0$, so we infer from Theorem 3.3(5) that $A \oplus B=A^{\prime \prime} \oplus\left(B \oplus A^{\prime}\right) \subseteq{ }^{\oplus} M$, and thus M is an \mathscr{A}-C3 module.

Corollary 3.7. Let M be a module with the internal finite exchange property, then it is a PC3 (resp., FC3, soc-C3, pro-C3) module if and only if it is a PC4 (resp., FC4, soc-C4, pro-C4) module.

Remark 3.8. We remark that Min-C2 modules are nothing but the simple-direct-injective module defined in [3]. By [3, Proposition 2.1] and Theorem 3.3(2), a module M is Min-C2 if and only if it is Min-C3 if and only if it is Min-C4.

The following example shows that \mathscr{A}-Ci modules need not be Ci-modules for each $i=2,3,4$, and Min-C4 modules need not be PC4.

Example 3.9. Let K be a field and R be the K-algebra consisting of all 3×3 matrices of the form $\left(\begin{array}{lll}\alpha_{1} & \alpha_{2} & \alpha_{3} \\ 0 & \alpha_{4} & 0 \\ 0 & 0 & \alpha_{5}\end{array}\right)$, where $\alpha_{i} \in K$. Then by [3, Example 3.7], $e_{11} R \oplus E\left(e_{11} R\right)$ is a simple-direct-injective right R-module. But $e_{11} R$ is not injective, by Theorem 3.3(2), $e_{11} R \oplus E\left(e_{11} R\right)$ is not a PC4-module and hence it is not a C4-module. So, in general, \mathscr{A}-Ci modules need not be C i-modules for each $i=2,3,4$.

Proposition 3.10. (1) A direct summand of an \mathscr{A}-C4 module is again an \mathscr{A}-C4 module.
(2) If $M \oplus M$ is an \mathscr{A}-C4 module, then M is an \mathscr{A}-C2 module.
(3) Let M be an \mathscr{A}-C4 module, $A \subseteq \oplus(B, B \subseteq M, A \in \mathscr{A}$ and $A \cap B=0$. If there exists a monomorphism $f: A \rightarrow B$, then A is an \mathscr{A}-C2 module.

Proof. (1) Let M be an \mathscr{A}-C4 module, $K \subseteq{ }^{\oplus} M$ and write $M=K \oplus N$. Suppose $K=A \oplus B, A \in \mathscr{A}$ and $f: A \rightarrow B$ is a monomorphism. Then $M=A \oplus(B \oplus N), A \in \mathscr{A}$, and $f: A \rightarrow B \oplus N$ is a monomorphism. Since M is an $\mathscr{A}-\mathrm{C} 4$ module, $\operatorname{Im} f \subseteq{ }^{\oplus} B \oplus N$, and so $\operatorname{Im} f \subseteq{ }^{\oplus} B$. This follows that K is an \mathscr{A}-C4 module.
(2) Suppose that $M \oplus M$ is an \mathscr{A}-C4 module. Let $A \in \mathscr{A}$ and $A \stackrel{\sigma}{\cong} B \subseteq{ }^{\oplus}$ M. We need to prove that $A \subseteq \oplus$. Write $M=B \oplus C$ for a submodule C of M. Since $M \oplus M \cong B \oplus(M \oplus C)$ is an \mathscr{A} - C 4 module and $B \in \mathscr{A}$ and $\iota \sigma^{-1}: B \rightarrow M \oplus C$ is monic, where $\iota: M \rightarrow M \oplus C$ is the natural injection, by Theorem 3.3(2), $\operatorname{Im}\left(\iota \sigma^{-1}\right) \subseteq{ }^{\oplus} M \oplus C$, that is, $A \oplus 0 \subseteq{ }^{\oplus} M \oplus C$, and so $A \subseteq{ }^{\oplus} M$.
(3) Since M is an \mathscr{A}-C4 module, we infer from Theorem 3.3(3) that $A \oplus A \cong A \oplus \operatorname{Im} f \subseteq{ }^{\oplus} M$. By (1), $A \oplus A$ is an $\mathscr{A}-\mathrm{C} 4$ module. And so, by (2), A is an $\mathscr{A}-\mathrm{C} 2$ module.

Theorem 3.11. The following statements are equivalent for a ring R :
(1) Every $A \in \mathscr{A}$ is injective.
(2) Every right R-module is an \mathscr{A}-C4 module.

Proof. (1) \Rightarrow (2). It follows from Theorem 3.3(2).
$(2) \Rightarrow(1)$. Let $A \in \mathscr{A}$. Since $A \oplus E(A)$ is an \mathscr{A}-C4 module, by Theorem 3.3(2), $A \subseteq{ }^{\oplus} E(A)$, and so $A=E(A)$ is injective. \square

Recall that a ring R is semisimple artinian if and only if every cyclic module is injective, a ring R is a right V -ring if every simple right R-module is injective, a ring R is quasi-Frobenius if and only if every projective right
R-module is injective. Based on these facts, by Theorem 3.11, we have the following corollaries.

Corollary 3.12. (1) A ring R is a semisimple artinian ring if and only if every right R-module is a PC4 module.
(2) [3, Proposition 4.1] A ring R is a right V-ring if and only if every right R-module is a simple-direct-injective module.
(3) A ring R is a quasi-Frobenius ring if and only if every right R-module is a pro-C4 module.

Corollary 3.13. A ring R is a right noetherian right V-ring if and only if every right R-module is a soc-C4 module.

Proof. \Rightarrow. Since R is a right V-ring, every simple right R-module is injective. But R is right noetherian, every direct sum of injective R-modules is injective. And so, every semisimple right R-module is injective. Thus, by Theorem 3.11, we have that every right R-module is a soc- C 4 module.
\Leftarrow. Since every right R-module is a soc-C4 module, by Theorem 3.11, we have that every semisimple right R-module is injective. Clearly, R is a right Vring. Now let K_{1}, K_{2}, \ldots be simple right R-modules. Then $\oplus_{i=1}^{\infty} K_{i}$ is injective, and so $\oplus_{i=1}^{\infty} K_{i} \subseteq{ }^{\oplus} \oplus_{i=1}^{\infty} E\left(K_{i}\right)$. Observing that $\oplus_{i=1}^{\infty} K_{i} \subseteq^{\text {ess }} \oplus_{i=1}^{\infty} E\left(K_{i}\right)$, we have $\oplus_{i=1}^{\infty} K_{i}=\oplus_{i=1}^{\infty} E\left(K_{i}\right)$, and so $\oplus_{i=1}^{\infty} E\left(K_{i}\right)$ is injective. By [8, Theorem 7.48], R is a right noetherian ring.

We end this paper with a characterization of von Neumann regular rings in terms of C3 modules, PC3 modules and PC4 modules.

Proposition 3.14. The following statements are equivalent for a ring R :
(1) R is a von Neumann regular ring.
(2) Every finitely generated submodule of a projective right R-module is a C3 module.
(3) Every finitely generated submodule of a projective right R-module is a PC3 module.
(4) Every 2-generated submodule of a projective right R-module is a PC3 module.
(5) Every 2-generated submodule of a projective right R-module is a PC4 module.

Proof. (1) \Rightarrow (2). Since R is a regular ring, every finitely generated submodule of a projective right R-module is a direct summand, and so (2) holds.
$(2) \Rightarrow(3) \Rightarrow(4) \Rightarrow(5)$. These implications are straightforward.
$(5) \Rightarrow(1)$. Let I be a principal right ideal. By (5), $I \oplus R$ is PC 4 . And so, by Theorem 3.3(2), $I \subseteq \subseteq^{\oplus} R$, as required.

Acknowledgments. The author wishes to thank the referee for a careful reading of the article and giving a detailed report. This research was supported by the Natural Science Foundation of Zhejiang Province, China (LY18A010018).

REFERENCES

[1] I. Amin, M. Yousif, and N. Zeyada, Soc-injective rings and modules. Comm. Algebra 33 (2005), 4229-4250.
[2] I. Amin, Y. Ibrahim, and M. Yousif, C3-modules. Algebra Colloq. 22 (2015), 655-670.
[3] V. Camillo, Y. Ibrahim, M. Yousif, and Y.Q. Zhou, Simple-direct-injective modules. J. Algebra 420 (2014), 39-53.
[4] N.Q. Ding, Y. Ibrahim, M. Yousif, and Y.Q. Zhou, C4-modules. Comm. Algebra 45 (2017), 1727-1740.
[5] S.K. Jain and S. Singh, Quasi-injective and Pseudo-injective modules. Canad. Math. Bull. 18 (1975), 359-366.
[6] D. Keskin Tütüncü, S.H. Mohamed, and N. Orhan, Mixed injective modules. Glasg. Math. J. 52 (2010), 111-120.
[7] Y. Kuratomi and K. Oshiro, On direct sums of extending modules and internal exchange property. J. Algebra 250 (2002), 115-133.
[8] W.K. Nicholson and M.F. Yousif, Quasi-Frobenius Rings. Cambridge Tracts in Math. 158, Cambridge Univ. Press, 2003.
[9] M.F. Yousif and Y.Q. Zhou, Rings for which certain elements have the principal extension property. Algebra Colloq. 10 (2003), 501-512.
[10] Z.M. Zhu and Z.S. Tan, Minimal quasi-injective modules. Sci. Math. Jpn. 62 (2005), 465-469.
[11] Z.M. Zhu and J.X. Yu, On $G C_{2}$ modules and their endomorphism rings. Linear and Multilinear Algebra 56 (2008), 511-515.
[12] Z.M. Zhu, Pseudo PQ-injective modules. Turkish J. Math. 35 (2011), 391-398.
[13] Z.M. Zhu, Pseudo FQ-injective modules. Bull. Malays. Math. Sci. Soc. 36 (2013), 385391.
[14] Z.M. Zhu, Pseudo QP-injective modules and generalized pseudo QP-injective modules. Int. Electron. J. Algebra 14 (2013), 32-43.

Received September 7, 2019

Jiaxing University
Department of Mathematics
Jiaxing, Zhejiang Province, 314001, P.R.China
zhuzhanminzjxu@hotmail.com

