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Let o7 be a class of right R-modules that is closed under isomorphisms, and let
M be a right R-module. Then M is called «/-C3 if, whenever N and K are
direct summands of M with NN K =0 and K € &, then N @ K is also a direct
summand of M; M is called an «7-C4 module, if whenever M = A@® B where A
and B are submodules of M and A € 7, then every monomorphism f: A — B
splits. Some characterizations and properties of these classes of modules are
investigated. As applications, some new characterizations of semisimple artinian
rings, right V-rings, quasi-Frobenius rings and von Neumann regular rings are
given.
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1. INTRODUCTION

Throughout, R is an associative ring with identity and all modules are
unitary. Unless otherwise specified, o/ is a class of some right R-modules
which is closed under isomorphisms. Recall that a right R-module M is called
a C2 module [§ if every submodule K of M that is isomorphic to a direct
summand of M is itself a direct summand of M; a right R-module M is called
a C3 module [8, 2] if, whenever N and K are direct summands of M with
NNK =0, then N @ K is also a direct summand of M. Clearly, C2 modules
are C3 modules. In [4], Ding, Ibrahim, Yousif and Zhou generalized the concept
of C3 modules to C4 modules. According to [4], a right R-module M is called a
C4 module, if whenever M = A® B where A and B are submodules of M, then
every monomorphism f : A — B splits. In this paper, we shall generalize the
concepts of Ci modules (i = 2,3,4) to «7-Ci modules (i = 2, 3,4), respectively,
and give some interesting results on these modules. As applications, some new
characterizations of semisimple artinian rings, right V-rings, quasi-Frobenius
rings and von Neumann regular rings will be given.
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2. &/-C2 MODULES AND «-C3 MODULES

Recall that a right R-module M is called pseudo-injective (resp., pseudo
FQ-injective, pseudo PQ-injective, pseudo QP-injective) if every monomor-
phism from a submodule (resp., finitely generated submodule, principal sub-
module, M-cyclic submodule) of M to M extends to an endomorphism of M;
a right R-module M is called minimal quasi-injective if every homomorphism
from a minimal submodule of M to M extends to an endomorphism of M.
These concepts can be found in [5, 13, 12, [14] and [10], respectively. Motivated
by these concepts, we start this section with the following definitions.

Definition 2.1. Let &/ be a class of right R-modules, and let M and N
be two right R-modules. Then M is called pseudo &7-N-injective if every
monomorphism from a submodule K € &7 of N to M extends to an homomor-
phism of N to M. M is called pseudo &7-injective if it is pseudo /- M-injective.

Ezample 2.2. Let o/ be the class of all (resp., all finitely generated, all
principal, all minimal, all M-cyclic) right R-modules. Then M is pseudo -
injective if and only if it is pseudo-injective (resp., pseudo FQ-injective, pseudo
PQ-injective, minimal quasi-injective, pseudo QP-injective).

PROPOSITION 2.3. Let o7 be a class of right R-modules, M, N be two
right R-modules and N’ be a submodule of N. If M is pseudo <7 -N -injective,
then

(1) Every direct summand of M is pseudo <7 -N -injective.

(2) M is pseudo </ -N'-injective.

Proof. (1) Let M = M; & Ms. Then for every submodule K € &/ of N
and every monomorphism f of K to Mj, since M is pseudo «7-N-injective, f
extends to a homomorphism of N to M. Which follows that f extends to a
homomorphism of N to M; because M is a direct summand of M.

(2) It is obvious. [

By Proposition 2.3, we have immediately the following corollary.

COROLLARY 2.4. Let &7 be a class of right R-modules. Then every direct
summand of a pseudo & -injective module is pseudo <f -injective.

The concepts of C2 modules and C3 modules have been extended in
several ways. For example, a module M is called FFC2 (resp., PC2, Min-
C2, soc-C2) if every finitely generated (resp., principle, minimal, semisimple)
submodule of M that is isomorphic to a direct summand of M is itself a
direct summand of M; a module M is called F'C3 (resp., PC3, Min- C3) if,
whenever NV and K are direct summands of M with NNK = 0 and N is finitely
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generated (resp., principle, minimal) then N @ K is also a direct summand of
M; a module M is called GC?2 if every submodule of M that is isomorphic to
M is itself a direct summand of M; a module M is called GC3 if, whenever N
and K are direct summands of M with NN K =0 and N is isomorphic to M,
then N @ K is also a direct summand of M. These concepts can be found in
[13, 12, 10}, 9, T1] and [I], respectively. We call a module M soc-C$3 if, whenever
N and K are direct summands of M with N N K = 0 and N is semisimple,
then NV @ K is also a direct summand of M. Note that our definition of soc-C3
modules is different from that defined in [I]. Now we extend these concepts as
follows.

Definition 2.5. Let o7 be a class of right R-modules that is closed under
isomorphisms, and let M be a right R-module. Then M is called &7-C2 if every
submodule K € & of M that is isomorphic to a direct summand of M is itself
a direct summand of M. M is called «/-C3 if, whenever N and K are direct
summands of M with NN K =0 and K € &, then N & K is also a direct
summand of M.

It is easy to see that pseudo injective = C2 = (3. In general, we have
the following results.

THEOREM 2.6. Let & be a class of right R-modules that is closed under
isomorphisms, and let M be a right R-module. Consider the following condi-
tions:

(1) M is pseudo <f -injective.

(2) M is o7 -C2.

(3) M is o7 -C3.

Then, the following implications hold

(1) = (2) = 6)

Proof. (1) = (2). Let Mp be pseudo &-injective with S = End(Mg).
If K is a submodule of M, K € & and K = eM, where ¢ = ¢ € S, then
eM is pseudo o7-M-injective by Proposition 2.3 and hence, K is also pseudo
o7 - M-injective, this follows that K is a direct summand of M because K € &7.
This proves (2).

(2) = (3). Let N and K be direct summands of M with N N K = 0 and
K € of. Write N =eM and K = fM, where e, f are idempotents in S, then
eMafM =eM®(1—e)fM. Since (1—e)fM = fM € o/, (1—e) fM = hM for
some h? = h € Sby (2). Let g =e+h—he. Then g> = gand eM @ fM = gM,
as required. [

PROPOSITION 2.7. Let o be a class of right R-modules that is closed
under isomorphisms and direct summands, and let M € <f be a right R-module.
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Then M is a C2 module if and only if M is an o7 -C2 module, M is a C8 module
if and only if M is an o/ -C8 module.

Proof. Obvious. [

COROLLARY 2.8. (1) If M is a finitely generated module, then M is a C2
module if and only if it is a FC2 module, M is a C3 module if and only if it is
a FC8 module.

(2) If M is a cyclic module, then M is a C2 module if and only if it is a
PC2 module, M is a C3 module if and only if it is a PC3 module.

(3) If M is a finitely generated PFQ-injective (resp., cyclic PPQ-injective)
module, then it is a C2 module.

It is well known that C2 modules and C3 modules are inherited by direct
summands [§, Proposition 1.30]. The next results show that /-C2 modules
and «/-C3 modules are also inherited by direct summands.

THEOREM 2.9. (1) A direct summand of an <7-C2 module is again an
o -C2 module.
(2) A direct summand of an < -C3 module is again an < -C3 module.

Proof. (1) Let M be an &/-C2 module and N C% M. We need to show
that N is also o7/-C2. Let A € o7 be a submodule of N that is isomorphic to a
direct summand of N. Since M is «7/-C2, A C¥ M. Write M = A® M;. Then
N=MNN=(A®M)NN=A& (M; NN), as required.

(2) Let M be an &/-C3 module and N C® M. We prove that N is also
/-C3. Let A and B be two direct summands of N with AN B = 0 and
A€ /. Since M is &/-C3, A® B C® M. Write M = (A® B) ® C. Then
N=MNN=(A®B&C)NN =(A® B)® (CNN), as required. ]

COROLLARY 2.10. (1) A direct summand of a C2 (resp., GC2, PC2,
FC2, Min-C2, soc-C2) module is again a C2 (resp., GC2, PC2, FC2, Min-C2,
soc-C2) module.

(2) A direct summand of a C3 (resp., GC3, PC3, FC3, Min-C3, soc-C3)
module is again a C3 (resp., GC3, PC3, FC3, Min-C3, soc-C3) module.

The following theorem extends the results of [2, Proposition 2.2].

THEOREM 2.11. Let o/ be a class of right R-modules that is closed un-
der isomorphisms, and let M be a right R-module. Consider the following
conditions:

(1) M is an </ -C3 module.

(2) IfACY M,BC® M,Ae & and ANB =0, then M = Ay ® B =
A® By for some submodules A1 2 A and By O B.
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B)IfFAC® M\BC® M,Ae o and ANB C® M, then A+ B C% M.

Then, the following implications hold

3)= (1) < (2).

Moreover, if & is closed under direct summands, then the above three
conditions are equivalent.

Proof. (1) = (2). Let AC® M,BC® M,A € o and AN B = 0. Then
by (1), A® B C® M, and so M = (A& B) & C for a submodule C C M.
Write A1 = A® C,B; = B® C. Then, we have A1 O A, By O B and

(2) = (1). Let A C® M,B C® M,A € o and ANB = 0. Then
by (2), we have M = A; & B = A& B; for some submodules 4; O A and
By 2 B. Now B = BiNnNM = Blﬂ(Al@B) = B@(AlﬂBl), and so
M=A®B, =A®B® (A1 NBy), as required.

(3) = (1). It is clear.

Now suppose that .« is closed under direct summands, we need to prove
(1) = (3). Since ANB C® M, M = (AN B) & K for some submodule
Kof M. SoA=(AnNnB)®(ANK) and B = (ANB)® (BNK), and
hence both AN K and B N K are direct summands of M because both A
and B are direct summands of M. Clearly (AN K)N (BN K) = 0. Note
that 7 is closed under direct summands, AN K € /. By (1), we have that
T = (ANK)® (BNK) is a direct summand of M. Again, since both 7" and
AN B are direct summands of M, and (ANB)NT C (ANB)NK =0 as well
as AN B € &/, by (1), we have (AN B) & T is a direct summand of M. Thus,
A+B=[(ANB)® (ANK)|+[(ANB)® (BNK)]=(ANB)® T is a direct
summand of M. [O

LEMMA 2.12 ([6, Lemma 2.6(1)(2)]). Let M = A® B, X < A and
f: X — B. Then

(1) X® B = (f)® B, where (f) ={x— f(z) |z € X}.

(2) Kerf = (f) N A.

The following theorem extends the results of [2, Proposition 2.3, Corollary
2.4].

THEOREM 2.13. Let o7 be a class of right R-modules that is closed under
isomorphisms. If M is an of -C3 module, M = A @ B for some submodules A
and B where A € &7, and f: A — B is an R-homomorphism, then

(1) If f is an R-monomorphism, then Imf C%® B.

(2) If o is closed under direct summands and Kerf C% A, then
Imf C% B.



192 7. Zhu 6

Proof. (1) By Lemma 2.12(1), we have M = (f) & B. Since f is an
R-monomorphism, by Lemma 2.12(2), (f) N A =0.

Since M is o7-C3, (f)® A C® M. Now we show that Imf & A = (f) @ A.
For, if b € Imf, then b = f(a) for some a € A, sob=a —a+ f(a) € A+ (f),
and hence Imf & A = (f) ® A. Since (f) @ A C% M, Imf C% M, it implies
that Imf C® B.

(2) Let f : A — B be an R-homomorphism with Kerf C% A. If A =
Ker f @ A’ for a submodule A’ of A, then by hypothesis, A’ € &/, M = A®B =
Kerf @& A’ & B, and the restriction map f|s : A — B is a monomorphism.
Since A’ ® B is an «/-C3 module by Theorem 2.9(2), we infer from (1) that
Imf =TIm(fla)C® B. O

3. &/-C4 MODULES

Now, we extend the concept of C4 modules as following.

Definition 3.1. (1) Let & be a class of right R-modules that is closed
under isomorphisms. A right R-module M is called an o7-C4 module, if when-
ever M = A@® B where A and B are submodules of M and A € &7, then every
monomorphism f : A — B splits.

(2) A right R-module M is called a PC4 (resp., FC4, GC4, Min-C4, soc-
C4, pro-C4) module if it is an 7/-C4 module, where 7 is the class of all cyclic
(resp., finitely generated, isomorphic to M, simple, semisimple, projective)
right R-modules.

It is easy to see that Ci = FCi = PCi = Min-Ci; Ci = soc-Ci = Min-Cs
and Ci = GCi, i = 2,3, 4.

LeEMMA 3.2. Let A, B, T be submodules of M, ANB =0, M =A®T,
and w: A®T — T be the natural projection. Then A® B = A @ w(B).

Proof. For any b € B, there exists a € A and t € T such that b=a+t =
a+m(b) € A®n(B),sonw(b) =t =—a+be A® B. This proves the result. [

Now, we give some characterizations of .7-C4 modules as follows.

THEOREM 3.3. Let & be a class of right R-modules that is closed under
isomorphisms, and let M be a right R-module. Consider the following condi-
tions:

(1) M is an <7 -C4 module.

(2) If M = A® B where A and B are submodules of M and A € <7, and
f:A— B is a monomorphism, then Imf C% B.

B)IfB2AC* M,BC M,Ac <« and ANB =0, then A® B C® M.
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(4) IfBXAC® M,BC M,A€ o and AN B =0, then BC® M.

5) IfM =ApA =BeB,Ac o and ANB =ANDB =0, then
A®BC% M.

(6)fBC M,AC® M,Aec &/, A~ B and ANB =0, then A®B C% M.

(7) If M = A @ B for some submodules A and B where A € <, and
f: A — B is an R-homomorphism such that Kerf C% A, then Imf C® B.

Then, the following implications hold:

(M=1<2)<B)< 1)< () <(6).

Moreover, if o is closed under direct summands, then the above condi-
tions are equivalent.

Proof. (1) < (2). It is obvious.

(2) = (3). Let B2 AC® M,BC M,A€ o and ANB = 0. We need to
prove that A@B C% M. Write M = A®T for a submodule T of M, and let 7 :
A®T — T be the natural projection. Then by Lemma 3.2, A@ B = A®n(B).

7|

Since ANB =0, B 4 7(B). Since M = A®T and wlgoot: A =T
is a monomorphism, by (2), we have that Im(n|g oo™ 1) = 7(B) C® T. Let
T=n(B)®&C. Then M = AT = (Aen(B))aC = (AeB) & C, as required.

(3) = (4). It is obvious.

(4) = (5). Let # : B® B’ — B’ be the natural projection. Then
by Lemma 3.2, we have A ® B = m(A) ® B. Since AN B =0,n(4) & A C®
M,A € o andn(A)NAC B'NA=0, by (4), 7(A) C® M, and so m(A) C® B'.
write B’ = 1(A)®T. Then M = B&B' = B® (r(A)®T) = (Bon(A)aT =
(A®B)@® T, and then A@® B C% M.

(5) = (6). Write M = A@ A’ and let 7 : A A" — A’ be the natural

projection and A é B. Then by Lemma 2.12(1), we have M = A® A’ =
(rfy® A, where (nf) ={a—7nf(a) | a € A}. Since AN B = 0, it is easy to
see that the map 7 f is monic, and so AN (rf) = 0 by Lemma 2.12(2). Thus,
by (5), we have that A@ B= A& m(B)=A® (nf) C® M.

(6) = (2). Let M = A® B where A and B are submodules of M, A € &7,
and f : A — B be a monomorphism. We need to prove that Imf C® B. By
Lemma 2.12, we have A® B = (f) @ B and (f) N A = 0. Clearly, A = (f). So
(6) implies that A& (f) C% M. Observing that A® (f) = A& Imf, we have
that Imf C® B.

(7) = (2). It is obvious.

Now suppose that 7 is closed under direct summands, we need to prove
(2) = (7). Let M = A @ B for some submodules A and B where A € &7, and
let f: A — B be an R-homomorphism with Kerf C® A. Write A = Kerf & C.
Then M = A® B = (Kerf®C)®B=C® (Kerf ® B). Since A € & and
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&/ is closed under direct summands, C' € 7. Clearly, f|c is a monomorphism
from C to Kerf & B. So, by (2), Imf = Im(f|c) C% (Kerf @& B), and hence
Imf C® B, as required. [J

COROLLARY 3.4. If & is closed under isomorphisms and direct sum-
mands, M is an </ -C4 module and M € of, then M is a C4 module.

Proof. Tt follows from Theorem 3.3(2). [

COROLLARY 3.5. Every cyclic (resp., finitely generated, semisimple, pro-
jective) PCY (resp., FC4, soc-C4, pro-C4) module is a C4 module.

Recall that an R-module M is said to have the internal finite exchange
property [7] if, for any direct summand X of M and any decomposition M =
®rM,, where I is a finite index set, there exist submodules M/, C M, such
that M = X & (&1 M]).

PROPOSITION 3.6. If M is an o7 -C8 module, then it is an <7 -C4 module.
Conversely, if < is closed under direct summands and M is an </ -C4 module
with the internal finite exchange property, then it is an <7 -C8 module.

Proof. If M is an &7-C3 module, then it follows immediately from The-
orem 2.13(1) that M is an &/-C4 module. Now assume that M is an o/-C4
module with the internal finite exchange property. Let A and B are direct sum-
mands of M with ANB=0and A € &/. Write M = A@C = B® D. Then by
the internal finite exchange property, there exists a submodule A’ of A and a
submodule C’ of C such that M = B A'®C’ , and so, by modular law, we have
A=A®A" and C = C'"®C”, where A” = (B&C")NA,C" = (BaA)NC. Tt is
easy to see that A" € &/, M = A" (A eC)=C"a(BaA),A"nC"=0,A"nN
(B®A") = 0, so we infer from Theorem 3.3(5) that AGB = A”®(BpA’) CP M,
and thus M is an &7-C3 module. [

COROLLARY 3.7. Let M be a module with the internal finite exchange
property, then it is a PC3 (resp., FC3, soc-C3, pro-C3) module if and only if
it is a PCY (resp., FCY, soc-C4, pro-C4) module.

Remark 3.8. We remark that Min-C2 modules are nothing but the simple-
direct-injective module defined in [3]. By [3, Proposition 2.1] and Theorem
3.3(2), a module M is Min-C2 if and only if it is Min-C3 if and only if it is
Min-C4.

The following example shows that <7-Ci modules need not be Ci-modules
for each ¢ = 2, 3,4, and Min-C4 modules need not be PC4.
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Example 3.9. Let K be a field and R be the K-algebra consisting of all
a1 2 Q3
3 x 3 matrices of the form | 0 a4 O , where o; € K. Then by [3
0 0 (675
Example 3.7], e11 R® E(e11 R) is a simple-direct-injective right R-module. But
e11 R is not injective, by Theorem 3.3(2), e11 R @ E(e11R) is not a PC4-module
and hence it is not a C4-module. So, in general, </-Ci modules need not be
Ci-modules for each ¢ = 2,3, 4.

PROPOSITION 3.10. (1) A direct summand of an </ -C4 module is again
an o/ -C4 module.

(2) If M & M is an <7 -C4 module, then M is an </ -C2 module.

(3) Let M be an o/ -C4 module, A C® M,BC M,A € « and ANB = 0.
If there exists a monomorphism f: A — B, then A is an &/ -C2 module.

Proof. (1) Let M be an «/-C4 module, K C% M and write M = K & N.
Suppose K = A® B,A € & and f : A — B is a monomorphism. Then
M=A®(B&®N),Ac o/,and f: A— B® N is a monomorphism. Since M
is an .&7-C4 module, Imf C® B@® N, and so Imf C¥ B. This follows that K
is an &/-C4 module. ,

(2) Suppose that M & M is an /-C4 module. Let A € o and A= B C%
M. We need to prove that A C® M. Write M = B ® C for a submodule C
of M. Since M & M = B& (M & C) is an &/-C4 module and B € </ and
o=l : B — M @ C is monic, where ¢ : M — M @ C' is the natural injection,
by Theorem 3.3(2), Im(toc~!) C® M @ C, that is, A® 0 C® M & C, and so
AC® M.

(3) Since M is an «/-C4 module, we infer from Theorem 3.3(3) that
AP A2 AdTImf CP M. By (1), A® A is an «7-C4 module. And so, by (2),
A is an &7-C2 module. O

THEOREM 3.11. The following statements are equivalent for a ring R:
(1) Every A € o is injective.
(2) Every right R-module is an <f -C4 module.

Proof. (1) = (2). It follows from Theorem 3.3(2).
(2) = (1). Let A € & . Since A® E(A) is an «7-C4 module, by Theorem
3.3(2), AC® E(A) , and so A = E(A) is injective. [

Recall that a ring R is semisimple artinian if and only if every cyclic
module is injective, a ring R is a right V-ring if every simple right R-module
is injective, a ring R is quasi-Frobenius if and only if every projective right
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R-module is injective. Based on these facts, by Theorem 3.11, we have the
following corollaries.

COROLLARY 3.12. (1) A ring R is a semisimple artinian ring if and only
if every right R-module is a PC4 module.

(2) [3, Proposition 4.1] A ring R is a right V-ring if and only if every
right R-module is a simple-direct-injective module.

(3) A ring R is a quasi-Frobenius ring if and only if every right R-module
18 a pro-C4 module.

COROLLARY 3.13. A ring R is a right noetherian right V-ring if and only
if every right R-module is a soc-C4 module.

Proof. =. Since R is a right V-ring, every simple right R-module is
injective. But R is right noetherian, every direct sum of injective R-modules
is injective. And so, every semisimple right R-module is injective. Thus, by
Theorem 3.11, we have that every right R-module is a soc-C4 module.

<. Since every right R-module is a soc-C4 module, by Theorem 3.11, we
have that every semisimple right R-module is injective. Clearly, R is a right V-
ring. Now let K7y, Ko, ... be simple right R-modules. Then @52, K; is injective,
and so &2, K; C% @2, E(K;). Observing that @&, K; C° &2 F(K;), we
have @72, K; = @2, E(K;), and so &2, E(K;) is injective. By [8, Theorem
7.48], R is a right noetherian ring. O

We end this paper with a characterization of von Neumann regular rings
in terms of C3 modules, PC3 modules and PC4 modules.

PROPOSITION 3.14. The following statements are equivalent for a ring R:

(1) R is a von Neumann regular ring.

(2) Ewvery finitely generated submodule of a projective right R-module is
a C3 module.

(3) Every finitely generated submodule of a projective right R-module is
a PC8 module.

(4) Every 2-generated submodule of a projective right R-module is a PC3
module.

(5) Every 2-generated submodule of a projective right R-module is a PC,
module.

Proof. (1) = (2). Since R is a regular ring, every finitely generated
submodule of a projective right R-module is a direct summand, and so (2)
holds.

(2) = (3) = (4) = (5). These implications are straightforward.
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(5) = (1). Let I be a principal right ideal. By (5), I & R is PC4. And
so, by Theorem 3.3(2), I C% R, as required. [
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