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Let A be a class of right R-modules that is closed under isomorphisms, and let
M be a right R-module. Then M is called A -C3 if, whenever N and K are
direct summands of M with N ∩K = 0 and K ∈ A , then N ⊕K is also a direct
summand of M ; M is called an A -C4 module, if whenever M = A⊕B where A
and B are submodules of M and A ∈ A , then every monomorphism f : A → B
splits. Some characterizations and properties of these classes of modules are
investigated. As applications, some new characterizations of semisimple artinian
rings, right V-rings, quasi-Frobenius rings and von Neumann regular rings are
given.
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1. INTRODUCTION

Throughout, R is an associative ring with identity and all modules are
unitary. Unless otherwise specified, A is a class of some right R-modules
which is closed under isomorphisms. Recall that a right R-module M is called
a C2 module [8] if every submodule K of M that is isomorphic to a direct
summand of M is itself a direct summand of M ; a right R-module M is called
a C3 module [8, 2] if, whenever N and K are direct summands of M with
N ∩K = 0, then N ⊕K is also a direct summand of M . Clearly, C2 modules
are C3 modules. In [4], Ding, Ibrahim, Yousif and Zhou generalized the concept
of C3 modules to C4 modules. According to [4], a right R-module M is called a
C4 module, if whenever M = A⊕B where A and B are submodules of M , then
every monomorphism f : A → B splits. In this paper, we shall generalize the
concepts of Ci modules (i = 2, 3, 4) to A -Ci modules (i = 2, 3, 4), respectively,
and give some interesting results on these modules. As applications, some new
characterizations of semisimple artinian rings, right V-rings, quasi-Frobenius
rings and von Neumann regular rings will be given.
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2. A -C2 MODULES AND A -C3 MODULES

Recall that a right R-module M is called pseudo-injective (resp., pseudo
FQ-injective, pseudo PQ-injective, pseudo QP-injective) if every monomor-
phism from a submodule (resp., finitely generated submodule, principal sub-
module, M -cyclic submodule) of M to M extends to an endomorphism of M ;
a right R-module M is called minimal quasi-injective if every homomorphism
from a minimal submodule of M to M extends to an endomorphism of M .
These concepts can be found in [5, 13, 12, 14] and [10], respectively. Motivated
by these concepts, we start this section with the following definitions.

Definition 2.1. Let A be a class of right R-modules, and let M and N
be two right R-modules. Then M is called pseudo A -N -injective if every
monomorphism from a submodule K ∈ A of N to M extends to an homomor-
phism of N toM . M is called pseudo A -injective if it is pseudo A -M -injective.

Example 2.2. Let A be the class of all (resp., all finitely generated, all
principal, all minimal, all M -cyclic) right R-modules. Then M is pseudo A -
injective if and only if it is pseudo-injective (resp., pseudo FQ-injective, pseudo
PQ-injective, minimal quasi-injective, pseudo QP-injective).

Proposition 2.3. Let A be a class of right R-modules, M , N be two
right R-modules and N ′ be a submodule of N . If M is pseudo A -N -injective,
then

(1) Every direct summand of M is pseudo A -N -injective.
(2) M is pseudo A -N ′-injective.

Proof. (1) Let M = M1 ⊕M2. Then for every submodule K ∈ A of N
and every monomorphism f of K to M1, since M is pseudo A -N -injective, f
extends to a homomorphism of N to M . Which follows that f extends to a
homomorphism of N to M1 because M1 is a direct summand of M .

(2) It is obvious.

By Proposition 2.3, we have immediately the following corollary.

Corollary 2.4. Let A be a class of right R-modules. Then every direct
summand of a pseudo A -injective module is pseudo A -injective.

The concepts of C2 modules and C3 modules have been extended in
several ways. For example, a module M is called FC2 (resp., PC2, Min-
C2, soc-C2 ) if every finitely generated (resp., principle, minimal, semisimple)
submodule of M that is isomorphic to a direct summand of M is itself a
direct summand of M ; a module M is called FC3 (resp., PC3, Min- C3 ) if,
whenever N and K are direct summands of M with N∩K = 0 and N is finitely
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generated (resp., principle, minimal) then N ⊕K is also a direct summand of
M ; a module M is called GC2 if every submodule of M that is isomorphic to
M is itself a direct summand of M ; a module M is called GC3 if, whenever N
and K are direct summands of M with N ∩K = 0 and N is isomorphic to M ,
then N ⊕K is also a direct summand of M . These concepts can be found in
[13, 12, 10, 9, 11] and [1], respectively. We call a module M soc-C3 if, whenever
N and K are direct summands of M with N ∩ K = 0 and N is semisimple,
then N ⊕K is also a direct summand of M . Note that our definition of soc-C3
modules is different from that defined in [1]. Now we extend these concepts as
follows.

Definition 2.5. Let A be a class of right R-modules that is closed under
isomorphisms, and let M be a right R-module. Then M is called A -C2 if every
submodule K ∈ A of M that is isomorphic to a direct summand of M is itself
a direct summand of M . M is called A -C3 if, whenever N and K are direct
summands of M with N ∩ K = 0 and K ∈ A , then N ⊕ K is also a direct
summand of M .

It is easy to see that pseudo injective ⇒ C2 ⇒ C3. In general, we have
the following results.

Theorem 2.6. Let A be a class of right R-modules that is closed under
isomorphisms, and let M be a right R-module. Consider the following condi-
tions:

(1) M is pseudo A -injective.
(2) M is A -C2.
(3) M is A -C3.
Then, the following implications hold
(1) ⇒ (2) ⇒ (3).

Proof. (1) ⇒ (2). Let MR be pseudo A -injective with S = End(MR).
If K is a submodule of M , K ∈ A and K ∼= eM , where e2 = e ∈ S, then
eM is pseudo A -M -injective by Proposition 2.3 and hence, K is also pseudo
A -M -injective, this follows that K is a direct summand of M because K ∈ A .
This proves (2).

(2) ⇒ (3). Let N and K be direct summands of M with N ∩K = 0 and
K ∈ A . Write N = eM and K = fM , where e, f are idempotents in S, then
eM⊕fM = eM⊕(1−e)fM . Since (1−e)fM ∼= fM ∈ A , (1−e)fM = hM for
some h2 = h ∈ S by (2). Let g = e+h−he. Then g2 = g and eM⊕fM = gM ,
as required.

Proposition 2.7. Let A be a class of right R-modules that is closed
under isomorphisms and direct summands, and let M ∈ A be a right R-module.
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Then M is a C2 module if and only if M is an A -C2 module, M is a C3 module
if and only if M is an A -C3 module.

Proof. Obvious.

Corollary 2.8. (1) If M is a finitely generated module, then M is a C2
module if and only if it is a FC2 module, M is a C3 module if and only if it is
a FC3 module.

(2) If M is a cyclic module, then M is a C2 module if and only if it is a
PC2 module, M is a C3 module if and only if it is a PC3 module.

(3) If M is a finitely generated PFQ-injective (resp., cyclic PPQ-injective)
module, then it is a C2 module.

It is well known that C2 modules and C3 modules are inherited by direct
summands [8, Proposition 1.30]. The next results show that A -C2 modules
and A -C3 modules are also inherited by direct summands.

Theorem 2.9. (1) A direct summand of an A -C2 module is again an
A -C2 module.

(2) A direct summand of an A -C3 module is again an A -C3 module.

Proof. (1) Let M be an A -C2 module and N ⊆⊕ M . We need to show
that N is also A -C2. Let A ∈ A be a submodule of N that is isomorphic to a
direct summand of N . Since M is A -C2, A ⊆⊕ M . Write M = A⊕M1. Then
N = M ∩N = (A⊕M1) ∩N = A⊕ (M1 ∩N), as required.

(2) Let M be an A -C3 module and N ⊆⊕ M . We prove that N is also
A -C3. Let A and B be two direct summands of N with A ∩ B = 0 and
A ∈ A . Since M is A -C3, A ⊕ B ⊆⊕ M . Write M = (A ⊕ B) ⊕ C. Then
N = M ∩N = (A⊕B ⊕ C) ∩N = (A⊕B)⊕ (C ∩N), as required.

Corollary 2.10. (1) A direct summand of a C2 (resp., GC2, PC2,
FC2, Min-C2, soc-C2) module is again a C2 (resp., GC2, PC2, FC2, Min-C2,
soc-C2) module.

(2) A direct summand of a C3 (resp., GC3, PC3, FC3, Min-C3, soc-C3)
module is again a C3 (resp., GC3, PC3, FC3, Min-C3, soc-C3) module.

The following theorem extends the results of [2, Proposition 2.2].

Theorem 2.11. Let A be a class of right R-modules that is closed un-
der isomorphisms, and let M be a right R-module. Consider the following
conditions:

(1) M is an A -C3 module.
(2) If A ⊆⊕ M,B ⊆⊕ M,A ∈ A and A ∩ B = 0, then M = A1 ⊕ B =

A⊕B1 for some submodules A1 ⊇ A and B1 ⊇ B.
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(3) If A ⊆⊕ M,B ⊆⊕ M,A ∈ A and A ∩B ⊆⊕ M , then A+B ⊆⊕ M .

Then, the following implications hold

(3) ⇒ (1) ⇔ (2).

Moreover, if A is closed under direct summands, then the above three
conditions are equivalent.

Proof. (1) ⇒ (2). Let A ⊆⊕ M,B ⊆⊕ M,A ∈ A and A ∩ B = 0. Then
by (1), A ⊕ B ⊆⊕ M , and so M = (A ⊕ B) ⊕ C for a submodule C ⊆ M .
Write A1 = A ⊕ C,B1 = B ⊕ C. Then, we have A1 ⊇ A , B1 ⊇ B and
M = A1 ⊕B = A⊕B1.

(2) ⇒ (1). Let A ⊆⊕ M,B ⊆⊕ M,A ∈ A and A ∩ B = 0. Then
by (2), we have M = A1 ⊕ B = A ⊕ B1 for some submodules A1 ⊇ A and
B1 ⊇ B. Now B1 = B1 ∩ M = B1 ∩ (A1 ⊕ B) = B ⊕ (A1 ∩ B1), and so
M = A⊕B1 = A⊕B ⊕ (A1 ∩B1), as required.

(3) ⇒ (1). It is clear.

Now suppose that A is closed under direct summands, we need to prove
(1) ⇒ (3). Since A ∩ B ⊆⊕ M , M = (A ∩ B) ⊕ K for some submodule
K of M . So A = (A ∩ B) ⊕ (A ∩ K) and B = (A ∩ B) ⊕ (B ∩ K), and
hence both A ∩ K and B ∩ K are direct summands of M because both A
and B are direct summands of M . Clearly (A ∩ K) ∩ (B ∩ K) = 0. Note
that A is closed under direct summands, A ∩ K ∈ A . By (1), we have that
T =: (A ∩K)⊕ (B ∩K) is a direct summand of M . Again, since both T and
A∩B are direct summands of M , and (A∩B)∩ T ⊆ (A∩B)∩K = 0 as well
as A ∩B ∈ A , by (1), we have (A ∩B)⊕ T is a direct summand of M . Thus,
A+B = [(A ∩B)⊕ (A ∩K)] + [(A ∩B)⊕ (B ∩K)] = (A ∩B)⊕ T is a direct
summand of M .

Lemma 2.12 ([6, Lemma 2.6(1)(2)]). Let M = A ⊕ B,X ≤ A and
f : X → B. Then

(1) X ⊕B = ⟨f⟩ ⊕B, where ⟨f⟩ = {x− f(x) | x ∈ X}.
(2) Kerf = ⟨f⟩ ∩A.

The following theorem extends the results of [2, Proposition 2.3, Corollary
2.4].

Theorem 2.13. Let A be a class of right R-modules that is closed under
isomorphisms. If M is an A -C3 module, M = A⊕ B for some submodules A
and B where A ∈ A , and f : A → B is an R-homomorphism, then

(1) If f is an R-monomorphism, then Imf ⊆⊕ B.

(2) If A is closed under direct summands and Kerf ⊆⊕ A, then
Imf ⊆⊕ B.
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Proof. (1) By Lemma 2.12(1), we have M = ⟨f⟩ ⊕ B. Since f is an
R-monomorphism, by Lemma 2.12(2), ⟨f⟩ ∩A = 0.

Since M is A -C3, ⟨f⟩⊕A ⊆⊕ M . Now we show that Imf ⊕A = ⟨f⟩⊕A.
For, if b ∈ Imf , then b = f(a) for some a ∈ A, so b = a− a+ f(a) ∈ A+ ⟨f⟩,
and hence Imf ⊕ A = ⟨f⟩ ⊕ A. Since ⟨f⟩ ⊕ A ⊆⊕ M , Imf ⊆⊕ M , it implies
that Imf ⊆⊕ B.

(2) Let f : A → B be an R-homomorphism with Kerf ⊆⊕ A. If A =
Kerf⊕A′ for a submodule A′ of A, then by hypothesis, A′ ∈ A , M = A⊕B =
Kerf ⊕ A′ ⊕ B, and the restriction map f |A′ : A′ → B is a monomorphism.
Since A′ ⊕ B is an A -C3 module by Theorem 2.9(2), we infer from (1) that
Imf = Im(f |A′) ⊆⊕ B.

3. A -C4 MODULES

Now, we extend the concept of C4 modules as following.

Definition 3.1. (1) Let A be a class of right R-modules that is closed
under isomorphisms. A right R-module M is called an A -C4 module, if when-
ever M = A⊕B where A and B are submodules of M and A ∈ A , then every
monomorphism f : A → B splits.

(2) A right R-module M is called a PC4 (resp., FC4, GC4, Min-C4, soc-
C4, pro-C4) module if it is an A -C4 module, where A is the class of all cyclic
(resp., finitely generated, isomorphic to M , simple, semisimple, projective)
right R-modules.

It is easy to see that Ci ⇒ FCi ⇒ PCi ⇒ Min-Ci; Ci ⇒ soc-Ci ⇒ Min-Ci
and Ci ⇒ GCi, i = 2, 3, 4.

Lemma 3.2. Let A,B, T be submodules of M , A ∩ B = 0, M = A ⊕ T ,
and π : A⊕ T → T be the natural projection. Then A⊕B = A⊕ π(B).

Proof. For any b ∈ B, there exists a ∈ A and t ∈ T such that b = a+ t =
a+π(b) ∈ A⊕π(B), so π(b) = t = −a+b ∈ A⊕B. This proves the result.

Now, we give some characterizations of A -C4 modules as follows.

Theorem 3.3. Let A be a class of right R-modules that is closed under
isomorphisms, and let M be a right R-module. Consider the following condi-
tions:

(1) M is an A -C4 module.
(2) If M = A⊕B where A and B are submodules of M and A ∈ A , and

f : A → B is a monomorphism, then Imf ⊆⊕ B.
(3) If B ∼= A ⊆⊕ M,B ⊆ M,A ∈ A and A ∩B = 0, then A⊕B ⊆⊕ M .
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(4) If B ∼= A ⊆⊕ M,B ⊆ M,A ∈ A and A ∩B = 0, then B ⊆⊕ M .

(5) If M = A ⊕ A′ = B ⊕ B′, A ∈ A and A ∩ B = A ∩ B′ = 0, then
A⊕B ⊆⊕ M .

(6) If B ⊆ M,A ⊆⊕ M,A ∈ A , A ∼= B and A∩B = 0, then A⊕B ⊆⊕ M .

(7) If M = A ⊕ B for some submodules A and B where A ∈ A , and
f : A → B is an R-homomorphism such that Kerf ⊆⊕ A, then Imf ⊆⊕ B.

Then, the following implications hold:

(7) ⇒ (1) ⇔ (2) ⇔ (3) ⇔ (4) ⇔ (5) ⇔ (6).

Moreover, if A is closed under direct summands, then the above condi-
tions are equivalent.

Proof. (1) ⇔ (2). It is obvious.

(2) ⇒ (3). Let B
σ∼= A ⊆⊕ M,B ⊆ M,A ∈ A and A∩B = 0. We need to

prove that A⊕B ⊆⊕ M . Write M = A⊕T for a submodule T of M , and let π :
A⊕T → T be the natural projection. Then by Lemma 3.2, A⊕B = A⊕π(B).

Since A ∩ B = 0, B
π|B∼= π(B). Since M = A ⊕ T and π|B ◦ σ−1 : A → T

is a monomorphism, by (2), we have that Im(π|B ◦ σ−1) = π(B) ⊆⊕ T . Let
T = π(B)⊕C. Then M = A⊕T = (A⊕π(B))⊕C = (A⊕B)⊕C, as required.

(3) ⇒ (4). It is obvious.

(4) ⇒ (5). Let π : B ⊕ B′ → B′ be the natural projection. Then
by Lemma 3.2, we have A ⊕ B = π(A) ⊕ B. Since A ∩ B = 0, π(A) ∼= A ⊆⊕

M,A ∈ A and π(A)∩A ⊆ B′∩A = 0, by (4), π(A) ⊆⊕ M , and so π(A) ⊆⊕ B′.
write B′ = π(A)⊕T . Then M = B⊕B′ = B⊕ (π(A)⊕T ) = (B⊕π(A))⊕T =
(A⊕B)⊕ T , and then A⊕B ⊆⊕ M .

(5) ⇒ (6). Write M = A ⊕ A′, and let π : A ⊕ A′ → A′ be the natural

projection and A
f∼= B. Then by Lemma 2.12(1), we have M = A ⊕ A′ =

⟨πf⟩ ⊕ A′, where ⟨πf⟩ = {a − πf(a) | a ∈ A}. Since A ∩ B = 0, it is easy to
see that the map πf is monic, and so A ∩ ⟨πf⟩ = 0 by Lemma 2.12(2). Thus,
by (5), we have that A⊕B = A⊕ π(B) = A⊕ ⟨πf⟩ ⊆⊕ M .

(6) ⇒ (2). Let M = A⊕B where A and B are submodules of M , A ∈ A ,
and f : A → B be a monomorphism. We need to prove that Imf ⊆⊕ B. By
Lemma 2.12, we have A⊕B = ⟨f⟩ ⊕B and ⟨f⟩ ∩A = 0. Clearly, A ∼= ⟨f⟩. So
(6) implies that A⊕ ⟨f⟩ ⊆⊕ M . Observing that A⊕ ⟨f⟩ = A⊕ Imf , we have
that Imf ⊆⊕ B.

(7) ⇒ (2). It is obvious.

Now suppose that A is closed under direct summands, we need to prove
(2) ⇒ (7). Let M = A⊕B for some submodules A and B where A ∈ A , and
let f : A → B be an R-homomorphism with Kerf ⊆⊕ A. Write A = Kerf ⊕C.
Then M = A ⊕ B = (Kerf ⊕ C) ⊕ B = C ⊕ (Kerf ⊕ B). Since A ∈ A and
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A is closed under direct summands, C ∈ A . Clearly, f |C is a monomorphism
from C to Kerf ⊕ B. So, by (2), Imf = Im(f |C) ⊆⊕ (Kerf ⊕ B), and hence
Imf ⊆⊕ B, as required.

Corollary 3.4. If A is closed under isomorphisms and direct sum-
mands, M is an A -C4 module and M ∈ A , then M is a C4 module.

Proof. It follows from Theorem 3.3(2).

Corollary 3.5. Every cyclic (resp., finitely generated, semisimple, pro-
jective) PC4 (resp., FC4, soc-C4, pro-C4) module is a C4 module.

Recall that an R-module M is said to have the internal finite exchange
property [7] if, for any direct summand X of M and any decomposition M =
⊕IMα, where I is a finite index set, there exist submodules M ′

α ⊆ Mα such
that M = X ⊕ (⊕IM

′
α).

Proposition 3.6. If M is an A -C3 module, then it is an A -C4 module.
Conversely, if A is closed under direct summands and M is an A -C4 module
with the internal finite exchange property, then it is an A -C3 module.

Proof. If M is an A -C3 module, then it follows immediately from The-
orem 2.13(1) that M is an A -C4 module. Now assume that M is an A -C4
module with the internal finite exchange property. Let A and B are direct sum-
mands of M with A∩B = 0 and A ∈ A . Write M = A⊕C = B⊕D. Then by
the internal finite exchange property, there exists a submodule A′ of A and a
submodule C ′ of C such thatM = B⊕A′⊕C ′ , and so, by modular law, we have
A = A′⊕A′′ and C = C ′⊕C ′′, where A′′ = (B⊕C ′)∩A,C ′′ = (B⊕A′)∩C. It is
easy to see that A′′ ∈ A ,M = A′′⊕ (A′⊕C) = C ′⊕ (B⊕A′), A′′∩C ′ = 0, A′′∩
(B⊕A′) = 0, so we infer from Theorem 3.3(5) thatA⊕B = A′′⊕(B⊕A′) ⊆⊕ M ,
and thus M is an A -C3 module.

Corollary 3.7. Let M be a module with the internal finite exchange
property, then it is a PC3 (resp., FC3, soc-C3, pro-C3) module if and only if
it is a PC4 (resp., FC4, soc-C4, pro-C4) module.

Remark 3.8. We remark that Min-C2 modules are nothing but the simple-
direct-injective module defined in [3]. By [3, Proposition 2.1] and Theorem
3.3(2), a module M is Min-C2 if and only if it is Min-C3 if and only if it is
Min-C4.

The following example shows that A -Ci modules need not be Ci-modules
for each i = 2, 3, 4, and Min-C4 modules need not be PC4.
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Example 3.9. Let K be a field and R be the K-algebra consisting of all

3 × 3 matrices of the form

 α1 α2 α3

0 α4 0
0 0 α5

, where αi ∈ K. Then by [3,

Example 3.7], e11R⊕E(e11R) is a simple-direct-injective right R-module. But
e11R is not injective, by Theorem 3.3(2), e11R⊕E(e11R) is not a PC4-module
and hence it is not a C4-module. So, in general, A -Ci modules need not be
Ci-modules for each i = 2, 3, 4.

Proposition 3.10. (1) A direct summand of an A -C4 module is again
an A -C4 module.

(2) If M ⊕M is an A -C4 module, then M is an A -C2 module.

(3) Let M be an A -C4 module, A ⊆⊕ M,B ⊆ M,A ∈ A and A∩B = 0.
If there exists a monomorphism f : A → B, then A is an A -C2 module.

Proof. (1) Let M be an A -C4 module, K ⊆⊕ M and write M = K ⊕N .
Suppose K = A ⊕ B,A ∈ A and f : A → B is a monomorphism. Then
M = A⊕ (B ⊕N), A ∈ A , and f : A → B ⊕N is a monomorphism. Since M
is an A -C4 module, Imf ⊆⊕ B ⊕N , and so Imf ⊆⊕ B. This follows that K
is an A -C4 module.

(2) Suppose that M ⊕M is an A -C4 module. Let A ∈ A and A
σ∼= B ⊆⊕

M . We need to prove that A ⊆⊕ M . Write M = B ⊕ C for a submodule C
of M . Since M ⊕ M ∼= B ⊕ (M ⊕ C) is an A -C4 module and B ∈ A and
ισ−1 : B → M ⊕ C is monic, where ι : M → M ⊕ C is the natural injection,
by Theorem 3.3(2), Im(ισ−1) ⊆⊕ M ⊕ C, that is, A ⊕ 0 ⊆⊕ M ⊕ C, and so
A ⊆⊕ M .

(3) Since M is an A -C4 module, we infer from Theorem 3.3(3) that
A⊕A ∼= A⊕ Imf ⊆⊕ M . By (1), A⊕A is an A -C4 module. And so, by (2),
A is an A -C2 module.

Theorem 3.11. The following statements are equivalent for a ring R:

(1) Every A ∈ A is injective.

(2) Every right R-module is an A -C4 module.

Proof. (1) ⇒ (2). It follows from Theorem 3.3(2).

(2) ⇒ (1). Let A ∈ A . Since A⊕E(A) is an A -C4 module, by Theorem
3.3(2), A ⊆⊕ E(A) , and so A = E(A) is injective.

Recall that a ring R is semisimple artinian if and only if every cyclic
module is injective, a ring R is a right V-ring if every simple right R-module
is injective, a ring R is quasi-Frobenius if and only if every projective right
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R-module is injective. Based on these facts, by Theorem 3.11, we have the
following corollaries.

Corollary 3.12. (1) A ring R is a semisimple artinian ring if and only
if every right R-module is a PC4 module.

(2) [3, Proposition 4.1] A ring R is a right V-ring if and only if every
right R-module is a simple-direct-injective module.

(3) A ring R is a quasi-Frobenius ring if and only if every right R-module
is a pro-C4 module.

Corollary 3.13. A ring R is a right noetherian right V-ring if and only
if every right R-module is a soc-C4 module.

Proof. ⇒. Since R is a right V-ring, every simple right R-module is
injective. But R is right noetherian, every direct sum of injective R-modules
is injective. And so, every semisimple right R-module is injective. Thus, by
Theorem 3.11, we have that every right R-module is a soc-C4 module.

⇐. Since every right R-module is a soc-C4 module, by Theorem 3.11, we
have that every semisimple right R-module is injective. Clearly, R is a right V-
ring. Now let K1,K2, ... be simple right R-modules. Then ⊕∞

i=1Ki is injective,
and so ⊕∞

i=1Ki ⊆⊕ ⊕∞
i=1E(Ki). Observing that ⊕∞

i=1Ki ⊆ess ⊕∞
i=1E(Ki), we

have ⊕∞
i=1Ki = ⊕∞

i=1E(Ki), and so ⊕∞
i=1E(Ki) is injective. By [8, Theorem

7.48], R is a right noetherian ring.

We end this paper with a characterization of von Neumann regular rings
in terms of C3 modules, PC3 modules and PC4 modules.

Proposition 3.14. The following statements are equivalent for a ring R:

(1) R is a von Neumann regular ring.

(2) Every finitely generated submodule of a projective right R-module is
a C3 module.

(3) Every finitely generated submodule of a projective right R-module is
a PC3 module.

(4) Every 2-generated submodule of a projective right R-module is a PC3
module.

(5) Every 2-generated submodule of a projective right R-module is a PC4
module.

Proof. (1) ⇒ (2). Since R is a regular ring, every finitely generated
submodule of a projective right R-module is a direct summand, and so (2)
holds.

(2) ⇒ (3) ⇒ (4) ⇒ (5). These implications are straightforward.
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(5) ⇒ (1). Let I be a principal right ideal. By (5), I ⊕ R is PC4. And
so, by Theorem 3.3(2), I ⊆⊕ R, as required.
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