GENERALIZATIONS OF C3 MODULES AND C4 MODULES

ZHANMIN ZHU

Communicated by Sorin Dăscălescu

Let \mathscr{A} be a class of right *R*-modules that is closed under isomorphisms, and let M be a right *R*-module. Then M is called \mathscr{A} -C3 if, whenever N and K are direct summands of M with $N \cap K = 0$ and $K \in \mathscr{A}$, then $N \oplus K$ is also a direct summand of M; M is called an \mathscr{A} -C4 module, if whenever $M = A \oplus B$ where A and B are submodules of M and $A \in \mathscr{A}$, then every monomorphism $f: A \to B$ splits. Some characterizations and properties of these classes of modules are investigated. As applications, some new characterizations of semisimple artinian rings, right V-rings, quasi-Frobenius rings and von Neumann regular rings are given.

AMS 2020 Subject Classification: 16D50, 16E50, 16P20.

Key words: *A*-C3 modules, *A*-C4 modules, semisimple artinian rings, right V-rings, von Neumann regular rings.

1. INTRODUCTION

Throughout, R is an associative ring with identity and all modules are unitary. Unless otherwise specified, \mathscr{A} is a class of some right R-modules which is closed under isomorphisms. Recall that a right R-module M is called a $C2 \mod [8]$ if every submodule K of M that is isomorphic to a direct summand of M is itself a direct summand of M; a right R-module M is called a $C3 \mod [8, 2]$ if, whenever N and K are direct summands of M with $N \cap K = 0$, then $N \oplus K$ is also a direct summand of M. Clearly, C2 modules are C3 modules. In [4], Ding, Ibrahim, Yousif and Zhou generalized the concept of C3 modules to C4 modules. According to [4], a right R-module M is called a C4 module, if whenever $M = A \oplus B$ where A and B are submodules of M, then every monomorphism $f : A \to B$ splits. In this paper, we shall generalize the concepts of Ci modules (i = 2, 3, 4) to \mathscr{A} -Ci modules (i = 2, 3, 4), respectively, and give some interesting results on these modules. As applications, some new characterizations of semisimple artinian rings, right V-rings, quasi-Frobenius rings and von Neumann regular rings will be given.

MATH. REPORTS **25(75)** (2023), *1*, 187–197 doi: 10.59277/mrar.2023.25.75.1.187

2. A-C2 MODULES AND A-C3 MODULES

Recall that a right *R*-module *M* is called *pseudo-injective* (resp., *pseudo* FQ-injective, *pseudo* PQ-injective, *pseudo* QP-injective) if every monomorphism from a submodule (resp., finitely generated submodule, principal submodule, *M*-cyclic submodule) of *M* to *M* extends to an endomorphism of *M*; a right *R*-module *M* is called *minimal quasi-injective* if every homomorphism from a minimal submodule of *M* to *M* extends to an endomorphism of *M*. These concepts can be found in [5, 13, 12, 14] and [10], respectively. Motivated by these concepts, we start this section with the following definitions.

Definition 2.1. Let \mathscr{A} be a class of right *R*-modules, and let *M* and *N* be two right *R*-modules. Then *M* is called pseudo \mathscr{A} -*N*-injective if every monomorphism from a submodule $K \in \mathscr{A}$ of *N* to *M* extends to an homomorphism of *N* to *M*. *M* is called pseudo \mathscr{A} -injective if it is pseudo \mathscr{A} -*M*-injective.

Example 2.2. Let \mathscr{A} be the class of all (resp., all finitely generated, all principal, all minimal, all *M*-cyclic) right *R*-modules. Then *M* is pseudo \mathscr{A} -injective if and only if it is pseudo-injective (resp., pseudo FQ-injective, pseudo PQ-injective, minimal quasi-injective, pseudo QP-injective).

PROPOSITION 2.3. Let \mathscr{A} be a class of right R-modules, M, N be two right R-modules and N' be a submodule of N. If M is pseudo \mathscr{A} -N-injective, then

(1) Every direct summand of M is pseudo \mathscr{A} -N-injective.

(2) M is pseudo \mathscr{A} -N'-injective.

Proof. (1) Let $M = M_1 \oplus M_2$. Then for every submodule $K \in \mathscr{A}$ of N and every monomorphism f of K to M_1 , since M is pseudo \mathscr{A} -N-injective, f extends to a homomorphism of N to M. Which follows that f extends to a homomorphism of N to M_1 because M_1 is a direct summand of M.

(2) It is obvious. \Box

By Proposition 2.3, we have immediately the following corollary.

COROLLARY 2.4. Let \mathscr{A} be a class of right R-modules. Then every direct summand of a pseudo \mathscr{A} -injective module is pseudo \mathscr{A} -injective.

The concepts of C2 modules and C3 modules have been extended in several ways. For example, a module M is called FC2 (resp., PC2, Min-C2, soc-C2) if every finitely generated (resp., principle, minimal, semisimple) submodule of M that is isomorphic to a direct summand of M is itself a direct summand of M; a module M is called FC3 (resp., PC3, Min-C3) if, whenever N and K are direct summands of M with $N \cap K = 0$ and N is finitely generated (resp., principle, minimal) then $N \oplus K$ is also a direct summand of M; a module M is called GC2 if every submodule of M that is isomorphic to M is itself a direct summand of M; a module M is called GC3 if, whenever N and K are direct summands of M with $N \cap K = 0$ and N is isomorphic to M, then $N \oplus K$ is also a direct summand of M. These concepts can be found in [13, 12, 10, 9, 11] and [1], respectively. We call a module M soc-C3 if, whenever N and K are direct summands of M with $N \cap K = 0$ and N is semisimple, then $N \oplus K$ is also a direct summand of M. Note that our definition of soc-C3 modules is different from that defined in [1]. Now we extend these concepts as follows.

Definition 2.5. Let \mathscr{A} be a class of right R-modules that is closed under isomorphisms, and let M be a right R-module. Then M is called \mathscr{A} -C2 if every submodule $K \in \mathscr{A}$ of M that is isomorphic to a direct summand of M is itself a direct summand of M. M is called \mathscr{A} -C3 if, whenever N and K are direct summands of M with $N \cap K = 0$ and $K \in \mathscr{A}$, then $N \oplus K$ is also a direct summand of M.

It is easy to see that pseudo injective $\Rightarrow C2 \Rightarrow C3$. In general, we have the following results.

THEOREM 2.6. Let \mathscr{A} be a class of right R-modules that is closed under isomorphisms, and let M be a right R-module. Consider the following conditions:

- (1) M is pseudo \mathscr{A} -injective.
- (2) M is \mathscr{A} -C2.
- (3) M is \mathscr{A} -C3.
- Then, the following implications hold
- $(1) \Rightarrow (2) \Rightarrow (3).$

Proof. (1) \Rightarrow (2). Let M_R be pseudo \mathscr{A} -injective with $S = End(M_R)$. If K is a submodule of M, $K \in \mathscr{A}$ and $K \cong eM$, where $e^2 = e \in S$, then eM is pseudo \mathscr{A} -M-injective by Proposition 2.3 and hence, K is also pseudo \mathscr{A} -M-injective, this follows that K is a direct summand of M because $K \in \mathscr{A}$. This proves (2).

 $(2) \Rightarrow (3)$. Let N and K be direct summands of M with $N \cap K = 0$ and $K \in \mathscr{A}$. Write N = eM and K = fM, where e, f are idempotents in S, then $eM \oplus fM = eM \oplus (1-e)fM$. Since $(1-e)fM \cong fM \in \mathscr{A}$, (1-e)fM = hM for some $h^2 = h \in S$ by (2). Let g = e+h-he. Then $g^2 = g$ and $eM \oplus fM = gM$, as required. \Box

PROPOSITION 2.7. Let \mathscr{A} be a class of right R-modules that is closed under isomorphisms and direct summands, and let $M \in \mathscr{A}$ be a right R-module. Then M is a C2 module if and only if M is an \mathscr{A} -C2 module, M is a C3 module if and only if M is an \mathscr{A} -C3 module.

Proof. Obvious. \Box

COROLLARY 2.8. (1) If M is a finitely generated module, then M is a C2 module if and only if it is a FC2 module, M is a C3 module if and only if it is a FC3 module.

(2) If M is a cyclic module, then M is a C2 module if and only if it is a PC2 module, M is a C3 module if and only if it is a PC3 module.

(3) If M is a finitely generated PFQ-injective (resp., cyclic PPQ-injective) module, then it is a C2 module.

It is well known that C2 modules and C3 modules are inherited by direct summands [8, Proposition 1.30]. The next results show that \mathscr{A} -C2 modules and \mathscr{A} -C3 modules are also inherited by direct summands.

THEOREM 2.9. (1) A direct summand of an \mathscr{A} -C2 module is again an \mathscr{A} -C2 module.

(2) A direct summand of an \mathscr{A} -C3 module is again an \mathscr{A} -C3 module.

Proof. (1) Let M be an \mathscr{A} -C2 module and $N \subseteq^{\oplus} M$. We need to show that N is also \mathscr{A} -C2. Let $A \in \mathscr{A}$ be a submodule of N that is isomorphic to a direct summand of N. Since M is \mathscr{A} -C2, $A \subseteq^{\oplus} M$. Write $M = A \oplus M_1$. Then $N = M \cap N = (A \oplus M_1) \cap N = A \oplus (M_1 \cap N)$, as required.

(2) Let M be an \mathscr{A} -C3 module and $N \subseteq^{\oplus} M$. We prove that N is also \mathscr{A} -C3. Let A and B be two direct summands of N with $A \cap B = 0$ and $A \in \mathscr{A}$. Since M is \mathscr{A} -C3, $A \oplus B \subseteq^{\oplus} M$. Write $M = (A \oplus B) \oplus C$. Then $N = M \cap N = (A \oplus B \oplus C) \cap N = (A \oplus B) \oplus (C \cap N)$, as required. \Box

COROLLARY 2.10. (1) A direct summand of a C2 (resp., GC2, PC2, FC2, Min-C2, soc-C2) module is again a C2 (resp., GC2, PC2, FC2, Min-C2, soc-C2) module.

(2) A direct summand of a C3 (resp., GC3, PC3, FC3, Min-C3, soc-C3) module is again a C3 (resp., GC3, PC3, FC3, Min-C3, soc-C3) module.

The following theorem extends the results of [2, Proposition 2.2].

THEOREM 2.11. Let \mathscr{A} be a class of right R-modules that is closed under isomorphisms, and let M be a right R-module. Consider the following conditions:

(1) M is an \mathscr{A} -C3 module.

(2) If $A \subseteq^{\oplus} M, B \subseteq^{\oplus} M, A \in \mathscr{A}$ and $A \cap B = 0$, then $M = A_1 \oplus B = A \oplus B_1$ for some submodules $A_1 \supseteq A$ and $B_1 \supseteq B$.

(3) If $A \subseteq^{\oplus} M, B \subseteq^{\oplus} M, A \in \mathscr{A}$ and $A \cap B \subseteq^{\oplus} M$, then $A + B \subseteq^{\oplus} M$. Then, the following implications hold (3) \Rightarrow (1) \Leftrightarrow (2).

Moreover, if \mathscr{A} is closed under direct summands, then the above three conditions are equivalent.

Proof. (1) \Rightarrow (2). Let $A \subseteq^{\oplus} M, B \subseteq^{\oplus} M, A \in \mathscr{A}$ and $A \cap B = 0$. Then by (1), $A \oplus B \subseteq^{\oplus} M$, and so $M = (A \oplus B) \oplus C$ for a submodule $C \subseteq M$. Write $A_1 = A \oplus C, B_1 = B \oplus C$. Then, we have $A_1 \supseteq A$, $B_1 \supseteq B$ and $M = A_1 \oplus B = A \oplus B_1$.

(2) \Rightarrow (1). Let $A \subseteq^{\oplus} M, B \subseteq^{\oplus} M, A \in \mathscr{A}$ and $A \cap B = 0$. Then by (2), we have $M = A_1 \oplus B = A \oplus B_1$ for some submodules $A_1 \supseteq A$ and $B_1 \supseteq B$. Now $B_1 = B_1 \cap M = B_1 \cap (A_1 \oplus B) = B \oplus (A_1 \cap B_1)$, and so $M = A \oplus B_1 = A \oplus B \oplus (A_1 \cap B_1)$, as required.

 $(3) \Rightarrow (1)$. It is clear.

Now suppose that \mathscr{A} is closed under direct summands, we need to prove $(1) \Rightarrow (3)$. Since $A \cap B \subseteq^{\oplus} M$, $M = (A \cap B) \oplus K$ for some submodule K of M. So $A = (A \cap B) \oplus (A \cap K)$ and $B = (A \cap B) \oplus (B \cap K)$, and hence both $A \cap K$ and $B \cap K$ are direct summands of M because both A and B are direct summands of M. Clearly $(A \cap K) \cap (B \cap K) = 0$. Note that \mathscr{A} is closed under direct summands, $A \cap K \in \mathscr{A}$. By (1), we have that $T =: (A \cap K) \oplus (B \cap K)$ is a direct summand of M. Again, since both T and $A \cap B$ are direct summands of M, and $(A \cap B) \cap T \subseteq (A \cap B) \cap K = 0$ as well as $A \cap B \in \mathscr{A}$, by (1), we have $(A \cap B) \oplus T$ is a direct summand of M. Thus, $A + B = [(A \cap B) \oplus (A \cap K)] + [(A \cap B) \oplus (B \cap K)] = (A \cap B) \oplus T$ is a direct summand of M.

LEMMA 2.12 ([6, Lemma 2.6(1)(2)]). Let $M = A \oplus B, X \leq A$ and $f: X \to B$. Then

(1)
$$X \oplus B = \langle f \rangle \oplus B$$
, where $\langle f \rangle = \{x - f(x) \mid x \in X\}$.
(2) $\operatorname{Ker} f = \langle f \rangle \cap A$.

The following theorem extends the results of [2, Proposition 2.3, Corollary 2.4].

THEOREM 2.13. Let \mathscr{A} be a class of right R-modules that is closed under isomorphisms. If M is an \mathscr{A} -C3 module, $M = A \oplus B$ for some submodules A and B where $A \in \mathscr{A}$, and $f : A \to B$ is an R-homomorphism, then

(1) If f is an R-monomorphism, then $\text{Im} f \subseteq^{\oplus} B$.

(2) If \mathscr{A} is closed under direct summands and Kerf $\subseteq^{\oplus} A$, then $\operatorname{Im} f \subseteq^{\oplus} B$.

Proof. (1) By Lemma 2.12(1), we have $M = \langle f \rangle \oplus B$. Since f is an R-monomorphism, by Lemma 2.12(2), $\langle f \rangle \cap A = 0$.

Since M is \mathscr{A} -C3, $\langle f \rangle \oplus A \subseteq^{\oplus} M$. Now we show that $\operatorname{Im} f \oplus A = \langle f \rangle \oplus A$. For, if $b \in \operatorname{Im} f$, then b = f(a) for some $a \in A$, so $b = a - a + f(a) \in A + \langle f \rangle$, and hence $\operatorname{Im} f \oplus A = \langle f \rangle \oplus A$. Since $\langle f \rangle \oplus A \subseteq^{\oplus} M$, $\operatorname{Im} f \subseteq^{\oplus} M$, it implies that $\operatorname{Im} f \subseteq^{\oplus} B$.

(2) Let $f : A \to B$ be an *R*-homomorphism with Ker $f \subseteq^{\oplus} A$. If $A = \text{Ker} f \oplus A'$ for a submodule A' of A, then by hypothesis, $A' \in \mathscr{A}$, $M = A \oplus B = \text{Ker} f \oplus A' \oplus B$, and the restriction map $f|_{A'} : A' \to B$ is a monomorphism. Since $A' \oplus B$ is an \mathscr{A} -C3 module by Theorem 2.9(2), we infer from (1) that $\text{Im} f = \text{Im}(f|_{A'}) \subseteq^{\oplus} B$. \Box

3. \mathscr{A} -C4 MODULES

Now, we extend the concept of C4 modules as following.

Definition 3.1. (1) Let \mathscr{A} be a class of right *R*-modules that is closed under isomorphisms. A right *R*-module *M* is called an \mathscr{A} -C4 module, if whenever $M = A \oplus B$ where *A* and *B* are submodules of *M* and $A \in \mathscr{A}$, then every monomorphism $f : A \to B$ splits.

(2) A right *R*-module *M* is called a PC4 (resp., FC4, GC4, Min-C4, soc-C4, pro-C4) module if it is an \mathscr{A} -C4 module, where \mathscr{A} is the class of all cyclic (resp., finitely generated, isomorphic to *M*, simple, semisimple, projective) right *R*-modules.

It is easy to see that $Ci \Rightarrow FCi \Rightarrow PCi \Rightarrow Min-Ci$; $Ci \Rightarrow soc-Ci \Rightarrow Min-Ci$ and $Ci \Rightarrow GCi$, i = 2, 3, 4.

LEMMA 3.2. Let A, B, T be submodules of $M, A \cap B = 0, M = A \oplus T$, and $\pi : A \oplus T \to T$ be the natural projection. Then $A \oplus B = A \oplus \pi(B)$.

Proof. For any $b \in B$, there exists $a \in A$ and $t \in T$ such that $b = a + t = a + \pi(b) \in A \oplus \pi(B)$, so $\pi(b) = t = -a + b \in A \oplus B$. This proves the result. \Box

Now, we give some characterizations of \mathscr{A} -C4 modules as follows.

THEOREM 3.3. Let \mathscr{A} be a class of right R-modules that is closed under isomorphisms, and let M be a right R-module. Consider the following conditions:

(1) M is an \mathscr{A} -C4 module.

(2) If $M = A \oplus B$ where A and B are submodules of M and $A \in \mathscr{A}$, and $f : A \to B$ is a monomorphism, then $\operatorname{Im} f \subseteq^{\oplus} B$.

(3) If $B \cong A \subseteq^{\oplus} M, B \subseteq M, A \in \mathscr{A}$ and $A \cap B = 0$, then $A \oplus B \subseteq^{\oplus} M$.

(4) If $B \cong A \subseteq^{\oplus} M, B \subseteq M, A \in \mathscr{A} and A \cap B = 0$, then $B \subseteq^{\oplus} M$.

(5) If $M = A \oplus A' = B \oplus B', A \in \mathscr{A}$ and $A \cap B = A \cap B' = 0$, then $A \oplus B \subseteq^{\oplus} M$.

(6) If $B \subseteq M, A \subseteq^{\oplus} M, A \in \mathscr{A}, A \cong B$ and $A \cap B = 0$, then $A \oplus B \subseteq^{\oplus} M$.

(7) If $M = A \oplus B$ for some submodules A and B where $A \in \mathscr{A}$, and

 $f: A \to B$ is an R-homomorphism such that $\operatorname{Ker} f \subseteq^{\oplus} A$, then $\operatorname{Im} f \subseteq^{\oplus} B$.

Then, the following implications hold:

 $(7) \Rightarrow (1) \Leftrightarrow (2) \Leftrightarrow (3) \Leftrightarrow (4) \Leftrightarrow (5) \Leftrightarrow (6).$

Moreover, if \mathscr{A} is closed under direct summands, then the above conditions are equivalent.

Proof. (1) \Leftrightarrow (2). It is obvious.

 $(2) \Rightarrow (3).$ Let $B \stackrel{\circ}{\cong} A \subseteq^{\oplus} M, B \subseteq M, A \in \mathscr{A}$ and $A \cap B = 0$. We need to prove that $A \oplus B \subseteq^{\oplus} M$. Write $M = A \oplus T$ for a submodule T of M, and let $\pi : A \oplus T \to T$ be the natural projection. Then by Lemma 3.2, $A \oplus B = A \oplus \pi(B)$. Since $A \cap B = 0, B \stackrel{\pi|_B}{\cong} \pi(B)$. Since $M = A \oplus T$ and $\pi|_B \circ \sigma^{-1} : A \to T$ is a monomorphism, by (2), we have that $\operatorname{Im}(\pi|_B \circ \sigma^{-1}) = \pi(B) \subseteq^{\oplus} T$. Let $T = \pi(B) \oplus C$. Then $M = A \oplus T = (A \oplus \pi(B)) \oplus C = (A \oplus B) \oplus C$, as required.

 $(3) \Rightarrow (4)$. It is obvious.

(4) \Rightarrow (5). Let π : $B \oplus B' \to B'$ be the natural projection. Then by Lemma 3.2, we have $A \oplus B = \pi(A) \oplus B$. Since $A \cap B = 0, \pi(A) \cong A \subseteq^{\oplus}$ $M, A \in \mathscr{A}$ and $\pi(A) \cap A \subseteq B' \cap A = 0$, by (4), $\pi(A) \subseteq^{\oplus} M$, and so $\pi(A) \subseteq^{\oplus} B'$. write $B' = \pi(A) \oplus T$. Then $M = B \oplus B' = B \oplus (\pi(A) \oplus T) = (B \oplus \pi(A)) \oplus T =$ $(A \oplus B) \oplus T$, and then $A \oplus B \subseteq^{\oplus} M$.

(5) \Rightarrow (6). Write $M = A \oplus A'$, and let $\pi : A \oplus A' \to A'$ be the natural projection and $A \cong B$. Then by Lemma 2.12(1), we have $M = A \oplus A' = \langle \pi f \rangle \oplus A'$, where $\langle \pi f \rangle = \{a - \pi f(a) \mid a \in A\}$. Since $A \cap B = 0$, it is easy to see that the map πf is monic, and so $A \cap \langle \pi f \rangle = 0$ by Lemma 2.12(2). Thus, by (5), we have that $A \oplus B = A \oplus \pi(B) = A \oplus \langle \pi f \rangle \subseteq^{\oplus} M$.

 $(6) \Rightarrow (2)$. Let $M = A \oplus B$ where A and B are submodules of $M, A \in \mathscr{A}$, and $f : A \to B$ be a monomorphism. We need to prove that $\operatorname{Im} f \subseteq^{\oplus} B$. By Lemma 2.12, we have $A \oplus B = \langle f \rangle \oplus B$ and $\langle f \rangle \cap A = 0$. Clearly, $A \cong \langle f \rangle$. So (6) implies that $A \oplus \langle f \rangle \subseteq^{\oplus} M$. Observing that $A \oplus \langle f \rangle = A \oplus \operatorname{Im} f$, we have that $\operatorname{Im} f \subseteq^{\oplus} B$.

 $(7) \Rightarrow (2)$. It is obvious.

Now suppose that \mathscr{A} is closed under direct summands, we need to prove $(2) \Rightarrow (7)$. Let $M = A \oplus B$ for some submodules A and B where $A \in \mathscr{A}$, and let $f : A \to B$ be an R-homomorphism with Ker $f \subseteq^{\oplus} A$. Write $A = \operatorname{Ker} f \oplus C$. Then $M = A \oplus B = (\operatorname{Ker} f \oplus C) \oplus B = C \oplus (\operatorname{Ker} f \oplus B)$. Since $A \in \mathscr{A}$ and \mathscr{A} is closed under direct summands, $C \in \mathscr{A}$. Clearly, $f|_C$ is a monomorphism from C to Ker $f \oplus B$. So, by (2), Im $f = \text{Im}(f|_C) \subseteq^{\oplus}$ (Ker $f \oplus B$), and hence Im $f \subseteq^{\oplus} B$, as required. \Box

COROLLARY 3.4. If \mathscr{A} is closed under isomorphisms and direct summands, M is an \mathscr{A} -C4 module and $M \in \mathscr{A}$, then M is a C4 module.

Proof. It follows from Theorem 3.3(2).

COROLLARY 3.5. Every cyclic (resp., finitely generated, semisimple, projective) PC4 (resp., FC4, soc-C4, pro-C4) module is a C4 module.

Recall that an *R*-module *M* is said to have the internal finite exchange property [7] if, for any direct summand *X* of *M* and any decomposition $M = \bigoplus_I M_{\alpha}$, where *I* is a finite index set, there exist submodules $M'_{\alpha} \subseteq M_{\alpha}$ such that $M = X \oplus (\bigoplus_I M'_{\alpha})$.

PROPOSITION 3.6. If M is an \mathscr{A} -C3 module, then it is an \mathscr{A} -C4 module. Conversely, if \mathscr{A} is closed under direct summands and M is an \mathscr{A} -C4 module with the internal finite exchange property, then it is an \mathscr{A} -C3 module.

Proof. If *M* is an *A*-C3 module, then it follows immediately from Theorem 2.13(1) that *M* is an *A*-C4 module. Now assume that *M* is an *A*-C4 module with the internal finite exchange property. Let *A* and *B* are direct summands of *M* with $A \cap B = 0$ and $A \in \mathcal{A}$. Write $M = A \oplus C = B \oplus D$. Then by the internal finite exchange property, there exists a submodule *A'* of *A* and a submodule *C'* of *C* such that $M = B \oplus A' \oplus C'$, and so, by modular law, we have $A = A' \oplus A''$ and $C = C' \oplus C''$, where $A'' = (B \oplus C') \cap A, C'' = (B \oplus A') \cap C$. It is easy to see that $A'' \in \mathcal{A}, M = A'' \oplus (A' \oplus C) = C' \oplus (B \oplus A'), A'' \cap C' = 0, A'' \cap (B \oplus A') = 0$, so we infer from Theorem 3.3(5) that $A \oplus B = A'' \oplus (B \oplus A') \subseteq M$, and thus *M* is an *A*-C3 module. □

COROLLARY 3.7. Let M be a module with the internal finite exchange property, then it is a PC3 (resp., FC3, soc-C3, pro-C3) module if and only if it is a PC4 (resp., FC4, soc-C4, pro-C4) module.

Remark 3.8. We remark that Min-C2 modules are nothing but the simpledirect-injective module defined in [3]. By [3, Proposition 2.1] and Theorem 3.3(2), a module M is Min-C2 if and only if it is Min-C3 if and only if it is Min-C4.

The following example shows that \mathscr{A} -Ci modules need not be Ci-modules for each i = 2, 3, 4, and Min-C4 modules need not be PC4.

Example 3.9. Let K be a field and R be the K-algebra consisting of all 3×3 matrices of the form $\begin{pmatrix} \alpha_1 & \alpha_2 & \alpha_3 \\ 0 & \alpha_4 & 0 \\ 0 & 0 & \alpha_5 \end{pmatrix}$, where $\alpha_i \in K$. Then by [3,

Example 3.7], $e_{11}R \oplus E(e_{11}R)$ is a simple-direct-injective right *R*-module. But $e_{11}R$ is not injective, by Theorem 3.3(2), $e_{11}R \oplus E(e_{11}R)$ is not a PC4-module and hence it is not a C4-module. So, in general, \mathscr{A} -C*i* modules need not be C*i*-modules for each i = 2, 3, 4.

PROPOSITION 3.10. (1) A direct summand of an \mathscr{A} -C4 module is again an \mathscr{A} -C4 module.

(2) If $M \oplus M$ is an \mathscr{A} -C4 module, then M is an \mathscr{A} -C2 module.

(3) Let M be an \mathscr{A} -C4 module, $A \subseteq^{\oplus} M, B \subseteq M, A \in \mathscr{A}$ and $A \cap B = 0$. If there exists a monomorphism $f : A \to B$, then A is an \mathscr{A} -C2 module.

Proof. (1) Let M be an \mathscr{A} -C4 module, $K \subseteq^{\oplus} M$ and write $M = K \oplus N$. Suppose $K = A \oplus B, A \in \mathscr{A}$ and $f : A \to B$ is a monomorphism. Then $M = A \oplus (B \oplus N), A \in \mathscr{A}$, and $f : A \to B \oplus N$ is a monomorphism. Since M is an \mathscr{A} -C4 module, $\operatorname{Im} f \subseteq^{\oplus} B \oplus N$, and so $\operatorname{Im} f \subseteq^{\oplus} B$. This follows that K is an \mathscr{A} -C4 module.

(2) Suppose that $M \oplus M$ is an \mathscr{A} -C4 module. Let $A \in \mathscr{A}$ and $A \cong B \subseteq^{\oplus} M$. We need to prove that $A \subseteq^{\oplus} M$. Write $M = B \oplus C$ for a submodule C of M. Since $M \oplus M \cong B \oplus (M \oplus C)$ is an \mathscr{A} -C4 module and $B \in \mathscr{A}$ and $\iota \sigma^{-1} : B \to M \oplus C$ is monic, where $\iota : M \to M \oplus C$ is the natural injection, by Theorem 3.3(2), $\operatorname{Im}(\iota \sigma^{-1}) \subseteq^{\oplus} M \oplus C$, that is, $A \oplus 0 \subseteq^{\oplus} M \oplus C$, and so $A \subseteq^{\oplus} M$.

(3) Since M is an \mathscr{A} -C4 module, we infer from Theorem 3.3(3) that $A \oplus A \cong A \oplus \operatorname{Im} f \subseteq^{\oplus} M$. By (1), $A \oplus A$ is an \mathscr{A} -C4 module. And so, by (2), A is an \mathscr{A} -C2 module. \Box

THEOREM 3.11. The following statements are equivalent for a ring R:

(1) Every $A \in \mathscr{A}$ is injective.

(2) Every right R-module is an \mathscr{A} -C4 module.

Proof. $(1) \Rightarrow (2)$. It follows from Theorem 3.3(2).

 $(2) \Rightarrow (1).$ Let $A \in \mathscr{A}$. Since $A \oplus E(A)$ is an \mathscr{A} -C4 module, by Theorem 3.3(2), $A \subseteq^{\oplus} E(A)$, and so A = E(A) is injective. \Box

Recall that a ring R is semisimple artinian if and only if every cyclic module is injective, a ring R is a right V-ring if every simple right R-module is injective, a ring R is quasi-Frobenius if and only if every projective right

R-module is injective. Based on these facts, by Theorem 3.11, we have the following corollaries.

COROLLARY 3.12. (1) A ring R is a semisimple artinian ring if and only if every right R-module is a PC4 module.

(2) [3, Proposition 4.1] A ring R is a right V-ring if and only if every right R-module is a simple-direct-injective module.

(3) A ring R is a quasi-Frobenius ring if and only if every right R-module is a pro-C4 module.

COROLLARY 3.13. A ring R is a right noetherian right V-ring if and only if every right R-module is a soc-C4 module.

Proof. ⇒. Since *R* is a right V-ring, every simple right *R*-module is injective. But *R* is right noetherian, every direct sum of injective *R*-modules is injective. And so, every semisimple right *R*-module is injective. Thus, by Theorem 3.11, we have that every right *R*-module is a soc-C4 module.

 \Leftarrow . Since every right *R*-module is a soc-C4 module, by Theorem 3.11, we have that every semisimple right *R*-module is injective. Clearly, *R* is a right V-ring. Now let K_1, K_2, \ldots be simple right *R*-modules. Then $\bigoplus_{i=1}^{\infty} K_i$ is injective, and so $\bigoplus_{i=1}^{\infty} K_i \subseteq^{\oplus} \bigoplus_{i=1}^{\infty} E(K_i)$. Observing that $\bigoplus_{i=1}^{\infty} K_i \subseteq^{ess} \bigoplus_{i=1}^{\infty} E(K_i)$, we have $\bigoplus_{i=1}^{\infty} K_i = \bigoplus_{i=1}^{\infty} E(K_i)$, and so $\bigoplus_{i=1}^{\infty} E(K_i)$ is injective. By [8, Theorem 7.48], *R* is a right noetherian ring. \Box

We end this paper with a characterization of von Neumann regular rings in terms of C3 modules, PC3 modules and PC4 modules.

PROPOSITION 3.14. The following statements are equivalent for a ring R:

(1) R is a von Neumann regular ring.

(2) Every finitely generated submodule of a projective right R-module is a C3 module.

(3) Every finitely generated submodule of a projective right R-module is a PC3 module.

(4) Every 2-generated submodule of a projective right R-module is a PC3 module.

(5) Every 2-generated submodule of a projective right R-module is a PC4 module.

Proof. (1) \Rightarrow (2). Since *R* is a regular ring, every finitely generated submodule of a projective right *R*-module is a direct summand, and so (2) holds.

 $(2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5)$. These implications are straightforward.

 $(5) \Rightarrow (1)$. Let *I* be a principal right ideal. By (5), $I \oplus R$ is PC4. And so, by Theorem 3.3(2), $I \subseteq^{\oplus} R$, as required. \Box

Acknowledgments. The author wishes to thank the referee for a careful reading of the article and giving a detailed report. This research was supported by the Natural Science Foundation of Zhejiang Province, China (LY18A010018).

REFERENCES

- I. Amin, M. Yousif, and N. Zeyada, Soc-injective rings and modules. Comm. Algebra 33 (2005), 4229-4250.
- [2] I. Amin, Y. Ibrahim, and M. Yousif, C3-modules. Algebra Colloq. 22 (2015), 655-670.
- [3] V. Camillo, Y. Ibrahim, M. Yousif, and Y.Q. Zhou, Simple-direct-injective modules. J. Algebra 420 (2014), 39-53.
- [4] N.Q. Ding, Y. Ibrahim, M. Yousif, and Y.Q. Zhou, C4-modules. Comm. Algebra 45 (2017), 1727-1740.
- [5] S.K. Jain and S. Singh, *Quasi-injective and Pseudo-injective modules*. Canad. Math. Bull. 18 (1975), 359-366.
- [6] D. Keskin Tütüncü, S.H. Mohamed, and N. Orhan, *Mixed injective modules*. Glasg. Math. J. 52 (2010), 111-120.
- [7] Y. Kuratomi and K. Oshiro, On direct sums of extending modules and internal exchange property. J. Algebra 250 (2002), 115-133.
- [8] W.K. Nicholson and M.F. Yousif, *Quasi-Frobenius Rings*. Cambridge Tracts in Math. 158, Cambridge Univ. Press, 2003.
- [9] M.F. Yousif and Y.Q. Zhou, Rings for which certain elements have the principal extension property. Algebra Colloq. 10 (2003), 501-512.
- [10] Z.M. Zhu and Z.S. Tan, *Minimal quasi-injective modules*. Sci. Math. Jpn. **62** (2005), 465-469.
- [11] Z.M. Zhu and J.X. Yu, On GC₂ modules and their endomorphism rings. Linear and Multilinear Algebra 56 (2008), 511-515.
- [12] Z.M. Zhu, Pseudo PQ-injective modules. Turkish J. Math. 35 (2011), 391-398.
- [13] Z.M. Zhu, Pseudo FQ-injective modules. Bull. Malays. Math. Sci. Soc. 36 (2013), 385-391.
- [14] Z.M. Zhu, Pseudo QP-injective modules and generalized pseudo QP-injective modules. Int. Electron. J. Algebra 14 (2013), 32-43.

Received September 7, 2019

Jiaxing University Department of Mathematics Jiaxing, Zhejiang Province, 314001, P.R.China zhuzhanminzjxu@hotmail.com