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We study the existence of solutions having singular limits for some four-dimen-
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1. INTRODUCTION AND STATEMENT OF RESULTS

In this paper, we will use the method of domain decomposition to study
the following problem

(1)
{

∆2u+ Qλ(u) = ρ4|x|4βf(|x|)eu in Ω
u = ∆u = 0 on ∂Ω,

where Ω = B1 ⊂ R4 the unit ball centered at the origin, ρ is a parameter
that tends to 0, β is a positive function defined in a neighborhood of 0 in R,
f : [0, +∞) → R is a smooth positive function satisfying f(0) > 0 and Qλ is
the nonlinear operator given by

Qλ(u) := λ
[
(∆u)2 +∆(|∇u|2) + 2∇u · ∇(∆u)

]
+ 2λ2

[
∆u |∇u|2 +∇u · ∇(|∇u|2)

]
+ λ3|∇u|4.

(2)

Using the following transformation

w := (λρ4eu)λ,

the function w satisfies the following equation

(3) ∆2w = V (x)w
λ+1
λ in Ω,
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with V (x) = |x|4βf(|x|). Problem (3) with V ≡ 1 has been studied by Ben
Ayed, El Mehdi and Grossi in [5], since the exponent p = λ+1

λ tends to infinity
as λ tends to 0.

We denote by ε the smallest positive number satisfying

(4) ρ4 =
384ε4

(1 + ε2)4
.

We will suppose in the following

(Aβ) β1+ δ
2 ε−δ/(β+1) → 0 as ε → 0, for any δ ∈ (0, 1).

In particular, if we take β = O(ε2/3), then the condition (Aβ) is satisfied. We
also suppose that

(Aλ) λ1+ δ
2 ε−δ/(β+1) → 0 as ε → 0, for any δ ∈ (0, 1).

In particular, if we take λ = O(ε2/3), then the condition (Aλ) is satisfied.

Let G be the Green’s function, solution of the problem

(5)

{
∆2G = 64π2δ0 in Ω

G = ∆G = 0 on ∂Ω,

and we denote by H(x) = G(x)+8 log r its regular part function. Here, r = |x|.

Our main result reads as follows.

Theorem 1. Let Ω = B1 be the unit ball in R4. Suppose that the assump-
tions (Aλ) and (Aβ) are satisfied. Then there exist ρ0 > 0, λ0 > 0 and a family
{uρ,λ,β} 0 < ρ < ρ0, 0 < λ < λ0

of solutions of (1), such that

lim
ρ → 0
λ → 0

uρ, λ,β = G in C∞
loc(B1\{0}) .

In case λ = 0, we get the following problem

(6)
{

∆2u = ρ4|x|4βf(|x|)eu in Ω
∆u = u = 0 on ∂Ω.

The authors in [11] gave a sufficient condition for problem (6) to have a weak so-
lution in Ω which is singular in 0 as ρ a small parameter satisfying the condition
(Aβ).

Problem (6) is a generalisation of

(7)
{

∆2u = ρ4eu − 32π2βδ0 in Ω
∆u = u = 0 on ∂Ω,
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since, setting v = u +
1

2
βG, it is clear that u solves (7) if and only if v solves

the following problem

(8)
{

∆2v = ρ4|x|4βe−
1
2
βHev in Ω

∆v = v = 0 on ∂Ω.

Semilinear equations involving fourth order elliptic operator and exponen-
tial nonlinearity appear naturally in conformal geometry and, in particular, in
the prescription of the so-called Q-curvature in four-dimensional Riemannian
manifolds [8, 9]

Qg =
1

12

(
−∆gSg + S2

g − 3 |Ricg|2
)
,

where Ricg denotes the Ricci tensor and Sg is the scalar curvature of the metric
g. Recall that the Q-curvature changes under a conformal change of metric

gw = e2w g,

according to

(9) Pg w + 2Qg = 2 Q̃gw e4w,

where

Pg := ∆2
g + δ

(
2

3
Sg I − 2Ricg

)
d

is the Paneitz operator, which is an elliptic 4-th order partial differential oper-
ator [9] and which transforms according to

e4w Pe2wg = Pg,

under a conformal change of metric gw := e2w g.
There are two reasons that make this Q-curvature equation (9) attractive

to study. The first consideration comes from the analytic point of view, namely
that the generic singularities of the Q-curvature equation are isolated points.
The second consideration comes from geometry: the Q-curvature prescribed
by the Paneitz operator can be viewed as part of the integrand in the Chern-
Gauss-Bonnet formula:

8π2χ(M) =

∫
M
(
1

4
|Wg|2 + 2Q̃gw)dv,

where χ(M) is the Euler characteristic of M and W denotes the Weyl tensor.
Note that |Wg|2dv is a pointwise conformal invariant, thus the integration of
Q̃gw is conformally invariant. Since the Q-curvature contains information about
the Ricci tensor, it influences the geometry of the underlying manifold directly.
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In the special case where the manifold is the Euclidean space and g is the
Euclidean metric, the Paneitz operator is simply given by

Pgeucl = ∆2,

in which case (9) can be written as

∆2w = Q̃gw e4w,

the solutions of which give rise to the conformal metric gw = e2w geucl whose
Q-curvature is given by Q̃gw. There is by now an extensive literature about this
problem and we refer to [9] and [16] for references and recent developments.

In dimension two, the analogue of the Q-curvature is the Gauss curvature
and the corresponding problem is

(10)

 −∆u = ρ2eu − 4π

N∑
i=1

βiδpi in D

u = 0 on ∂D,

where D ⊂ R2 is a regular bounded domain, ρ is a parameter tending to
0,Λ := {p1, · · · , pN} ⊂ D is the set of singular sources and where δpi denotes
the Dirac mass at pi.

Esposito in [13] has proved the existence of solutions to the problem (10)
having a prescribed singular set S for the limits. To describe his result, we
need to introduce some notation. Let Γ(x, x′) be the Green’s function defined
on D ×D, the solution of

(11)
{

−∆Γ(x, x′) = 8πδx=x′ in D
Γ(x, x′) = 0 on ∂D

and let
h(x, x′) = Γ(x, x′) + 4 log |x− x′|

be the regular part of Γ. Problem (10) is equivalent to solving for

v = u+
1

2

N∑
i=1

βiΓ(·, pi),

the equation

(12)

 −∆v = ρ2
N∏
i=1

|x− pi|2βie−
1
2
ΣN

i=1βih(x,pi)ev in D

v = 0 on ∂D.
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For a given smooth function f : D → (0, +∞) consider the following “general
model” problem

(13)

 −∆v = ρ2
N∏
i=1

|x− pi|2βif(x)ev in D

v = 0 on ∂D,

where Λ = {p1, · · · , pN} ⊂ D and βi are positive numbers. For 1 ≤ s ≤ N and
m ∈ N, we denote

F(x1, · · · , xm) =
m∑
j=1

h(xj , xj) +
∑
i ̸=j

Γ(xi, xj)

+ 4

s∑
i=1

m∑
j=1

βi log(|xj − pi|) + 2

m∑
j=1

log(f(xj)),

which is well defined for xi ̸= xj when i ̸= j. Let

G(x1, · · · , xm, w1, · · · , ws) =
m∑
j=1

s∑
i=1

(1 + βi)Γ(xj , wi) .

G is well defined for xj ̸= wi with xj ∈ D, wi ∈ D. Esposito in [13] has proved
the following.

Theorem 2 ([13]). Let D ⊂ R2 be a smooth open set, f a smooth positive
function and {β1, · · · , βN} ⊂ (0, +∞)\N be a set of real numbers. We have
the following.

1. Let S = {pj1 , · · · , pjs} ⊂ Λ. Then there exist ρ0 > 0 small and a family
(vρ)0<ρ<ρ0 of solutions for the problem (10) such that

vρ →
s∑

i=1

(1 + βji)Γ(·, pji),

as ρ → 0, in C2,α
loc (D\S) for α ∈ (0, 1).

2. Let S = {q1, · · · , qm} ⊂ D\Λ and (q1, · · · , qm) be a nondegenerate
critical point of F such that ∆ log f(q1) = · · · = ∆ log f(qm) = 0. Then
there exist ρ0 > 0 small and a family (vρ)0<ρ<ρ0 of solutions for the
problem (10) such that

vρ →
m∑
i=1

Γ(·, qi),

as ρ → 0, in C2,α
loc (D\S) for α ∈ (0, 1).
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3. Let S be such that S ∩ Λ = {pj1 , · · · , pjs}, S\Λ = {q1, · · · , qm} and
(q1, · · · , qm) a nondegenerate critical point of the function

F(q1, · · · , qm) + G(q1, · · · , qm, pj1 , · · · , pjs)

such that ∆ log f(q1) = · · · = ∆ log f(qm) = 0, then there exist ρ0 > 0
small and a family (vρ)0<ρ<ρ0 of solutions for the problem (10) such that

vρ →
s∑

k=1

(1 + βjk)Γ(·, pjk) +
m∑
i=1

Γ(·, qi),

as ρ → 0, in C2,α
loc (D\S) for α ∈ (0, 1).

In order to prove our result, we will use a matching argument inspired
from [3].

2. ROTATIONALLY SYMMETRIC APPROXIMATE SOLUTIONS

Letting β > 0, we first describe the rotationally symmetric approximate
solutions of

(14) ∆2u− ρ4|x|4β eu = 0

in R4, which will be crucial in the construction of the approximate solution.
Note that equation (14) is invariant under dilation but not under translation.

Given ε > 0, we define

uε(x) := 4 log(1 + ε2)− 4 log(ε2 + (|x|)2),

which is a solution of

(15) ∆2u− ρ4 eu = 0,

when

ρ4 =
384 ε4

(1 + ε2)4
.

For τ > 0, we remark that equation (15) is invariant under some dilation
in the following sense: if u is solution of (15), then

τ 7→ u(τ ·) + 4 log τ,

is also solution of (15). So, for β > 0 and τ > 0 we define the function

(16) uε,τ,β(x) := log
(1 + ε2)4τ4(4β2 + 8β + 6)(β + 1)2

6(ε2 + τ2|x|2(1+β))4
.
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Easy computations show that uε,τ,β satisfies the equation
(17)

∆2uε,τ,β−ρ4|x|4β euε,τ,β = −64β(β + 2)(β + 1)2τ2ε2|x|2(β−1)

(ε2 + τ2|x|2(1+β))4

(
ε4+τ4|x|4(1+β)

)
in R4. We will use it as an approximate solution of (14). We notice that in
dimension two the equation ∆u+ρ2|x|2β eu = 0 has an explicit solution on R2,
see [13]. Here we do not have an explicit solution of (14) but we will construct
a solution by perturbing the approximate solution given by (16).

We also define the following linear fourth order elliptic operator

L := ∆2 − 384

(1 + |x|2)4
,

which corresponds to the linearization of (15) about the solution u1,1,0.

2.1. Construction of solutions without boundary conditions

For all ε, τ, β, λ > 0, we set

Rε,λ,β := (
τ

ε
)

1
β+1 rε,λ,β,

where

(18) rε,λ,β := max(
√
λ,
√
β, ε

1
β+1 ).

Definition 1. Given k ∈ N, α ∈ (0, 1) and δ ∈ R, we introduce the Hölder
weighted spaces Ck,α

δ (R4) as the space of functions w ∈ Ck,α
loc (R

4) for which the
following norm

∥w∥Ck,α
δ (R4)

:= ∥w∥Ck,α(B̄1) + sup
r⩾1

(
(1 + r2)−δ/2 ∥w(r ·)∥Ck,α(B̄1−B1/2)

)
is finite.

We also define

Ck,α
rad,δ(R

4) = {f ∈ Ck,α
δ (R4); such that f(x) = f(|x|),∀ x ∈ R4}.

We recall the surjectivity result of L given in [3].

Proposition 1 ([3]). Assume that δ > 0 and δ ̸∈ Z, then

L : C4,α
rad,δ(R

4) −→ C0,α
rad,δ−4(R

4)

w 7−→ Lw

is surjective.
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We set B̄∗
1 = B̄1 − {0}. Then, we define the subspace of radial functions

in Ck,α
δ (B̄∗

1) by

Ck,α
rad,δ(B̄

∗
1) = {f ∈ Ck,α

δ (R4); such thatf(x) = f(|x|),∀ x ∈ B̄∗
1}.

Our aim is the construction of a radial solution u of

(19) ∆2u+ Qλ(u)− ρ4|x|4β eu = 0 in B̄rε,λ,β .

Thanks to the following transformation

(20) v(x) = u
(
(
ε

τ
)

1
β+1x

)
+ 8 log ε− 4 log

(
τ(1 + ε2)/2

)
,

the equation (19) can be written as

(21) ∆2v + Qλ(v)− 24|x|4βev = 0 in B̄Rε,λ,β
.

Now, we look for a solution of (21) of the form

v(x) = u1,1,β(x) + h(x).

This amounts to solve

(22)
L h =

Cβ |x|4β
(1+|x|2(β+1))4

(eh − h− 1) +
Dβ|x|2(β−1)

(1 + |x|2(β+1))4
(|x|4(β+1) + 1)

−Vβ(x)h− Qλ(u1 + h)

in B̄Rε,λ,β
, where Cβ = 64(4β2 +8β +6)(β +1)2, Dβ = 64β(β +2)(β +1)2 and

(23) Vβ(x) =
384

(1 + |x|2)4
−

Cβ|x|4β

(1 + |x|2(β+1))4
.

Observe that, for β > 0 small enough, there exists c > 0 such that

(24) |Vβ(x)| ≤ c
1 + | log |x||
(1 + |x|2)4

β.

We will need the following definition.

Definition 2. Given r̄ ⩾ 1/2, k ∈ N, α ∈ (0, 1) and δ ∈ R, the weighted
space Ck,α

δ (Br̄) is defined to be the space of functions w ∈ Ck,α(Br̄) endowed
with the norm

∥w∥Ck,α
δ (B̄r̄)

:= ∥w∥Ck,α(B1/2)
+ sup

1/2⩽r⩽r̄

(
r−δ ∥w(r ·)∥Ck,α(B̄1−B1/2)

)
.

For all σ ⩾ 1, we denote by

Eσ : C0,α
δ (B̄σ) −→ C0,α

δ (R4),
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the extension operator defined by

(25)

 Eσ(f)(x) ≡ f(x) for |x| ≤ σ

Eσ(f)(x) = χ
( |x|
σ

)
f
(
σ
x

|x|

)
for |x| ≥ σ,

where t 7−→ χ(t) is a smooth nonnegative cutoff function identically equal to
1 for t ⩽ 1 and identically equal to 0 for t ⩾ 2. It is easy to check that there
exists a constant c = c(δ) > 0, independent of σ ⩾ 1, such that

(26) ∥Eσ(w)∥C0,α
δ (R4)

⩽ c ∥w∥C0,α
δ (B̄σ)

.

We fix
δ ∈ (0, 1)

and let Gδ to be a right inverse of L assured by Proposition 1. Now, we use the
result of Proposition 1 to rephrase the nonlinear equation (22) as a fixed point
problem. Hence, to obtain a solution of (22), it is enough to find a fixed point
h in a small ball of C4,α

rad, δ(R
4) for the mapping

(27) h 7→ N (h) := Gδ ◦ ERε,λ,β
◦ R(h),

where

(28)
R(h) =

Cβ |x|4β
(1+|x|2(β+1))4

(eh − h− 1) +
Dβ|x|2(β−1)

(1 + |x|2(β+1))4
(|x|4(β+1) + 1)

−Vβ(x)h− Qλ(u1,1,β + h).

We have

R(0) = −λ
[
(∆u1,1,β)

2 +∆(|∇u1,1,β|2) + 2∇u1,1,β · ∇(∆u1,1,β)
]

−2λ2
[
∆u1,1,β |∇u1,1,β|2 +∇u1,1,β · ∇(|∇u1,1,β|2)

]
−λ3|∇u1,1,β|4 +

Dβ|x|2(β−1)

(1 + |x|2(β+1))4
(|x|4(β+1) + 1).

Recall that

u1,1,β = 4 log(2)− 4 log(1 + r2(β+1)) + log((4β2 + 8β + 6)(β + 1)2)− log(6).

Then

|∇u1,1,β|2 = 64(β+1)2
r4β+2

(1+r2(β+1))2
, ∆u1,1,β = −16(1+β)

(2 + β)r2β+ r4β+2

(1 + r2(β+1))2
,

∆(|∇u1,1,β|2) = 512(1 + β)2
(1 + 2β)(1 + β)r4β − (2 + 3β + β2)r6β+2

(1 + r2(β+1))4
,
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∇u1,1,β · ∇∆u1,1,β = 256(1 + β)2
β(2 + β)r4β − (3 + 2β + β2)r6β+2 − r4+8β

(1 + r2(β+1))4

and

∇u1,1,β · ∇|∇u1,1,β|2 = −1024(1 + β)3
(1 + 2β)r6β+2 − r8β+4

(1 + r2(β+1))4
.

Hence

(1 + r2)2−
δ
2 |(∆u1,1,β)

2 +∆(|∇u1,1,β|2) + 2∇u1,1,β · ∇(∆u1,1,β)| ⩽ c(1 + r2)−
δ
2 ,

(1 + r2)2−
δ
2 |∆u1,1,β |∇u1,1,β|2 +∇u1,1,β · ∇(|∇u1,1,β|2)| ⩽ c(1 + r2)−

δ
2

and
(1 + r2)2−

δ
2 |∇u1,1,β|4 ⩽ c(1 + r2)−

δ
2 ,

then
sup

r⩽Rε,λ,β

(1 + r2)2−
δ
2 Qλ(u1,1,β) ⩽ c λ.

Besides,

(29) sup
r⩽Rε,λ,β

(1 + r2)2−
δ
2

Dβ|x|2(β−1)

(1 + |x|2(β+1))4
(|x|4(β+1) + 1) ⩽ Cβ.

This implies that given κ > 0, there exists cκ > 0 (which can depend only on
κ) such that for δ ∈ (0, 1) and |x| = r, we have

sup
r⩽Rε,λ,β

(1 + r2)2−
δ
2 |R(0)| ⩽ cκ(β + λ).

Therefore,

(30) ∥N (0)∥C4,α
rad, δ(R4)

⩽ cκr
2
ε,λ,β .

Making use of Proposition 1 together with (26), we deduce that

(31) ∥h∥C4,α
rad, δ(R4)

⩽ 2cκ r2ε,λ,β.

Now let h1, h2 in B(0, 2cκ r2ε,λ,β) of C4,α
rad, δ(R

4) and for δ ∈ (0, 1), then

|R(h2)− R(h1)| ⩽
Cβ|x|4β

(1 + |x|2(β+1))4

∣∣∣eh2 − eh1 + h1 − h2

∣∣∣
+ |Qλ(u1,1,β + h2)− Qλ(u1,1,β + h1)|+ Vβ(x) |h2 − h1| .

Furthermore,

• sup
r⩽Rε,λ,β

r4−δ Cβ|x|4β

(1 + |x|2(β+1))4

∣∣∣eh2 − eh1 + h1 − h2

∣∣∣
⩽ c sup

r⩽Rε,λ,β

r−4−δ−4β|h2 − h1||h2 + h1|
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⩽ cκ sup
r⩽Rε,λ,β

r2ε,λ,β ∥h2 − h1∥C4,α
rad, δ(R4)

.

• r4−δ
∣∣(∆(u1,1,β + h1))

2−(∆(u1,1,β + h2))
2
∣∣

= r4−δ
∣∣(∆(h1 − h2))(∆(2u1,1,β + h1 + h2))

∣∣
⩽ cκ

(
1 + rδ r2ε,λ,β

)
∥h2 − h1∥C4,α

rad, δ(R4)
.

• r4−δ
∣∣∆|∇(u1,1,β + h2)|2 −∆|∇(u1,1,β + h1)|2

∣∣
= r4−δ |∆(∇(h1 − h2).∇(2u1,1,β + h1 + h2))|

⩽ cκ

(
1 + rδ r2ε,λ,β

)
∥h2 − h1∥C4,α

rad, δ(R4)
.

• r4−δ |∇(∆(u1,1,β+h2)).∇(u1,1,β+h2)−∇(∆(u1,1,β+h1)).∇(u1,1,β+h1)|
= r4−δ

∣∣∇(∆(h1 − h2)).∇(2u1,1,β + h1 + h2)

+∇(h2 − h1).∇(∆(2u1,1,β + h1 + h2))
∣∣

r4−δ |∇(∆(u1,1,β+h2)).∇(u1,1,β+h2)−∇(∆(u1,1,β+h1)).∇(u1,1,β+h1)|

⩽ cκ

(
1 + rδ r2ε,λ,β

)
∥h2 − h1∥C4,α

rad, δ(R4)
.

• Since

|∇(u1,1,β + h1)|2∆(u1,1,β + h1)− |∇(u1,1,β + h2)|2∆(u1,1,β + h2)

= ∆(h1 − h2)
[
|∇(u1,1,β + h1)|2 + |∇(u1,1,β + h2)|2

]
+∆(2u1,1,β + h1 + h2)

[
|∇(u1,1,β + h1)|2 − |∇(u1,1,β + h2)|2

]
,

then

r4−δ
∣∣∣ |∇(u1,1,β + h1)|2∆(u1,1,β + h1)− |∇(u1,1,β + h2)|2∆(u1,1,β + h2)

∣∣∣
⩽ cκ

(
1 + rδ r2ε,λ,β + r2δ r4ε,λ,β

)
∥h2 − h1∥C4,α

rad, δ(R4)
.

• Its easy to see that

∇(|∇(u1,1,β + h2)|2)∇(u1,1,β + h2)−∇(|∇(u1,1,β + h1)|2)∇(u1,1,β + h1)

= ∇(h2 − h1)∇
(
|∇(u1,1,β + h2)|2 + |∇(u1,1,β + h1)|2

)
+∇(2u1,1,β + h1 + h2)∇

(
|∇(u1,1,β + h2)|2 − |∇(u1,1,β + h1)|2

)
,

hence

r4−δ
∣∣∣∇(|∇(u1,1,β + h2)|2)∇(u1,1,β + h2)−∇(|∇(u1,1,β + h1)|2)∇(u1,1,β + h1)

∣∣∣
⩽ cκ

(
1 + rδ r2ε,λ,β + r2δ r4ε,λ,β

)
∥h2 − h1∥C4,α

rad, δ(R4)
.
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• Finally, since

|∇(u1,1,β + h2)|4 − |∇(u1,1,β + h1)|4

= ∇(h2 − h1)∇(2u1,1,β + h2 + h1)
(
|∇(u1,1,β + h2)|2 + |∇(u1,1,β + h1)|2

)
,

then

r4−δ
∣∣∣|∇(u1,1,β + h2)|4 − |∇(u1,1,β + h1)|4

∣∣∣
⩽ cκ

(
1 + rδ r2ε,λ,β + r2δ r4ε,λ,β + r3δ r6ε,λ,β

)
∥h2 − h1∥C4,α

rad, δ(R4)
.

Which gives
(32)

sup
r⩽Rε,λ,β

r4−δ|Qλ(u1,1,β + h2)− Qλ(u1,1,β + h1)| ⩽ cκr
2
ε,λ,β∥h2 − h1∥C4,α

rad, δ(R4)
.

Besides

sup
r⩽Rε,λ,β

r4−δ

(
Cβ|x|4β

(1+|x|2(β+1))4

∣∣∣eh2 − eh1 + h1 − h2

∣∣∣+ Vβ(x) |h2 − h1|
)

⩽ cκr
2
ε,λ,β∥h2 − h1∥C4,α

rad, δ(R4)
.

(33)

Thanks to the conditions (Aβ) and (Aλ), we deduce that

sup
r⩽Rε,λ,β

r4−δ |R(h2)− R(h1)| ⩽ cκr
2
ε,λ,β∥h2 − h1∥C4,α

rad, δ(R4)
.

Similarly, making use of Proposition 1 together with (26), we conclude
that given κ > 0, there exist c̄κ > 0 (independent of ε and λ), λκ and εκ such
that

(34) ∥N (h2)− N (h1)∥C4,α
rad, δ(R4)

⩽ c̄κ r
2
ε,λ,β ∥h2 − h1∥C4,α

rad, δ(R4)
.

Reducing λκ > 0 and εκ > 0 if necessary, we can assume that, c̄κ r2ε,λ,β ⩽ 1
2 for

all λ ∈ (0, λκ) and ε ∈ (0, εκ). Then (34) and (31) are enough to show that
h 7−→ N (h) is a contraction from {h ∈ C4,α

rad, δ(R
4) : ∥h∥C4,α

rad, δ(R4)
⩽ 2 cκ r

2
ε,λ,β}

into itself and hence has a unique fixed point h in this set. This fixed point is
solution of (27) in B̄Rε,λ,β

. We summarize this in the following proposition.

Proposition 2. Given δ ∈ (0, 1) and κ > 0, there exist εκ > 0, λκ > 0
and c̄κ > 0 (depending on κ) such that for all λ ∈ (0, λκ) and for ε ∈ (0, εκ),
there exists a unique solution hβ ∈ C4,α

rad, δ(R
4) solution of (27 ) such that

v(x) = u1,1,β(x) + hβ(x)

solves (21) in B̄Rε,λ,β
. In addition

∥hβ∥C4,α
rad,δ(R4)

⩽ 2cκr
2
ε,λ,β .



13 Singular limiting radial solutions for 4-dimensional elliptic problem 35

3. A LINEARIZED OPERATOR

We define the linear fourth-order elliptic operator Lβ by

Lβ := ∆2 −
Cβ|x|4β

(1 + |x|2(β+1))4
,

which corresponds to the linearization of ∆2u − 24|x|4βeu = 0 about the ap-
proximate solution u1,1,β defined above. This operator can be written as

Lβ := L+ Vβ(x),

where Vβ(x) is given by (23) satisfying the inequality (24). Using a perturbation
argument one obtains the following.

Proposition 3. There exists β0 > 0 such that for all 0 < β < β0 and
for all δ > 0, δ ̸∈ N,

Lβ : C4,α
rad,δ(R

4) −→ C0,α
rad,δ−4(R

4)

w 7−→ Lβ w

is surjective. Moreover, if we denote by Gδ,β a right inverse of Lβ we have that
||Gδ,βΦ− GδΦ||C4,α

δ (R4)
≤ cκβ||Φ||C0,α

δ−4(R4)
,

for every Φ ∈ C0,α
rad,δ−4(R

4).

We define B̄∗
1 := B̄1 − {0}. With this notation, we have the following.

Definition 3. Given k ∈ R, α ∈ (0, 1) and ν ∈ R, we introduce the Hölder
weighted space Ck,α

ν (B̄∗
1) as the space of functions w ∈ Ck,α

loc (B̄
∗
1) such that the

norm
∥w∥

Ck,α
ν (B̄∗

1 )
:= sup

r∈(0,1)

(
r−ν∥w(r·)∥Ck,α(B̄1−B1/2)

)
is finite.

When k ≥ 2, we denote by [Ck,α
ν (B̄∗

1)]0 the subspace of functions w ∈
Ck,α
ν (B̄∗

1) satisfying w = ∆w = 0 on ∂B∗
1 . We recall the analysis of the Bi-

Laplace operator in weighted spaces performed in [3].

Proposition 4 ([3]). Assume that ν < 0 and ν ̸∈ Z, then
∆2 : [C4,α

ν (B̄∗
1)]0 → C0,α

ν−4(B̄
∗
1)

w 7→ ∆2w
is surjective. Denote by G̃ν a right inverse of ∆2.

Finally, we study the properties of interior and exterior Bi-harmonic ex-
tensions. Indeed, for a given real number γ, we define in B1 the Bi-harmonic
function H i

γ(x) = γ|x|2. This function satisfies H i
γ = γ on ∂B1 and ∆H i

γ = 8γ
on ∂B1. Similarly, for a given real number γ̃, we define in R4 − B1 the Bi-
harmonic function He

γ̃(x) = γ̃|x|−2. This function satisfies He
γ̃ = γ̃ on ∂B1 and

∆He
γ̃ = 0 on ∂B1.
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4. THE NONLINEAR INTERIOR PROBLEM

We are interested in studying equations of the type

(35) ∆2w + Qλ(w)− 24|x|4βf
(
(ε/τ)1/(β+1)|x|

)
ew = 0

in B̄Rε,λ,β
.

Given a real number γ, we define

v := u1,1,β − log(f(0)) +H i
γ(·/Rε,λ,β) + hβ,

then we look for a solution of (35) of the form w = v + v and using the fact
that H i

γ is biharmonic, this amounts to solve

Lβ v =
Cβ|x|4β

(1 + |x|2(1+β))4
eH

i
γ(·/Rε,λ,β)+hβ+v

(
f
(
(ε/τ)1/(β+1)| · |

)
f(0)

− 1

)

+
Cβ|x|4β

(1 + |x|2(1+β))4
ehβ (eH

i
γ(·/Rε,λ,β)+v − v − 1)

+
Cβ|x|4β

(1 + |x|2(1+β))4
(ehβ − 1)v

+ Qλ

(
u1,1,β + hβ

)
− Qλ

(
u1,1,β − log(f(0)) +H i

γ(·/Rε,λ,β) + hβ + v
)
,

(36)

where Cβ = 64(4β2 + 8β + 6)(β + 1)2.
We fix

δ ∈ (0, 1).
By Proposition 3, to obtain a solution of (38) it is sufficient to find v ∈

C4,α
rad,δ(R

4), a solution of

(37) v = Gδ,β ◦ ERε,λ,β
◦ S (v),

where

S (v) =
Cβ|x|4β

(1 + |x|2(1+β))4
eH

i
γ(·/Rε,λ,β)+hβ+v

(
f
(
(ε/τ)1/(β+1)| · |

)
f(0)

− 1

)

+
Cβ|x|4β

(1 + |x|2(1+β))4
ehβ (eH

i
γ(·/Rε,λ,β)+v− v− 1) +

Cβ|x|4β

(1 + |x|2(1+β))4
(ehβ− 1)v

+ Qλ

(
u1,1,β + hβ

)
− Qλ

(
u1,1,β − log(f(0)) +H i

γ(·/Rε,λ,β) + hβ + v
)
.

(38)

We denote by N (= Nε,λ,β,γ) the nonlinear operator appearing on the right-
hand side of equation (37). Given κ > 0 (whose value will be fixed later) and
taking γ so that

(39) |γ| ≤ κr2ε,λ,β,
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we have the following result.

Lemma 1. Given δ ∈ (0, 1) and κ > 0, then there exist λκ > 0, εκ > 0,
cκ > 0 and c̄κ > 0 (depending on κ) such that for all λ ∈ (0, λκ) and ε ∈ (0, εκ)

(40) ∥N (0)∥C4,α
δ (R4)

⩽ cκ r
2
ε,λ,β.

Moreover,

(41) ∥N (v2)− N (v1)∥C4,α
δ (R4)

⩽ c̄κ r
2
ε,λ,β ∥v2 − v1∥C4,α

δ (R4)
,

provided that v1, v2 ∈ C4,α
δ (R4), satisfy ∥vi∥C4,α

δ (R4)
⩽ 2 cκ r

2
ε,λ,β, for i = 1, 2.

Proof. The proof of the first estimate follows from the asymptotic behavior
of H i

γ . Indeed, letting cκ be a constant depending only on κ (provided ε is
chosen small enough) it follows from the expression of H i

γ that

∥H i
γ(·/Rε,λ,β)∥C4,α

2 (B̄Rε,λ,β
)
≤ cκR

−2
ε,λ,β|γ| ≤ cκε

2/(β+1) ≤ cκr
2
ε,λ,β.

Let β0 > 0, then for β ∈ (0, β0) and for |x| ≤ Rε,λ,β/2, we have

|hβ(x)| ≤ r2+δ
ε,λ,βε

− δ
β+1 ≤


λ1+ δ

2 ε
− δ

β+1 −→ 0 as ε tends to 0 using Aλ

β1+ δ
2 ε

− δ
β+1 −→ 0 as ε tends to 0 using Aβ

ε
2

β+1 −→ 0 as ε tends to 0,

provided ε is small enough, we then get∥∥∥(1 + | · |2(β+1))−4| · |4βehβ (eH
i
γ(·/Rε,λ,β) − 1)

∥∥∥
C0,α

δ−4(B̄Rε,λ,β
)
≤ cκr

2
ε,λ,β

and
(42)∥∥∥(1 + | · |2(β+1))−4| · |4βeHi

γ(·/Rε,λ,β)+hβ

(f((ε/τ)1/(β+1)·)
f(0)

− 1
)∥∥∥

C0,α
δ−4(B̄Rε,λ,β

)

≤ cκε
1/(β+1) ≤ cκr

2
ε,λ,β.

On the other hand, using the conditions (Aλ) and (Aβ), we get also

sup
r⩽Rε,λ,β

(1 + r2)2−
δ
2

∣∣∣Qλ

(
u1,1,β + hβ

)
− Qλ

(
u1,1,β − log(f(0)) +H i

γ(·/Rε,λ,β) + hβ

)∣∣∣ ⩽ cκr
2
ε,λ,β .

Making use of Proposition 1 together with (26), we get for δ ∈ (0, 1)

∥N (0)∥C4,α
δ (R4)

⩽ cκ r
2
ε,λ,β.
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To derive the second estimate, let vi ∈ C4,α
δ (R4) satisfy ∥vi∥C4,α

δ (R4)
⩽ 2 cκ r

2
ε,λ,β ,

i = 1, 2, we have that∥∥∥(1 + | · |2(β+1))−4| · |4βeHi
γ(·/Rε,λ,β)+hβ

×
(f((ε/τ)1/(β+1)·)

f(0)
−1
)
(ev2−ev1)

∥∥∥
C0,α
δ−4(B̄Rε,λ,β

)
⩽ cκ ε

1/β+1 ∥v2−v1∥C4,α
δ (R4)

,

∥∥∥(1 + | · |2(β+1))−4| · |4βehβ

(
eH

i
γ(·/Rε,λ,β)+v1 − eH

i
γ(·/Rε,λ,β)+v2

+ (v2 − v1)
)∥∥∥

C0,α
δ−4(B̄Rε,λ,β

)
⩽ cκ r

2
ε,λ,β ∥v2 − v1∥C4,α

δ (R4)
,

∥∥∥(1 + | · |2(β+1))−4| · |4β(ehβ − 1) (v2 − v1)
∥∥∥
C0,α
δ−4(B̄Rε,λ,β

)
⩽ cκ β ∥v2 − v1∥C4,α

δ (R4)

and ∥∥∥Qλ

(
u1,1,β − log(f(0)) +H i

γ(·/Rε,λ,β) + hβ + v1

)
−

Qλ

(
u1,1,β − log(f(0)) +H i

γ(·/Rε,λ,β) + hβ + v2

)∥∥∥
C0,α
δ−4(B̄Rε,λ,β

)

⩽ cκ r
2
ε,λ,β

∥∥v2 − v1
∥∥
C4,α
δ (R4)

.

So,

sup
r⩽Rε,λ,β

(1 + r2)2−
δ
2 |S (v2)− S (v1)| ⩽ cκr

2
ε,λ,β∥v2 − v1∥C4,α

rad, δ(R4)
.

Similarly, making use of Proposition 1 together with (26), we conclude
that there exists c̄κ > 0 such that

∥N (v2)− N (v1)∥C4,α
δ (R4)

⩽ c̄κ r
2
ε,λ,β ∥v2 − v1∥C4,α

δ (R4)
.

Reducing λκ > 0 and εκ > 0, if necessary, we can assume that
c̄κ r

2
ε,λ,β ⩽ 1

2 , for all λ ∈ (0, λκ) and ε ∈ (0, εκ). Then (40) and (41) in
Lemma 1 are enough to show that v 7−→ N (v) is a contraction from{

v ∈ C4,α
δ (R4) : ∥v∥C4,α

δ (R4)
⩽ 2 cκ r

2
ε,λ,β

}
into itself and hence has a unique fixed point v = v(ε, τ, γ, ·) in this set. This
fixed point is a solution of (37) in R4. We summarize this in the following
proposition.
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Proposition 5. Given κ > 0, there exist εκ > 0 (depending on κ) and
β0 > 0 such that for all ε ∈ (0, εκ), for all 0 < β < β0 and for all τ in some
fixed compact subset [τ−, τ+] ⊂ (0, ∞), there exists a unique vβ(= vβ(ε, τ, γ, ·))
solution of (37) such that

∥vβ∥C4,α
δ (R4)

≤ 2cκr
2
ε,λ,β.

As a conclusion,

(43) v+vβ(ε, τ, γ, ·) = u1,1,β +hβ − log(f(0))+H i
γ(·/Rε,λ,β)+vβ(ε, τ, γ, ·)

solves (35) in B̄Rε,λ,β
. Since the function vβ is being obtained as a fixed point for

a contraction mapping, it depends smoothly on the parameter τ. Moreover, we
claim that the mapping τ → vβ(ε, τ, γ, ·)|B̄Rε,λ,β

∈ C4,α(B̄Rε,λ,β
) is compact.

This follows from the fact that the equation we solve is semilinear and in (37)
the right-hand side belongs to C8,α(B̄Rε,λ,β

) .

5. THE NONLINEAR EXTERIOR PROBLEM

Let θ ∈ R and γ̃ ∈ R be close to 0. We define

ṽ(x) = (1 + β + θ)G(x) + χ(x)He
γ̃(x/rε,λ,β),

where χ is a cutoff function identically equal to 1 in B1/4 and identically equal
to 0 outside B1/2. We would like to find a solution of the equation

(44) ∆2v + Qλ(v)− ρ4|x|4βf(|x|)ev = 0,

in B̄1 − Brε,λ,β which is a perturbation of ṽ. Writing v = ṽ + ṽ, this amounts
to solving

(45) ∆2ṽ = ρ4|x|4βf(|x|)eṽeṽ − Qλ(ṽ + ṽ)−∆2ṽ.

We need to define auxiliary weighted spaces.

Definition 4. Given r̄ ∈ (0, 1/2), k ∈ R and ν ∈ R, we define the Hölder
weighted space Ck,α

ν (B̄1 − Br̄) as the space of functions w ∈ Ck,α(B̄1 − Br̄)
endowed with the norm

∥w∥
Ck,α

ν (B̄1−Br̄)
= ∥w∥Ck,α(B̄1−B1/2)

+ sup
r̄≤r<1/2

r−ν∥w(r.)∥Ck,α(B̄1−B1/2)
.

For σ ∈ (0, 1/2), we denote by

ξ̃σ : C0,α
ν (B̄1 −Bσ) → C0,α

ν (B̄∗
1)

the extension operator defined by ξ̃σ(f) = f in B̄1 −Bσ,
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ξ̃σ(f)(x) = χ̃(
|x|
σ
)f(σ

x

|x|
) in Bσ −Bσ/2

and ξ̃σ(f) = 0 in Bσ/2, where t 7→ χ̃(t) is a cutoff function identically equal to
1 for t ≥ 1 and identically equal to 0 for t ≤ 1/2. It is easy to check that there
exists a constant c = c(ν) > 0 only depending on ν such that

(46) ∥ξ̃σ(w)∥C0,α
ν (B̄∗

1 )
≤ c∥w∥

C0,α
ν (B̄1−Bσ)

.

Fix ν ∈ (−1, 0). Making use of Proposition 4, for solving equation (45) it
suffices to find a solution ṽ ∈ C4,α

ν (B̄∗
1) of the following fixed point problem

(47)
ṽ = G̃ν ◦ ξ̃rε,λ,β

(
ρ4|x|4βf(|x|)eṽeṽ − Qλ(ṽ + ṽ)−∆2ṽ

)
= G̃ν ◦ ξ̃rε,λ,β ◦ S̃(ṽ).

We denote by Ñ (= Ñε,λ,β,θ,γ̃) the nonlinear operator appearing on the right
hand side of this equation.

Given κ > 0 (whose value will be fixed later on), suppose that the param-
eters θ and γ̃ satisfy

(48) |θ| ≤ κr2ε,λ,β

and

(49) |γ̃| ≤ κr2ε,λ,β.

Then the following result holds.

Lemma 2. Under the above assumptions, there exists a constant cκ > 0
such that

∥Ñ (0)∥
C4,α

ν (B̄∗
1 )

≤ cκr
2
ε,λ,β

and
∥Ñ (ṽ2)− Ñ (ṽ1)∥C4,α

ν (B̄∗
1 )

≤ cκr
2
ε,λ,β∥ṽ2 − ṽ1∥C4,α

ν (B̄∗
1 )
,

provided ṽ1, ṽ2 ∈ C4,α
ν (B̄∗

1) and satisfy ∥ṽi∥C4,α
ν (B̄∗

1 )
≤ 2cκr

2
ε,λ,β, for i = 1, 2.

Proof. In B1/2 −Brε,λ,β , we have χ = 1 and ∆2ṽ = 0, thus

|S̃(0)| ≤ cκ(ε
4r−4β−8(1+θ) + λ).

In B̄1 −B1/2, we have |He
γ̃(x/rε,λ,β)| ≤ κr3ε,λ,βr

−1, thus

|S̃(0)| ≤ cκ

(
ε4|x|−4β−8(1+θ) + |Qλ(ṽ)|+ [∆2, χ(x)]||He

γ̃(x/rε,λ,β)|
)

≤ cκ(ε
4 + r−1r3ε,λ,β + λ).

Here, we use the notation
[∆2, χ]w = 2∆χ∆w+w∆2χ+4∇χ ·∇(∆w)+4∇w ·∇(∆χ)+4∇2χ ·∇2w.

It follow that
||S̃(0)||

C0,α
ν−4(B̄1−Brε,λ,β

)
≤ cκr

2
ε,λ,β.



19 Singular limiting radial solutions for 4-dimensional elliptic problem 41

Then the proof of the first estimate follows from (46).

For the proof of the second estimate, letting ṽ1, ṽ2 ∈ C4,α
ν (B̄∗

1) satisfying
∥ṽi∥C4,α

ν (B̄∗
1 )

≤ 2cκr
2
ε,λ,β for i = 1, 2, we have

|S̃(ṽ2)−S̃(ṽ1)| ≤ cκ

∣∣∣ρ4|x|4β|f(|x|)|eṽ(eṽ2 − eṽ1)|−
(
Qλ(ṽ+ṽ2)− Qλ(ṽ+ṽ1)

)∣∣∣ .
This clearly implies

|S̃(ṽ2)− S̃(ṽ1)| ≤ cκ(ε
4r−4β−8(1+θ) + λ)|ṽ2 − ṽ1|.

For ν ∈ (−1, 0) and θ small enough, we get

∥S̃(ṽ2)− S̃(ṽ1)∥C0,α
ν−4(B̄1−Brε,λ,β

)
≤ cκr

2
ε,λ,β∥ṽ2 − ṽ1∥C4,α

ν (B̄∗
1 )
.

Using also equation (46) we obtain the second estimate.

Applying a fixed point theorem for contraction mappings we obtain the
following result.

Proposition 6. Given κ > 0, there exist εκ > 0 and β0 > 0 such that
for all ε ∈ (0, εκ), for all β ∈ (0, β0), for θ satisfying (48) and a boundary
constant γ̃ satisfying (49), there exists a unique solution ṽβ(= ṽβ(ε, τ, γ̃, .)) of
(47) such that

∥ṽβ∥C4,α
ν (B̄∗

1 )
≤ 2cκr

2
ε,λ,β.

As in the previous section, since the function ṽβ is being obtained as a
fixed point for a contraction mapping, it depends smoothly on the parameter
θ. Again this follows from the fact that the equation we solve is semilinear and
in (47) the right-hand side belongs to C8,α(B̄∗

1) .

6. THE NONLINEAR CAUCHY-DATA MATCHING

We gather the results of the previous sections, keeping the notation and
applying the result of Section 4 as well as the results of Section 5.

Assume that τ ∈ [τ−, τ+] ⊂ (0, ∞) is given (the values of τ - and τ+ will
be fixed later) and consider some set of boundary data γ satisfying (39). Given
κ > 0, according to the result of Proposition 5, there exist εκ > 0 such that,
provided ε ∈ (0, εκ), we can find in Brε,λ,β a solution of

(50) ∆2v + Qλ(v)− ρ4|x|4βf(|x|)ev = 0,

which can be decomposed, by (20), as

vint(x) = vε,τ,β(x) + hβ(Rε,λ,βx/rε,λ,β)− log(f(0))

+H i
γ(x/rε,λ,β) + vβ(ε, τ, γ, Rε,λ,βx/rε,λ,β),
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where the function vβ(= vβ(ε, τ, γ, ·)) ∈ C4,α
rad,µ(R

4) satisfies

(51) ∥vβ∥C4,α
µ (R4)

≤ 2cκr
2
ε,λ,β.

Similarly, given any constant boundary data γ̃ satisfying (49) and a parameter
θ in R satisfying (48), we can use the result of Proposition 6 to find a solution
vext in B̄1−Brε,λ,β (provided ε ∈ (0, εk)), of (50) which can be decomposed as

vext(x) = (1 + β + θ)G(x) + χ(x)He
γ̃(x/rε,λ,β) + ṽβ(ε, τ, γ̃, x),

where the function ṽβ(= ṽβ(ε, τ, γ̃, ·)) ∈ C4,α
ν (B̄∗

1) satisfies

(52) ∥ṽβ∥C4,α
ν (B̄∗

1 )
≤ 2cκr

2
ε,λ,β.

It remains to choose the parameters γ, γ̃, θ and τ in such a way that the function
which is equal to vint in Brε,λ,β and vext in B̄1 − Brε,λ,β is a smooth function.
This amounts to finding these parameters so that

(53) vint = vext, ∂rvint = ∂rvext, ∆vint = ∆vext and ∂r∆vint = ∂r∆vext,

near ∂Brε,λ,β .
Assuming we have already done so, this provides for each ε and β small

enough a function vε,λ,β ∈ C4,α(B̄1) (which is obtained by patching together
the functions vint and vext) which is a solution of our equation, and elliptic
regularity theory implies that this solution is in fact smooth. This will complete
the proof of our result since, as ε tends to 0, the sequence of solutions we have
obtained satisfies the required properties, namely, away from the 0 the sequence
vε,λ,β converges to G.

Before we proceed, the following remarks are due. First, it will be conve-
nient to notice that the function vε,τ,β can be expanded as

(54) vε,τ,β(x) = −4 log τ − 8(1 + β) log |x|+O
(

ε2τ−2

|x|2(β+1)

)
near ∂Brε,λ,β . Similarly, we can write the function (1 + β + θ)G(x) (which
appear in the expression of vext) as

(55)
(1 + β + θ)G(x) = −8(1 + β + θ) log |x|+ (1 + β + θ)H(x)

= −8(1 + β + θ) log |x|+H(0) +O(r2ε,λ,β)

near ∂Brε,λ,β . Then one gets

(56)
(vint − vext)(x) = −4 log τ + 8θ log |x|+H i

γ(x/rε,λ,β)

−He
γ̃(x/rε,λ,β)−H(0)− log(f(0)) +O(r2ε,λ,β).

It will be convenient to solve instead of (53) the following set of equations

(57)
(vint − vext)(rε,λ,β·) = 0, ∆(vint − vext)(rε,λ,β·) = 0,

∂r(vint − vext)(rε,λ,β ·) = 0 and ∂r∆(vint − vext)(rε,λ,β·) = 0,



21 Singular limiting radial solutions for 4-dimensional elliptic problem 43

on S3.
Here we assume that our functions are defined on S3 using simply the

change of variables x = rε,λ,βy to parameterize ∂Brε,λ,β . Then the set of equa-
tions (57) yields the system

(58)



−4 log τ −H(0)− log(f(0)) + γ − γ̃ + 8θ log rε,λ,β +O(r2ε,λ,β) = 0

8θ + 2γ + 2γ̃ +O(r2ε,λ,β) = 0

16θ + 8γ +O(r2ε,λ,β) = 0

−32θ +O(r2ε,λ,β) = 0.

Here and below the terms O(r2ε,λ,β) depend nonlinearly on β, θ, γ and γ̃
but are bounded (in the appropriate norm) by a constant (independent of ε and
β) times r2ε,λ,β . Let us comment briefly on how these equations are obtained.
These equations simply come from (57) when expansions (54) and (55) are
used, together with the expression of H i

γ and He
γ̃ and also the estimates (51)

and (52). This system can be readily simplified into
(59)

1

log rε,λ,β
[4 log τ+H(0)+log(f(0))] = O(r2ε,λ,β), θ = O(r2ε,λ,β), γ = O(r2ε,λ,β)

(60) and γ̃ = O(r2ε,λ,β).

We are now in a position to define τ− and τ+ since, according to the above, as
ε tends to 0 we expect that τ will converge to τ∗ satisfying

−4 log τ∗ = H(0) + log(f(0))

and hence it is enough to choose τ− and τ+ so that

4 log τ− < −[H(0) + log(f(0))] < 4 log τ+.

If we define
t =

1

log rε,λ,β
[4 log τ +H(0) + log(f(0))],

then our system (58) reads

(61) (t, β, θ, γ, γ̃) = O(r2ε,λ,β).

The nonlinear term which appears on the right-hand side of (61) is continuous
and compact. In addition, this nonlinear term sends the ball of radius κr2ε,λ,β
into itself, provided κ is large enough. Applying Schauder’s fixed point theorem
in the ball of radius κr2ε,λ,β in the product space, (61) can then be solved and
the proof of Theorem 1 follows at once.
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