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Perfect polynomials are a natural analogue (in the ring Fp[x]) of multiperfect
numbers (in the ring of integers). The latter numbers are classical objects that
are poorly understood, since only their definition is simple. We describe, by
elementary methods, the most basic objects in the polynomial case of the general
problem. We display, for every prime number p ̸≡ 1mod 12 (resp. p ̸≡ 1mod 24)
many new even non-splitting perfect (resp. unitary perfect) polynomials over
Fp. Moreover, for any prime number p ̸≡ 1mod 24, new bi-unitary perfect
polynomials are also given. These examples substantially improve our knowledge
about these kinds of polynomials.
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1. INTRODUCTION

The paper is about an analogue of perfect numbers over the integers
and some variants of them, like unitary perfect or bi-unitary perfect integers.
In other words, for a few years, we try to work an analogue of the study of
integers n for which the classical function σ−1(n) := σ(n)/n =

∑
d|n 1/d attains

the special value 2 (and variants in which the sum is restricted to some special
divisors of n).

We replace the ring Z of integers by the ring Fp[x] of polynomials over
the finite field Fp with a prime number p of elements. We define (see below)
the corresponding sigma functions, so that we essentially have the analogue
problem to describe the fixed points of the analogue of the σ−1 (and variants)
function. We are forced to choose 1 as the quotient (this is why we search for
fixed points), since these functions are degree preserving. A more precise dis-
cussion follows below. Since we will work with arithmetic functions, replacing
the ring Z by the ring Fp[x] does not necessarily simplify things because in an
arbitrary ring, we are unable to describe the irreducible elements.

Let Fp be the ground field of p elements (with p prime). We say that a di-
visor D of a monic polynomial A is unitary if D is monic and
gcd(D,A/D) = 1. We also say that a divisor D of a monic polynomial A
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is bi-unitary if 1 is the greatest common unitary divisor of the polynomials D
and A/D. We denote by ω(A) (resp. σ(A), σ∗(A), σ∗∗(A)) the number of dis-
tinct monic irreducible factors (resp. the sum of all monic (unitary) divisors,
resp. the sum of all monic bi-unitary divisors of A) over Fp. Observe that A,
σ(A), σ∗(A) and σ∗∗(A) all have the same degree. The functions σ, σ∗ and σ∗∗

are multiplicative whereas ω is additive (Lemma 2.1). These facts will be used
many times without more reference.

The restriction to monic polynomials is necessary since the sum of all
divisors of a non-monic polynomial is zero.

A polynomial is even if it has at least one root in Fp, and odd if it is
not even (see [14] for more details). It splits over Fp if it can be written as
a product of linear factors in Fp[x] (see [18], Definition 1.90). We say that a
monic polynomial A is a perfect (resp. unitary perfect) polynomial if σ(A) = A
(resp. σ∗(A) = A). In this case, A = 1 or ω(A) ≥ p (see [1] and [4]).

A (unitary) perfect polynomial is indecomposable if it has no nontrivial
factorization as a product of two relatively prime (unitary) perfect polynomials
(see Definition 2.3).

Throughout the paper, we shall assume that “a polynomial” means a
monic polynomial and that the notion of irreducibility is defined over the field
Fp. We shall also suppose that “(unitary) perfect polynomial” means “inde-
composable (unitary) perfect polynomial”.

The notions of perfectness and unitary perfectness for a polynomial are
introduced by E. F. Canaday, J. T. B. Beard et al. (see [1], [2], [4], [9]). These
papers essentially characterize the splitting perfect polynomials over Fp and
for odd p, the splitting unitary perfect polynomials over Fp. Recently, we have
extended some of their results (see [11] – [16]).

Characterizations of the splitting (unitary) perfect polynomials over Fp

are established in [1, Theorem 4], in [2] and in [4, Theorem 8]. Concerning
non-splitting (unitary) perfect polynomials (abbreviated as n.s.p and n.s.u.p),
only numerical examples with fixed primes p are given. More precisely, in
[1], examples of n.s.p polynomials with p ≤ 5, are displayed. Examples of
n.s.u.p polynomials in [3], for p ≤ 5, are improved to p ≤ 19 in [17] and for
p < 97 in [6]. Moreover, in the latter paper, the results about the existence of
n.s.u.p polynomials are extended further to all primes p ̸≡ 1 mod 8, while in [7]
the extension is for some special types of primes p ≡ 1 mod 8 called “square-
separables” (see also [8]). We also proved, jointly with P. Pollack ([10]), that the

perfect polynomial
∏
a∈Fp

(
(x+ a)2 − 3

8

)2

, where p ≡ 11, 17mod 24, discovered

in [10], is the only one that is a product of p irreducible polynomials of degree
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2 over Fp.

In other words, little significant results have been obtained about the
existence of non-splitting perfect (or unitary perfect) polynomials.

In the present paper, we substantially improve on the above results, by
showing the existence of n.s.p (resp. n.s.u.p) polynomials over Fp, for every
prime number p ̸≡ 1mod 12 (resp. p ̸≡ 1mod 24).

We denote, as usual by N (resp. by N∗) the set of nonnegative integers
(resp. of positive integers).

We recall and complete in Section 3, the results obtained where p ∈
{2, 3}. For p ≥ 5, inspired by the examples given in [3], we decided to study
polynomials with (unlimited) irreducible factors of low degree. We consider

polynomials of the form (xp − x)a ·
∏
k

Pk
bk , where each Pk is irreducible of

degree 2. We choose the integers a and bk in such a manner that σ(xa),
σ∗(xa), σ(Pk

bk), σ∗(Pk
bk) do not split over Fp and that they are divisible

by only irreducible polynomials of degree at most 2. That is why we take
a ∈ {2, 3}, bk = 1 (resp. a ∈ {2, 3, 4}, bk ∈ {1, 2}) for the n.s.p case (resp. for
the n.s.u.p case). We build the set Γ of such divisors with degree 2. We prove
that the corresponding polynomial is (unitary) perfect and for a fixed integer
a, it is the unique one which is indecomposable.

We expected just to find the known examples (cited in [3], [4] and in [17])
and perhaps some new ones but we surprisingly discover many others. More
precisely, our main results are the following three theorems:

Theorem 1.1. For a prime number p ̸≡ 1mod 12, let m1,m2 ∈ N such
that:

x2 + 1 + ℓ is irreducible for any ℓ ≤ m1 and x2 + 2 +m1 is reducible,

x2+x+1+ℓ is irreducible for any ℓ ≤ m2 and x2+x+2+m2 is reducible.

Set

Γ1 := {(x+ j)2 + 1 + l : 0 ≤ l ≤ m1, j ∈ Fp}
and

Γ2 := {(x+ j)2 + (x+ j) + 1 + l : 0 ≤ l ≤ m2, j ∈ Fp}.

Then A = (xp − x)a
∏
P∈Σ

P is perfect over Fp where:

a = 3,Σ = Γ1 if p ≡ 7 mod 12

and

a = 2, Σ = Γ2 if p ≡ 5, 11 mod 12.
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Theorem 1.2. Let p be a prime number such that p ≡ 3mod 4 or
p ≡ 17mod 24. Consider the sets Γ1 and Γ2 defined in Theorem 1.1.

Then A = (xp − x)a
∏
P∈Σ

P is unitary perfect over Fp where:

a = 2,Σ = Γ1 if p ≡ 3 mod 4
and

a = 3, Σ = Γ2 if p ≡ 17 mod 24.

Theorem 1.3. Let p be a prime number such that p ≡ 5mod 8.
Put −1 = µ2, µ < p/2 and α = p− 2µ ≥ 1. Let m3,m4 ∈ N such that:

x2 + µ+ ℓ is irreducible for any ℓ ≤ m3 and x2 + µ+1+m3 is reducible.
x2 − µ+ ℓ is irreducible for any ℓ ≤ m4 and x2 − µ+1+m4 is reducible.

Then (xp − x)4B is unitary perfect where:

B =

p−1∏
j=0

m3∏
ℓ=0

((x+ j)2 + µ+ ℓ) ·
p−1∏
j=0

m4∏
ℓ=0

((x+ j)2 − µ+ ℓ) if m3 < α,

B =

p−1∏
j=0

α−1∏
ℓ=0

((x+ j)2 + µ+ ℓ) ·
p−1∏
j=0

((x+ j)2 − µ)2 if m3 ≥ α.

We would like to describe how we have proceeded. We transform the
equations σ(A) = A or σ∗(A) = A, with the above choices of A, in equa-
tions involving only different possible factorizations of polynomials of small
degree with coefficients in Fp and no more use of neither the function σ nor σ∗.
This is particularly useful when doing concrete machine computations, since
our method quickly gives examples (see Section 7) of non-splitting perfect
(or (bi-)unitary perfect) polynomials over Fp of whatever (reasonable) degree.
Older calculations (see [3]) used a probabilistic algorithm which sometimes
may run for indefinitely many times without giving an answer. Moreover,
since irreducible polynomials of degree 2 over Fp are involved in the calcula-
tions, several of our results use simple arithmetic results (see Section 2) about
possible “consecutive” squares or non-squares in Fp.

In Section 7, we give other examples for p ∈ {5, 7, 11} and for more
general forms of A. We also give bi-unitary polynomials for p ̸≡ 1 mod 24, and
it happens that some of them are also (unitary) perfect polynomials.

If p ≡ 1mod 12 (resp. p ≡ 1mod 24), our method fails, and we are unable
to show even n.s.p polynomials (resp. even n.s.u.p polynomials) over Fp. The
reason is that the polynomial σ(xk) (resp. σ∗(xk)) splits for every k ≤ 4. We
should then choose aj ≥ 5 so that we would obtain non quadratic irreducible
divisors of A for which the possible solution appears non-trivial (for us).

The proofs of the theorems are done, in a case study mode, with appro-
priate congruences for the prime p in each of them.
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2. USEFUL FACTS

We need the following results. Some of them are obvious (or cited in [3]
and [9]), so we omit their proofs.

For A,B ∈ Fp[x] and for n ∈ N∗, we write: An∥B if An | B but An+1 ∤ B.
We sometimes consider, without explicit mention, the elements of Fp as the
integers 0, 1, . . . , p− 1.

For A ∈ Fp[x], we denote by ω(A) (resp. σ(A), σ∗(A), σ∗∗(A)) the number
of distinct monic irreducible factors (resp. the sum of all monic (unitary)
divisors, resp. the sum of all monic bi-unitary divisors) of A over Fp. We get

Lemma 2.1. i) ω is an additive function: ω(A1A2) = ω(A1) + ω(A2) if
gcd(A1, A2) = 1.

ii) σ is multiplicative: σ(A1A2) = σ(A1) · σ(A2) if gcd(A1, A2) = 1.
iii) σ∗ and σ∗∗ are also multiplicative.

Proof. Assuming that gcd(A1, A2) = 1, a polynomial d divides A1A2 if
and only if (d = d1d2 with d1 | A1 and d2 | A2). We easily see that ω(A1A2) =
ω(A1) + ω(A2). Now, for σ (similar proofs for σ∗ and for σ∗∗), one has:

σ(A1A2) =
∑
d1|A1

(d1·
∑
d2|A2

d2) =
∑
d1|A1

(d1·σ(A2)) = σ(A2)·
∑
d1|A1

d1 = σ(A2)·σ(A1).

Lemma 2.2. If A = A1A2 is (unitary) perfect over Fq and if gcd(A1, A2) =
1. Then A1 is (unitary) perfect if and only if A2 is (unitary) perfect.

Definition 2.3. Let A be a nonconstant (unitary) perfect polynomial over
Fp. We say that A is indecomposable if it has no nontrivial factorization as a
product of two relatively prime (unitary) perfect polynomials.

Lemma 2.4. If A = A1B is (unitary) indecomposable perfect where A1

splits and B is odd, then σ(A1) (resp. σ∗(A1)) does not split (over Fp).

Proof. If σ(A1) splits, then σ(A1) = A1 and thus A1 is perfect. It is
impossible by indecomposability.

In the rest of the paper, we suppose that “(unitary) perfect polynomial”
means “indecomposable (unitary) perfect polynomial”.

Lemma 2.5. The polynomial 1+x+x2 (resp. 1+x+x2+x3) splits over
Fp if and only if p ≡ 1mod 3 (resp. p ≡ 1mod 4).

Lemma 2.6. The polynomial x2 + 1 (resp. x3 + 1, x4 + 1) splits over Fp

if and only if p ≡ 1mod 4 (resp. p ≡ 1mod 6, p ≡ 1mod 8).
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2.1. Case p ≡ 7mod 12

In this case, p ≡ 3mod 4 and p ≡ 1mod 6. Thus −1 is not a square so
that σ∗(x2) = x2 + 1 is irreducible and σ(x3) = (x+ 1)(x2 + 1) does not split.
Moreover, σ∗(x3) = x3 + 1 = (x+ 1)(x2 − x+ 1) splits over Fp.

We denote by m1 the integer such that −1,−2, . . . ,−1 −m1 are all not
squares and −2−m1 = δ1

2 is a square in Fp. We put:

Γ1 := {(x+ j)2 + 1 + l : j ∈ Fp, 0 ≤ l ≤ m1},

so that Γ1 is a non-empty set of irreducible quadratic polynomials.
By direct computations with Legendre’s Symbol, we get

Lemma 2.7. If p ≡ 3mod 4, then either (2 is a square) or (−2 is a
square).

Lemma 2.8. i) If p ≡ 3mod 4 and 2 = ξ2, then x2−ξx+1 and x2+ξx+1
are both irreducible and x4 + 1 = (x2 − ξx+ 1)(x2 + ξx+ 1).

ii) If p ≡ 3mod 4 and −2 = ξ2, then x2 − ξx− 1 and x2 + ξx− 1 are both
irreducible and x4 + 1 = (x2 − ξx− 1)(x2 + ξx− 1).

Corollary 2.9. Let A be unitary perfect over Fp, with p ≡ 3mod 4.
Then:

i) (x2−ξx+1)2 divides A if x4 and (x−ξ)4 both divide A provided 2 = ξ2.
ii) (x2 + ξx − 1)2 divides A if x4 and (x + ξ)4 both divide A provided

−2 = ξ2.

Proof. We only prove i). In this case, x2−ξx+1 divides both σ∗(x4) and
σ∗((x− ξ)4).

Remark 2.10. According to Corollary 2.9, if p ≡ 3mod 4 and if deg(Q) =
2 then σ∗(Q2) = Q2 + 1 may be irreducible. Hence, we do not take a = 4 for
the unitary case, in order to avoid the possible fact that A would be divisible
by an irreducible polynomial of degree greater than 2.

2.2. Case p ≡ 11mod 12

In this case, p ≡ 3mod 4 and p ≡ 5mod 6. Thus, σ∗(x2) = x2 + 1 is
irreducible and σ(x3) = (x + 1)(x2 + 1) does not split. Furthermore, σ(x2) =
x2 + x+ 1 and x2 − x+ 1 are both irreducible. So,

σ∗(x3) = x3 + 1 = (x+ 1)(x2 − x+ 1)

does not split. We denote by m2 the integer such that −3,−3−4, . . . ,−3−4m2

are all not squares but −7−4m2 = 4δ2
2 is a square in Fp. Then, for any l ≤ m2,
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x2±x+1 is irreducible and x2 ± x+ 2 +m2 = (±x+
1

2
+ δ2)(±x+

1

2
− δ2) is

reducible.

More generally, if p ≡ 2mod 3, then the Legendre Symbol (−3
p ) equals

−1. Hence, x2 + x+ 1 and x2 − x+ 1 are both irreducible over Fp. Therefore,
we get the following sets of irreducible quadratic polynomials (over Fp):

Γ2 := {Pjl = (x+ j)2 + (x+ j) + 1 + l : j ∈ Fp, 0 ≤ l ≤ m2},
Γ3 := {Qjl = (x+ j)2 − (x+ j) + 1 + l : j ∈ Fp, 0 ≤ l ≤ m2}.

Lemma 2.11. One has: Γ2 = Γ3 whenever p ≡ 2mod 3.

Proof. It suffices to remark that Pjl = (x+ j)2 + x+ j +1+ l = (x+ j +
1)2 − (x+ j + 1) + 1 + l = Qj+1 l.

2.3. Case p ≡ 1mod 8

If p ≡ 1 mod 24, then σ(xa), σ∗(xa) and σ∗(x4) all split for a ∈ {2, 3}.
So we suppose that p ≡ 17 mod 24. In this case, only, σ∗(x3) = x3 + 1 =
(x+1)(x2−x+1) does not split. We shall consider the subset Γ3 which equals
Γ2 (by Lemma 2.11).

3. CASE p ∈ {2, 3}

3.1. n.s.p polynomials

We get by direct computations or from [9], all n.s.p polynomials A over
Fp:

A ∈ {x2(x+ 1)(x2 + x+ 1), x(x+ 1)2(x2 + x+ 1)} if p = 2,

A ∈ {S(x), S(x+ 1), S(x+ 2), T (x)} if p = 3, where

S(x) = x3(x+ 1)2(x+ 2)(x2 + 1) and

T (x) = (x3 − x)2(x2 + 1)(x2 + x+ 2)(x2 + 2x+ 2).

3.2. n.s.u.p polynomials

If p = 2, then A is of the form xa(x+ 1)b(x2 + x+ 1)c so that ω(A) ≤ 3
and thus A ∈ {x3(x+ 1)2(1 + x+ x2), x2(x+ 1)3(1 + x+ x2)} (see [4]).

If p = 3, then A is of the form

xa(x+ 1)b(x+ 2)c(x2 + 1)u(x2 + x+ 2)v(x2 + 2x+ 2)w,
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where 0 ≤ a, b, c ≤ 3 and 0 ≤ u, v, w ≤ 2, (u, v, w) ̸= (0, 0, 0).
By direct computations, A is unitary perfect over F3 if and only if

A = ((x3 − x)2(x2 + 1)(x2 + x+ 2)(x2 + 2x+ 2))3
n
, for some n ∈ N.

4. PROOF OF THEOREM 1.1

In this section, we suppose that A := A1B is (indecomposable) perfect
where

A1 =

p−1∏
j=0

(x+ j)a = (xp − x)a and B =
∏
P∈Σ

P , a ∈ {2, 3},

Σ ̸= ∅ is a set of irreducible quadratic polynomials.

Lemma 4.1. The prime number p satisfies: p ≡ 2mod 3 or p ≡ 3mod 4.

Proof. If p ≡ 1mod 3 and p ≡ 1mod 4 then σ(A1) splits, which is impos-
sible by Lemma 2.4.

We distinguish three cases: p ≡ 5, 7 or 11mod 12. We prove only Propo-
sitions 4.2 and 4.3. The other proofs are similar.

4.1. Case p ≡ 5mod 12

In this case, p ≡ 1mod 4 and p ≡ 5mod 6. Thus, −3 is not a square,
σ(x2) is irreducible but σ(x3) = (x+1)(x2+1) splits. Lemma 2.4 implies that
a = 2. We consider the subset Γ2 defined in Section 2.2.

Proposition 4.2. A is perfect if and only if Σ = Γ2 so that

A = (xp − x)2 ·
∏
P∈Γ2

P with ω(A) = (m2 + 2)p.

Proof. Sufficiency is obtained by direct computations. We get:

σ(A1) =
∏
j∈Fp

((x+ j)2 + (x+ j) + 1),

σ(
∏
P∈Γ2

P ) =
∏
j∈Fp

m2∏
l=0

((x+ j)2 + (x+ j) + 2 + l).

Recall that x2 + x+ 2 +m2 = (x+
1

2
+ δ2)(x+

1

2
− δ2) splits. Therefore,∏

j∈Fp

((x+ j)2 + (x+ j) + 2 +m2) = (xp − x)2.
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Hence,

σ(A1

∏
P∈Γ2

P ) = (xp − x)2 ·
∏
j∈Fp

m2∏
l=0

((x+ j)2 + (x+ j) + 1 + l) = A1

∏
P∈Γ2

P .

Thus, A1

∏
P∈Γ2

P is perfect.

Necessity . Now, we suppose that A is perfect. For j ∈ Fp,

Qj = (x+ j)2 + x+ j + 1 = σ((x+ j)2)

is an irreducible divisor of σ(A) = A. Thus, for any 0 ≤ l ≤ max(0,m2 − 1),
σ(Qj + l) = Qj +1+ l are all irreducible and they all divide σ(A) = A. Hence,

Γ2 ⊂ Σ and Σ = Γ2 by indecomposability, since A1

∏
P∈Γ2

P is perfect.

Examples. One has: m2 = 1 if p = 5 and m2 = 2 if p = 17.

4.2. Case p ≡ 7mod 12

Since p ≡ 1mod 3, Lemma 2.4 implies that a = 3.

Proposition 4.3. A is perfect if and only if Σ = Γ1 so that

A = (xp − x)3 ·
p−1∏
j=0

m1∏
ℓ=0

((x+ j)2 + 1 + ℓ), with ω(A) = (m1 + 2)p.

Proof. We directly get sufficiency: we remark that σ(x3) = (x+1)(x2+1),
with x2+1, · · · , x2+1+m1 all irreducible and x2+2+m1 = (x+ δ1)(x− δ1).

Put B1 :=
∏
P∈Γ1

P =

p−1∏
j=0

·
m1∏
ℓ=0

((x+ j)2 + 1 + ℓ).

We compare σ(A1B1) = σ(A1)σ(B1) and A1B1:

σ(A1) =

p−1∏
j=0

(x+ j + 1)((x+ j)2 + 1) = (xp − x)

p−1∏
j=0

((x+ j)2 + 1),

σ(B1) =

p−1∏
j=0

·
max(0,m1−1)∏

ℓ=0

((x+ j)2 + 2 + ℓ) ·
p−1∏
j=0

((x+ j)2 + 2 +m1),

=

p−1∏
j=0

·
max(0,m1−1)∏

ℓ=0

((x+ j)2 + 2 + ℓ) ·
p−1∏
j=0

(x+ j + δ1)(x+ j − δ1),

= (xp − x)2 ·
p−1∏
j=0

·
max(0,m1−1)∏

ℓ=0

((x+ j)2 + 2 + ℓ).
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We obviously see that σ(A1B1) = σ(A1)σ(B1) = A1B1. Thus A1B1 is
perfect.

Necessity. As in the proof of Proposition 4.2, we see that Γ1 ⊂ Σ and
Σ = Γ1.

Examples. One has: m1 = 1 if p = 7 and m1 = 0 if p = 19.

4.3. Case p ≡ 11mod 12

In this case, p ≡ 3mod 4 and p ≡ 5mod 6. Thus, σ(x2) = x2 + x + 1
and σ(x3) = (x + 1)(x2 + 1) do not split. Moreover, x2 + 1, . . . , x2 + 1 +m1,
x2+x+1, . . . , x2+x+1+m2 are all irreducible and x2+2+m1 = (x+δ1)(x−δ1),
x2 + x+ 2 +m1 = (x+ 1

2 + δ2)(x+ 1
2 − δ2). Thus a ∈ {2, 3} and we consider

the sets Γ1, Γ2. As in (the proof of) Proposition 4.3, we take Σ = Γ2 (resp.
Σ = Γ1) if a = 2 (resp. a = 3). We get:

Proposition 4.4. i) If a = 2 then A is perfect if and only if

A = (xp − x)2 ·
p−1∏
j=0

m2−1∏
ℓ=0

((x+ j)2 + (x+ j) + 1 + l),

with ω(A) = (m2 + 2)p.
ii) If a = 3 then A is perfect if and only if

A = (xp − x)3 ·
p−1∏
j=0

m1−1∏
ℓ=0

((x+ j)2 + 1 + l),

with ω(A) = (m1 + 2)p.

Examples. One has: m1 = m2 = 0 if p = 11 and m1 = 3,m2 = 0 if
p = 23.

5. PROOF OF THEOREM 1.2

We set A := A1B where A1 = (xp − x)a, a ∈ {2, 3} and B =
∏
P∈Σ

P ,

where Σ is a subset of quadratic irreducible polynomials.
We suppose that A is unitary perfect: σ∗(A1)σ

∗(B) = A1B.
Again, Lemma 2.4 implies that p ̸≡ 1 mod 6 or p ̸≡ 1 mod 8.

Lemma 5.1. The prime number p satisfies: p ≡ 5mod 6 or p ≡ 3mod 4
or p ≡ 5mod 8.
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In this section, we suppose that p ≡ 3 mod 4 or p ≡ 17 mod 24. We
consider three cases: p ≡ 7 mod 12, p ≡ 11 mod 12 and p ≡ 17 mod 24. The
proofs of Propositions 5.2 and 5.3 are similar to those of Propositions in Section
4, so they are omitted.

5.1. Case p ≡ 7mod 12

In this case, p ≡ 3mod 4 and p ≡ 1mod 6. Lemma 2.4 implies that a ̸= 3.
From Remark 2.10, we do not take a = 4. Hence, we choose a = 2 and we
consider Γ1 = {(x+ j)2 + 1 + ℓ : j ∈ Fp, 0 ≤ ℓ ≤ m1} defined in Section 2.1.

Proposition 5.2. The polynomial A is unitary perfect if and only if

Σ = Γ1 and Ω = ∅, so that A = (xp − x)2 ·
∏
P∈Γ1

P , with ω(A) = (m1 + 2)p.

5.2. Case p ≡ 11mod 12

In this case, p ≡ 3mod 4 and p ≡ 5mod 6. From Remark 2.10, we do not
take a = 4 so that a ∈ {2, 3}. Moreover, x2+1 and x3+1 = (x+1)(x2−x+1)
do not split. We consider Γ1 if a = 2 and Γ2 if a = 3.

Proposition 5.3. The polynomial A is unitary perfect where:

A = (xp − x)2 ·
p−1∏
j=0

m1∏
ℓ=0

((x+ j)2 + 1 + ℓ), with ω(A) = (m1 + 2)p,

A = (xp − x)3 ·
p−1∏
j=0

m2∏
ℓ=0

((x+ j)2 − (x+ j) + 1 + ℓ), with ω(A) = (m2 + 2)p.

5.3. Case p ≡ 17mod 24

In this case, p ≡ 1mod 8 and p ≡ 5mod 6. Thus, x2 + 1 and x4 + 1 split
but σ∗(x3) = x3+1 = (x+1)(x2−x+1) does not split over Fp. We take a = 3
and we consider Γ3 = Γ2 (Section 2.2, Lemma 2.11).

Proposition 5.4. If p ≡ 17mod 24, then A = (xp−x)3 ·
∏
P∈Γ2

P is unitary

perfect over Fp, with ω(A) = (m2 + 2)p.

Example. For p = 41, one has m2 = 4.
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6. PROOF OF THEOREM 1.3

We only sketch the proof (similar arguments as before).

6.1. Preliminaries

The polynomial σ∗(x2) splits because p ≡ 1 mod 4; σ∗(x3) also splits if
p ≡ 13 mod 24. If p ≡ 5 mod 24, then σ∗(x3) = (x + 1)(x2 − x + 1) does not

split (and (xp − x)3
∏
P∈Γ2

P is a n.s.u.p polynomial).

Since p ≡ 1 mod 4 and p ̸≡ 1 mod 8 , −1 = µ2 is a square but µ and p−µ

are not squares (we choose µ <
p

2
). Thus, σ∗(x4) = (x2 + µ)(x2 − µ) does not

split without more conditions on p ≡ 5 mod 8. So, we choose only polynomials
of the form (xp − x)4B, where B is odd. Moreover, 2 is not a square and thus
α := p− 2µ is a square. Set α = −γ2.

Let m3 be the integer such that −µ,−µ − 1, . . . ,−µ − m3 are all not
squares and −µ−m3 − 1 is a square. Put δ3

2 = −µ−m3 − 1.
Let m4 be the integer such that µ, µ− 1, . . . , µ−m4 are all not squares,

but µ−m4 − 1 = δ4
2 is a square.

We get the following sets of irreducible quadratic polynomials:

Γ41 := {(x+ j)2 + µ+ l : j ∈ Fp, 0 ≤ l ≤ m3},
Γ42 := {(x+ j)2 − µ+ l : j ∈ Fp, 0 ≤ l ≤ m4},Γ4 := Γ41 ∪ Γ42,
Γ5 := {(x+ j)2 + µ+ l : j ∈ Fp, 0 ≤ l ≤ α− 1},
Γ6 := {(x+ j)2 − µ : j ∈ Fp}.

We set A := A1B1B2 where A1 = (xp − x)4 and B1 =
∏
P∈Σ

P , B2 =
∏
Q∈Ω

Q2,

Σ and Ω are disjoint subsets of quadratic irreducible polynomials such that Σ∪
Ω ̸= ∅ (because A does not split). The set Ω may be non-empty by Corollary
6.6 below.

We suppose that A is unitary perfect: σ∗(A1)σ
∗(B1)σ

∗(B2) = A1B1B2.

Lemma 6.1. One has:

x2 + µ+m3 + 1 = (x+ δ3)(x− δ3), x2 − µ+m4 + 1 = (x+ δ4)(x− δ4),
(x2 − µ)2 + 1 = x2(x2 + α) = x2(x+ γ)(x− γ).

Lemma 6.2. α = 1 if and only if p = 5.

Proof. One has in Fp:

α = 1 ⇐⇒ µ+ 1 = −µ ⇐⇒ µ2 = −1 = 2µ ⇐⇒ µ = 2 ⇐⇒ p = 5.
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Remark 6.3. We may have µ+ a = p− µ+ b, for some 0 ≤ a ≤ m3 and
for some 0 ≤ b ≤ m4.

Lemma 6.4. If m3 < α, then Γ41 ∩ Γ42 = ∅.

Proof. For any l ≤ m3 and t ≤ m4, one has: µ + l ≤ µ +m3 < µ + α =
p− µ ≤ µ+ t. Therefore, µ+ l ̸≡ p− µ+ t mod p.

Lemma 6.5. If m3 ≥ α, then for any l < α, x2 + µ + l is irreducible,
Γ5 ⊂ Γ41, Γ5 ∩ Γ6 = ∅ and Γ41 ∩ Γ6 ̸= ∅.

Proof. If l < α, then l < m3 and thus x2+µ+ l is irreducible. Therefore,
Γ5 ⊂ Γ41.

Moreover, µ+ l < µ+α = p−µ. So, µ+ l ̸≡ p−µ mod p and Γ5∩Γ6 = ∅.
Finally, x2 + µ+ α = x2 − µ ∈ Γ41 ∩ Γ6.

Corollary 6.6. If m3 ≥ α, then ((x+j)2−µ)2 divides A for any j ∈ Fp.

Proof. One has: S = x2 − µ = x2 + µ + α = σ∗(x2 + µ + α − 1). So, S
divides σ∗(A) = A. S also divides σ∗(x4) and thus it divides σ∗(A) = A.

6.2. Case m3 < α

Here, by Lemma 6.4, we only need Γ4 (but neither Γ5 nor Γ6). So, Γ4 ⊂ Σ

and Ω = ∅. By direct computations, we get σ∗(A1

∏
P∈Γ4

P ) = A1

∏
P∈Γ4

P . Thus

A1

∏
P∈Γ4

P is unitary perfect and Σ = Γ4 by indecomposability.

Note that ω(A) = (m3 +m4 + 3)p.

Example. For p = 37, one has: µ = 6, m3 = 0 < α = 25, m4 = 1.

6.3. Case m3 ≥ α

By Lemma 6.5 and by Corollary 6.6, one has: Γ5 ⊂ Σ and Γ6 ⊂ Ω.

A = A1 ·
∏
P∈Γ5

P ·
∏
Q∈Γ6

Q2 is unitary perfect, with ω(A) = (α + 2)p. We get

then Γ5 = Σ and Γ6 = Ω, still by indecomposability.

Example. For p = 13, one has: µ = 5, m3 = α = 3.
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7. SOME COMPUTATIONS

7.1. Other n.s.p polynomials for p = 11

We set A =
10∏
j=0

(x+ j)ajB, where aj ∈ {1, 2, 3} and B =
∏
P∈Σ

P is a

product of irreducible quadratic polynomials, Σ ⊂ Γ1 ∪ Γ2.

By direct computations (that lasted only about 28 minutes) in which we
consider all possible cases on the aj ’s, there exist such n.s.p polynomials if and
only if either (aj = 2 for any j and Σ = Γ2) or (aj = 3 for any j and Σ = Γ1).

7.2. Other n.s.u.p polynomials for p ∈ {5, 7, 11}

We set A =

p−1∏
j=0

(x+ j)aj ·
∏
P∈Σ

P ·
∏
Q∈Ω

Q2, 2 ≤ aj ≤ 4, Σ ⊂
5⋃

j=1

Γj and

Ω ⊂ Γ6.

Put, for 1 ≤ k ≤ 3, Λk := {j ∈ Fp : aj = k + 1}. Our computations
consist of checking equalities σ∗(A1A2A3B) = A1A2A3B for p = 5, 7, 11 and
for all pairwise disjoint subsets Λ1,Λ2, Λ3 of Fp such that Λ1 ∪Λ2 ∪Λ3 = Fp.

• For p = 5, one hasm3 = α = 1 and we get unitary perfect polynomials if
(Λ1 = {0}, Λ3 = F5\{0}), (Λ1 = {0, 1}, Λ3 = F5\{0, 1}), (Λ1 = {0, 1, 2}, Λ3 =
{3, 4}), (Λ1 = F5 \ {4}, Λ3 = {4}, already cited in [4]).

• For p = 5, no unitary perfect polynomials exist if (Λ3 = ∅, Λ1 ̸= ∅ and
Λ2 ̸= ∅).

• For p = 7, one has m1 = 1. No unitary perfect polynomials exist if
(Λ3 = ∅, Λ1 ̸= ∅ and Λ2 ̸= ∅).

• For p = 11, one has m1 = m2 = 0, no unitary perfect polynomials exist
if (Λ3 = ∅ and Λ1 ̸= ∅ and Λ2 ̸= ∅).

7.3. Examples of bi-unitary perfect (b.u.p) polynomials

We refer to [5] for basic notions of bi-unitary perfect polynomials. In
particular, we get for an irreducible polynomial P ∈ Fp[x]:

σ∗∗(P 2) = 1 + P 2 = σ∗(P 2), σ∗∗(P 3) = (P + 1)(P 2 + 1),

σ∗∗(P 4) = (P + 1)(P 3 + 1), σ∗∗(P 6) = (P 4 + 1)(P 2 + P + 1).
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7.3.1. Case p ∈ {2, 3}

If p = 2, then A is of the form xa(x + 1)b(x2 + x + 1) so that ω(A) = 3
and thus A ∈ {x3(x+ 1)4(1 + x+ x2), x4(x+ 1)3(1 + x+ x2)} (see [19]).

If p = 3, then A is of the form

xa(x+ 1)b(x+ 2)c(x2 + 1)u(x2 + x+ 2)v(x2 + 2x+ 2)w,

where 0 ≤ a, b, c ≤ 7 and 0 ≤ u, v, w ≤ 1, (u, v, w) ̸= (0, 0, 0).
By direct computations, A is b.u.p over F3 if and only if A(x), A(x+ 1)

or A(x+ 2) takes the above form with (a, b, c, u, v, w) ∈ J where

J={(3, 4, 5, 1, 0, 0),(1, 4, 6, 1, 0, 1),(2, 2, 2, 1, 1, 1),(3, 3, 3, 1, 1, 1),(5, 5, 7, 1, 1, 1)}.

7.3.2. Case p ̸≡ 1 mod 24 and p ≥ 5

Perfect polynomials in Theorem 1.1 are b.u.p if p ≡ 7 mod 12.
Unitary perfect polynomials in Theorem 1.2 are b.u.p if p ≡ 7 mod 12.
S is b.u.p where:

S = (xp − x)4
∏
P∈Γ2

P if p ≡ 5 mod 12,

S = (xp − x)6
∏
P∈Γ2

P if p ≡ 17 mod 24.

S is neither perfect nor unitary perfect.
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