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We define p-critical kG -modules, and prove that the Green correspondence in-
duces a bijection between the isomorphism classes of indecomposable p-critical
kG -modules and those of indecomposable p-critical kH -modules.
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1. INTRODUCTION

In the theory of finite group representation, the (absolutely) p-divisible
module is introduced and used to study nilpotent elements in Green rings
[1]. p-divisible modules are an interesting class of modules that contain all
(relatively) projective modules and focus on the prime factor p of the order of
finite groups. In this paper, we use p-divisible modules instead of projective
modules to construct p-critical modules.

For a finite group G, we know that critical kG -modules and kG -modules
with trivial Sylow restriction play an important role in the study of the group
of endo-trivial kG-modules [3, 4, 9, 10]. In this paper, we extend them to
p-critical modules. We also note that endo-trivial kG-modules can be gen-
eralized to p-endotrivial kG-modules [3], and that p-endotrivial kG-modules
are special splitting trace kG-modules. Splitting trace kG -modules have im-
portant applications in the study of almost split sequences [5], and p-critical
modules defined in this paper are p-endotrivial kG -modules.

The Green correspondence is of fundamental importance in finite group
representation theory [2, 6]. In this paper, following the idea of the Green
correspondence, we obtain some conclusions about the restriction and induc-
tion of p-critical modules (Theorem 3.4). In particular, we proof that the
Green correspondence induces a bijection between the isomorphism classes of
indecomposable p-critical kG-modules and those of indecomposable p-critical
kH-modules (Theorem 3.7, Corollary 3.8). In addition, the structure of
p-critical kG-modules is also obtained (Proposition 2.8).
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In this paper, we fix a prime number p, a finite group G, and an alge-
braically closed field k of characteristic p. All modules are finitely generated,
and the order of any group involved in p-divisible modules is divisible by p.

2. p -CRITICAL kG -MODULES

A kG-module M is called a p-divisible kG -module if the dimension of
any direct summand of M is divisible by p.

Remark 2.1. (1) p-divisible kG-modules herein are based on absolute in-
decomposability. We note that k herein is an algebraically closed field of char-
acteristic p, so any indecomposable kG -module is already absolutely indecom-
posable and any p-divisible kG -module in this paper is absolutely p-divisible
(see [1]).

(2) The dual of a p-divisible kG-module, any G-conjugative module of
a p-divisible kG-module [2, Example 10.10], the direct sum of p -divisible
kG -modules, and the tensor product of a p -divisible kG -module and a
kG-module, are p -divisible.

(3) p -divisible kG-modules form a large class: projective kG-modules,
Q-projective kG-modules, where Q is any proper p-subgroup of G [2, Exercise
21.2(a), Exercise 23.1]; while the trivial kG-module k is not p -divisible. In
addition, p -divisible kG-modules focus on the prime factor p of the order of a
finite group G, so they might be closely related to arithmetic properties of G.

We give the following definition.

Definition 2.2. Let P be a Sylow p-subgroup of G, and let M be a
kG-module. If ResGP (M) = k ⊕ U , where U is a p-divisible kP -module, then
we say that M is a p-critical kG-module.

Remark 2.3. (1) The definition of p-critical kG-modules is independent
of the Sylow p-subgroup P . Indeed, since any two Sylow p -subgroups of G are
conjugate in G, and g(ResGP (M)) ∼= ResGgP (M), g ∈ G [2, P.216], we see that
the restriction of M to gP is the direct sum of k and a p -divisible kG-module.

(2) The trivial kG-module k is p -critical, while any p -divisible kG-module
is not p -critical.

(3) Any indecomposable p -critical kG-module belongs to a full defect
block of G (Lemma 3.1).

(4) With p -critical kG-modules we generalize critical kG-modules and
kG-modules with trivial Sylow restriction, as follow.

We say that a kG-moduleM is a kG-module with trivial Sylow restriction,
if ResGP (M) = k ⊕ (projective), where P is a Sylow p -subgroup of G [3].
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An indecomposable endo-trivial kG-module M is called a critical
kG-module, if ResGH(M) = k ⊕ (free), for any maximal subgroup H of G [4].
Note that the Sylow p -subgroup P in Definition 2.2 is a maximal p -subgroup
of G, and any projective kP -module is a free kP -module as well [2, Proposition
21.1].

Lemma 2.4. (1) If M is a kG-module with trivial Sylow restriction, then
M is a p-critical kG-module.

(2) If M is a critical kG-module, then M is a p-critical kG-module.

Proof. (1) Let P be a Sylow p-subgroup of G. Following [3], we can set
ResGP (M) = k⊕(projective), then by Remark 2.1 (3) we see thatM is p-critical.

(2) Let H be a maximal subgroup of G such that H contains a Sylow
p -subgroup P of G. Firstly, following [4], we see that ResGH(M) = k ⊕ U ,
where U is a free kH-module. Secondly,

ResGP (M) = ResHP (ResGH(M)) = k ⊕ ResHP (U).

Thirdly, ResHP (U) is a free kP -module, and then ResHP (U) is a p-divisible kP -
module (Remark 2.1 (3)).

Following the above, M is a p -critical kG-module. We are done.

By a p-endotrivial kG-module M we mean a kG-module M such that
Endk(M) = k ⊕ U , where U is a p -divisible kG-module; p -endotrivial kG-
modules extend the notion of endo-trivial kG-modules [4].

Following [5], we say that a kG-module M is a splitting trace kG-module,
if the trivial kG-module k is a direct summand of Endk(M). Obviously, any p -
endotrivial kG-module(endo-trivial kG-module) is a splitting trace kG-module.

Lemma 2.5. (1) If M is a p-critical kG-module, then M is a p-endotrivial
kG-module.

(2) If M is a p-critical kG-module, then M is a splitting trace kG-module.

Proof. (1) Let P be a Sylow p-subgroup of G. Since M is a p-critical
kG-module, we set ResGP (M) = k ⊕ U , where U is a p-divisible kP -module,
and we have

ResGP (End(M)) ∼= End(ResGP (M)) = End(k ⊕ U)
∼= k ⊕ U ⊕ U∗ ⊕ End(U),

where U ⊕ U∗ ⊕ End(U) is also p-divisible (Remark 2.1 (2)).
At the same time, since p does not divide dim(M), we can set End(M) =

k⊕X, [5, Corollary 4.7], where X is a kG-module. So ResGP (X) is a p -divisible
kP -module, andX must be a p -divisible kG-module (Krull-Schmidt Theorem).
That is, M is a p -endotrivial kG-module.

(2) follows from (1).
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Lemma 2.6. (1) If M and N are p-critical kG-modules, then M ⊗N is
a p-critical kG-module.

(2) If M is a p-critical kG-module, and if N is a p-divisible kG-module,
then M ⊕N is a p-critical kG-module.

Proof. (1) If P be a Sylow p-subgroup of G, then ResGP (M) = k⊕U and
ResGP (N) = k ⊕ V , where U and V are p-divisible kP -modules. Hence,

ResGP (M ⊗N) ∼= ResGP (M)⊗ ResGP (N) = (k ⊕ U)⊗ (k ⊕ V )

∼= k ⊕ U ⊕ V ⊕ (U ⊗ V ),
it means that M ⊗N is p-critical (Remark 2.1 (2)).

(2) Firstly, If P is a Sylow p-subgroup of G, then we have that ResGP (M) =
k ⊕ U , where U is a p-divisible kP -module.

Secondly, ResGP (N) is p-divisible. Indeed, if ResGP (N) is not p-divisible,
then k|End(ResGP (N)) [5, Corollary 4.7], and then

IndGP (k)|IndGP (ResGP (End(N))).

While by [6, Corollary 4.3.8],

IndGP (Res
G
P (End(N))) ∼= IndGP (k)⊗k End(N),

we see that IndGP (k) ⊗ End(N) is p-divisible (Remark 2.1 (2)), and the direct
summand IndGP (k) is also p-divisible. It contradicts with the order of IndGP (k).

Finally, the above conclusions mean that

ResGP (M ⊕N) ∼= ResGP (M)⊕ResGP (N) = k⊕U ⊕ResGP (N) = k⊕ (p-divisible).

So M ⊕N is p-critical.

Lemma 2.7. (1) If M is a p-critical kG-module, then M∗ is a p-critical
kG -module.

(2) If M is a p-critical kG-module, then for any g ∈ G, the conjugate
kG-module gM is a p-critical kG-module.

Proof. (1) Let P be a Sylow p-subgroup of G. We set ResGP (M) = k⊕U ,
where U is a p-divisible kP -module, and we see that

ResGP (M
∗) ∼= (ResGP (M))∗ = (k ⊕ U)∗ ∼= k ⊕ U∗,

so M∗ is a p-critical kG-module.
(2) In the case of [2, Example 10.10], if H is the group G herein, then we

conclude that gM ∼= M , so gM is a p-critical kG-module, too.

Proposition 2.8. In the sense of kG-module isomorphism, any p-critical
kG-module is the direct sum of an indecomposable p-critical kG-module and a
p-divisible kG-module.
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Proof. If the indecomposable direct summandN of a p-critical kG-module
M is not p-divisible, according to Krull-Schmidt Theorem,

ResGP (N) = k ⊕ (p -divisible),

where, N is a p-critical kG-module. Indeed, suppose that ResGP (N) is
p-divisible, then N is also p-divisible, it is a contradiction.

Summing up the results above, in the sense of kG-module isomorphism,
N is the unique indecomposable direct summand ofM such that N is p-critical,
and M is the direct sum of the unique indecomposable p-critical summand N
and a p-divisible kG-module.

3. THE GREEN CORRESPONDENCE FOR p -CRITICAL
MODULES

Lemma 3.1. Let G ≥ H and M be a p-critical kG-module. If M is
H-projective, then H contains a Sylow p-subgroup of G; in particular, the
vertex of any indecomposable p-critical kG-module is a Sylow p-subgroup of G.

Proof. If the Sylow p-subgroup Q of H is a proper p-subgroup of G,
then M is a Q-projective kG-module, and then M is a p-divisible kG-module
(Remark 2.1 (2)). It is a contradiction, so H contains a Sylow p-subgroup
of G. Notice that if P is a Sylow p-subgroup of G, then M is P -projective
[6, Proposition 11.3.5]. The above results conclude that the vertex of any
indecomposable p-critical kG-module is a Sylow p-subgroup of G. We are
done.

Proposition 3.2. Let G ≥ H ≥ P , and let M be a kG-module. If P
is a Sylow p-subgroup of G, then M is a p-critical kG-module if and only if
ResGH(M) is a p-critical kH-module.

Proof. Proof of the necessity. Obviously, P is also a Sylow p-subgroup
of H. If M is a p-critical kG-module, then ResGP (M) = k ⊕ U , where U is a
p-divisible kP -module, and then

ResHP (ResGH(M)) = ResGP (M) = k ⊕ ResPQ(U).

So ResGH(M) is a p-divisible kH-module.

Proof of the sufficiency. Since ResGP (M) = ResHP (ResGH(M)), we obtain
that if ResGH(M) is a p-critical kH-module, then ResGP (M) = k ⊕ U , where U
is a p-divisible kP -module. So M is a p-critical kG-module.
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Proposition 3.3. Let G ≥ H ≥ NG(P ), where P is a Sylow p-subgroup
of G. If M is an indecomposable p-critical kG-module, then the Green corre-
spondent of M is a p-critical kH-module.

Proof. Firstly, by Lemma 3.1 we see that P is a vertex of M . Secondly,
by Proposition 3.2 we see that ResGH(M) is a p-critical kH-module. Thirdly, by
Burry-Carlson-Puig Theorem [6, Theorem 11.6.9], in the sense of kH-module
isomorphism, we conclude that there exists a unique indecomposable direct
summand N of ResGH(M) such that P is a vertex of N , N herein is just the
Green correspondent of M . Hence, with Proposition 2.8 and with Lemma 3.1
again, N must be the unique indecomposable direct summand of ResGH(M)
with N being p-critical at the same time. We are done.

Theorem 3.4. Let G ≥ H, and let M be a kG-module and N be a
kH-module. If M = IndGH(N), then M is a p-critical kG-module if and only if
N is a p-critical kH-module and H contains a Sylow p-subgroup P of G such
that p||P : P ∩ gH| for any g ∈ G−H.

Proof. Proof of the sufficiency. If N is a p-critical kH-module and H
contains a Sylow p-subgroup P of G such that p||P : P∩ gH| for any g ∈ G−H,
then

ResGP (M) = ResGP (Ind
G
H(N))

∼=
⊕

g∈[P\G/H]

IndPP∩ gH(Res
gH
P∩ gH (gN))

= ResHP (N)⊕ (
⊕

1̸=g∈[P\G/H]

IndPP∩ gH (Res
gH
P∩ gH (gN))). (1)

Following the above, firstly, each IndPP∩ gH (Res
gH
P∩ gH (gN))) is a

(P ∩ gH)-projective kP -module, so it is p-divisible (Remark 2.1 (3)).
Secondly, ResHP (N) = k ⊕ (p -divisible). So we see (Remark 2.1 (2)) that

ResGP (M) = k ⊕ (p -divisible), that is M is a p-critical kG-module.

Proof of the necessity. If M is p-critical, then H contains a Sylow
p-subgroup P of G (Lemma 3.1), and p does not divide dim(M). We notice
that dim(M) = |G : H|dim(N), so p does not divide dim(N).

In addition, since ResGP (M) ∼= k ⊕ (p -divisible), we conclude that, in
(1), ResHP (N) = k ⊕ (p -divisible), and each IndPP∩ gH (Res

gH
P∩ gH (gN)) is a p-

divisible kP -module. That is to say, N is a p-critical kH-module, and P∩ gH <
P , and so p||P : P ∩ gH|, for any g ∈ G−H.

Indeed, if P ∩ gH = P , where g ∈ G−H, then

IndPP∩ gH (Res
gH
P∩ gH (gN)) = Res

gH
P (gN),
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while Res
gH
P (gN) = k ⊕ (p-divisible) (Remark 2.1 (2)). It is a contradiction.

We are done.

Corollary 3.5. Let G ≥ H, and let M be a kG-module and N be a
kH-module such that M = IndGH(N). If H ≥ NG(P ), where P is a Sylow p-
subgroup of G, then M is a p-critical kG-module if and only if N is a p-critical
kH-module.

Proof. Proof of the necessity. It follows from Theorem 3.4.

Proof of the sufficiency. Suppose that for some g ∈ G−H, P = P ∩ gH,
we have gH ≥ P . Notice that gH ≥ gP , then we see that gP ≥ xP for some
x ∈ gH, and then we conclude that g ∈ NG(P ), is a contradiction.

So p||P : P ∩ gH| for any g ∈ G−H, and so the sufficiency follows from
Theorem 3.4.

We recall that a subgroupH of G is strongly p-embedded if |H| is divisible
by p but |H ∩ gH| is not divisible by p, for any g ∈ G−H. Note that strongly
p-embedded subgroups have important applications in the classification of finite
simple groups, and such H exists whenever Sylow p-subgroups of G are trivial
intersection (that is, T.I.) [7, 8].

Corollary 3.6. Let G ≥ H, and let M be a kG-module and N be a
kH-module such that M = IndGH(N). If H is strongly p-embedded in G, then
M is a p-critical kG-module if and only if N is a p-critical kH-module.

Proof. Since the strongly p-embedded subgroup H always contains the
normalizer NG(P ) of a Sylow p-subgroup P of G [7], the result follows from
Corollary 3.5.

Theorem 3.7. If G ≥ H ≥ NG(P ), where P is a Sylow p-subgroup of
G, then the Green correspondence induces a bijection between the isomorphism
classes of indecomposable p-critical kG-modules and those of indecomposable
p-critical kH-modules.

Proof. Firstly, if M is an indecomposable p-critical kG-module, then the
Green correspondent of M is an indecomposable p-critical kG-module (Propo-
sition 3.3).

Secondly, if N is an indecomposable p-critical kH-module, then IndGH(N)
is a p-critical kG-module (Theorem 3.4).

Thirdly, by Burry-Carlson-Puig Theorem, Proposition 2.8, and Lemma
3.1, the unique indecomposable p-critical summand of IndGH(N) is just the
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Green correspondent of N , and this Green correspondent is a p-critical
kG-module.

Summing up the results above, all of indecomposable p-critical modules
are closed under the Green correspondence. At the same time, the Green cor-
respondence induces a bijection between the isomorphism classes of indecom-
posable kG-modules and those of indecomposable kH-modules with the same
vertex P [6, Theorem 11.6.4]. Hence, the Green correspondence herein in-
duces a bijection between the isomorphism classes of indecomposable p-critical
kG-modules and those of indecomposable p-critical kH-modules.

Corollary 3.8. Let G ≥ H. If H is strongly p-embedded in G, then
the Green correspondence induces a bijection between the isomorphism classes
of indecomposable p-critical kG-modules and those of indecomposable p-critical
kH-modules.

Proof. The result follows from Corollary 3.6 and Theorem 3.7.
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