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We present two Diophantine equations that arise from some new results in the
theory of partitions with equal sums. We link these to the problem of finding
rational points on some hyperelliptic curves and we solve the latter, assisted by
computer algebra packages, using a p-adic method pioneered by Chabauty and
Coleman.
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1. INTRODUCTION AND MOTIVATION

For a positive integer k ≥ 2 and an arbitrary positive integer n, in [2] and
[1], the authors introduced the sequence {Qk(n)}n≥1,

(1) Qk(n) =
1

2π

∫ 2π

0

n∏
s=1

(k − 2 + 2 cos st) dt.

An enumerative formula for Qk(n) is given by the number of ordered
partitions of [n] = {1, . . . , n} into k disjoint sets A1, . . . , Ak with the property
that σ(A1) = σ(Ak), where σ(A) denotes the sum of all elements in A. The
case k = 2 corresponds to the number S(n) of partitions of [n] in two sets with
equal sums. The sequence {S(n)}n≥0 is indexed as A063865 in the Online
Encyclopedia of Integer Sequences (OEIS) [10]. The asymptotic formula for
S(n) was conjectured by Andrica and Tomescu [3] in 2002 as

lim
n → ∞

n ≡ 0 or 3 (mod 4)

S(n)
2n

n
√
n

=

√
6

π

and this was proved to be correct by Sullivan [13] in 2013.
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Clearly, Qk(n) is a monic polynomial of degree n in k − 2. Moreover, in
[2] is proved that

(2) Qk(n) =

n∑
d=0

N(d, n)(k − 2)n−d,

where for each d = 0, . . . , n, the coefficient N(d, n) is the number of ordered
partitions of [n] into 3 subsets A,B,C such that |B| = d and σ(A) = σ(C),
where |B| is the cardinality of B.

Therefore, Qk(n) has non-negative integer coefficients, and each coeffi-
cient has a combinatorial meaning in terms of partitions of the set [n]. A
simple direct computation of the integral (1) shows that for n = 3, 5, 7, 9 and
k ≥ 2, we have

Qk(3) = (k − 2)3 + 2;

Qk(5) = (k − 2)5 + 8(k − 2)2 + 6(k − 2);

Qk(7) = (k − 2)7 + 18(k − 2)4 + 30(k − 2)3 + 18(k − 2)2 + 12(k − 2) + 8;

Qk(9) = (k − 2)9 + 32(k − 2)6 + 82(k − 2)5 + 104(k − 2)4 + 130(k − 2)3+

130(k − 2)3 + 136(k − 2)2 + 62(k − 2).

The sequence {Qk(3)}k≥2 is indexed as A084380 in OEIS [10], where it is
mentioned that it does not contain any perfect squares, i.e. the elliptic equation
X3 + 2 = Y 2 has no solutions in positive integers. Two different proofs for
this result were given in [4]. The previous equation is linked to a Catalan-type
conjecture related to Pillai’s equation XU − Y V = m, with X,Y, U, V ≥ 2
integers. The conjecture states that for any given integer m, there are finitely
many perfect powers whose difference is m (see [14], Conjecture 1.6). For
m = 2, it was computationally checked that the only solution involving perfect
powers smaller than 1018 is 2 = 33−52. The number of such solutions is linked
to A076427 in OEIS.

Motivated by the property that the sequence Qk(3) does not contain any
perfect squares, in [2] and [1], the authors suggested the following problem:
study if the sequence {Qk(n)}k≥2 contains any n−1 powers for various values of
n. These yield, for general n, very difficult Diophantine equations and it seems
improbable to develop a general strategy for solving them. We will explain a
method that can sometimes be successfully used to study the aforementioned
problem when n is odd. To demonstrate its versatility, we discuss the problem
above for n = 5 and 7. We obtain the following Diophantine equations:

(3) X5 + 8X2 + 6X = Y 4;
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(4) X7 + 18X4 + 30X3 + 18X2 + 12X + 8 = Y 6.

Using effective methods for identifying integral points on curves, we prove
the following two theorems which give a negative answer to the problem de-
scribed above.

Theorem 1.1. The only solutions in integers to the equation Y 4 = X5+
8X2 + 6X are given by the pairs (x, y) = (0, 0), (−1, 1) or (−1,−1).

Since we believe that the pairs above are all the rational solutions to (3),
we formulated Conjecture 3.1 which asserts this. Our tools were more efficient
when applied to the equation (4) for which we were able to find all the rational
solutions.

Theorem 1.2. The only rational solutions of the equation X7 + 18X4 +
30X3 + 18X2 + 12X + 8 = Y 2 are given by (x, y) = (−1, 1) or (−1,−1).

2. DIOPHANTINE EQUATIONS AND HYPERELLIPTIC
CURVES

For any bivariate polynomial f ∈ Z[X,Y ], let

Cf := {(x, y) ∈ Q2
: f(x, y) = 0}

be an affine algebraic curve. The points of Cf with coordinates in Q are called
rational and, in general, for any S ⊆ Q, we denote by Cf (S) = Cf ∩ S2.
Curves can be classified by their genus, a non-negative integer associated to
their projectivization. The genus is a geometric invariant. A classical result in
number theory is the following theorem

Theorem 2.1 (Siegel, 1929). If f ∈ Z[X,Y ] defines an irreducible curve
Cf of genus g(Cf ) > 0, then Cf (Z) is finite.

If additionally gf (Cf ) ≥ 2, this result is superseded by the notorious
Falting’s theorem, which says that Cf (Q) is also finite. Although both Siegels’
and Faltings’ theorems are milestones in number theory, they are “ineffective”
results, meaning that their proof does not even allow one to control the size
of the sets known to be finite. Therefore, they cannot be used to explicitly
determine Cf (Z) or Cf (Q).

Effectively finding rational points on curves is an incredible difficult task
and a very active topic of research. The toolbox for determining Cf (Z) became
a lot richer starting with the monumental work of Baker on linear forms in
logarithms. As one of the first applications to his theory, Baker proved the
following result.
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Theorem 2.2 (Baker, 1969). Let

f(X,Y ) = Y 2 − anX
n − an−1X

n−1 − · · · − a0 ∈ Z[X,Y ].

Suppose that the polynomial anX
n+ · · ·+a0 is irreducible in Z[X], an ̸= 0 and

n ≥ 5. Let H = max{|a0|, . . . , |an|}. Then, any integral point (x, y) ∈ Cf (Z)
satisfies max(|x|, |y|) ≤ exp exp exp{(n10nH)n

2}.

Bounds on such solutions have been improved by many authors, but they
remain astronomical and often involve inexplicit constants.

For every smooth, projective and absolutely irreducible curve C of genus g
defined over Q, the Jacobian JC is a g-dimensional abelian variety, functorially
associated to C. Fixing a point P0 ∈ C(Q), the curve C can be identified as a
subvariety of JC via the Abel-Jacobi map ι : C ↪→ JC with base point P0. The
famous Mordell-Weil theorem gives that, as is the case for elliptic curves, the
set of Q rational points of JC has the structure of a finitely generated abelian
group, i.e.

JC(Q) ≡ T ⊕ Zr,

where T is a finite abelian group and r is a positive integer, called the rank.

A famous theorem due to Chabauty and Coleman [8] is the following.

Theorem 2.3. Let C be a smooth, projective and absolutely irreducible
curve of genus g over Q, with Jacobian J . Assume that the rank r of the
Mordell-Weil group JC(Q) is strictly less than g. Then, there is an algorithm
for determining the set of rational points C(Q). Moreover, if p is a prime of
good reduction for C such that p > 2g, then

#C(Q) ≤ C(Fp) + 2g − 2.

Here, we denoted by C the curve obtained by reducing modulo p the
coefficients of the equation defining C. An improvement due to Stoll [12],
gives the sometimes smaller bound of #C(Q) ≤ C(Fp) + 2 rank(JC(Q)) if C
and p are as above.

Algebraic curves defined by equations of the type Y 2 = f(X), where
f ∈ Q[x] is a polynomial with distinct roots, are called hyperelliptic. Algo-
rithms for computation in the Jacobian of such curves are described in [7].
These are implemented in the computer algebra package Magma [6]. Due
to this computational convenience, when we are looking for integral solutions
to the three Diophantine equations presented in the introduction, we make
the passage to the problem of determining integral points on some hyperellip-
tic curves. We compute the Jacobian of the latter and apply the algorithm
intrinsic in Theorem 2.3 to find all the rational points on such curves.
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3. THE PROOF OF THEOREM 1.1

In the same paper, Andrica and Bagdasar conjecture that X5+8X2+6X
is never a fourth power as X runs through the positive integers. To settle this,
we are going to study points on the affine curve given by

(5) Y 4 = X5 + 8X2 + 6X.

It is an exercise using the Riemann-Hurwitz formula to compute that the
genus of this curve is equal to 6, therefore by results mentioned earlier we know
that is has finitely many rational points. To find the set of all rational points
turns out to be a notorious difficult task from which we choose to detach for
now.

We start by proving the following easy result.

Proposition 3.1. If x, y are positive integers such that y4 = x5+8x2+6x
then x is divisible by 6.

Proof. Suppose gcd(x, 6) = 1. Then, the numbers x and x4 + 8x+ 6 are
coprime, and as their product is a fourth power, we can conclude that both
numbers must be fourth powers. Hence, we obtain the equation x4+8x+6 = z4,
for some positive integer z.

Since z > x and (z2 − x2)(z2 + x2) = 8x + 6, we get that 8x + 6 ≥
z2 + x2 ≥ 1 + x2 implying that 1 ≤ x ≤ 9. As x must be a fourth power, the
only possibility left is x = 1 but then y4 = 15, a contradiction.

Suppose for the sake of contradiction that x is not divisible by 3. The
above implies that x is divisible by 2 and so is y. As 4 ≤ v2(y

4) = v2(6x), we
have that v2(x) ≥ 3. There exists positive integers a, b such that{

x = 23a and
y = 2b

.

By substituting in the initial equation and dividing by 24, we obtain

b4 = a · (211 · a4 + 25 · a+ 3).

As the terms of the product on the right hand side are, in this case,
coprime we derive that both a and 211 · a4 + 25 · a + 3 must be forth powers
of positive integers. But the residue of 211 · a4 + 25 · a + 3 when divided by 4
is always 3 and no fourth power has this property. The contradiction implies
that 3 divides x.

All that is left is proving that 2 divides x as well. Suppose the contrary,
namely x, y are odd and both divisible only by 3. Let c, d be positive integers
such that {

x = 3c and
y = 3d

.
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Again, by using the initial equation and dividing by 32 we obtain

32d4 = 33 · c5 + 8c2 + 2c,

The last assumption implies that c is odd and by looking at the last equation
modulo 8, it is easy to deduce that c = 5 (mod 8). Analysing the equation
modulo 16, we further find that c = 5 (mod 16). Now, we get a contradiction
by looking modulo 32, since the left hand side of the equation above is 9 or
25 modulo 32, values that the right hand side never achieves when c = 5
(mod 16). This completes the proof of our proposition.

Finally, we prove the next Theorem 1.1 giving a positive answer to the
result conjectured by Andrica and Bagdasar [2].

Remark. Naively applied, Baker’s theorem tells us that if x, y are integers
satisfying the equation y4 = x5+8x2+6x, then max(|x|, y2) ≤ exp exp exp{(550·
8)5

2}, which is astronomical and does not help much with our task. Instead,
we show that a putative solution to this equation gives rise to a certain point
on a projective hyperelliptic curve with special arithmetic properties. Assisted
by the computer algebra package Magma, we determine the set of all rational
points on the hyperelliptic curve and prove that our predicted point does not
belong to it.

Proof of Theorem 1.1. Let (x, y) ∈ Z2 be a solution to our equation (3),
i.e. y4 = x5 + 8x2 + 6x. It is easy to see that x = 0 if and only if y = 0.
Suppose that y ̸= 0. If x < 0, the positivity of y4 implies that −2 < x < 0 and
as x is an integer, we obtain x = −1. Substituting in the original equation,
this gives y = −1 and y = 1 as the only possibilities for x < 0.

We will prove that there are no integral solutions with x > 0. Suppose
the contrary and let (x, y) ∈ Z>0 × Z be such a solution. Since that (x,−y) is
also a solution to (3), we can assume without loosing generality that y > 0. We
proved in Proposition 3.1 that x and hence y are divisible by 6. Moreover, in
the proof of the same proposition, we saw that v2(x) ≥ 3. Let a, b be positive
integers such that x = 23 · 3 · a and y = 2 · 3 · b. Substituting into the initial
equation and dividing both sides by 24 · 32, we get

(3 · b2)2 = 211 · 33 · a5 + 27 · a2 + a.

We can now regard (a, 3b2) as a point on the affine model of the projective
hyperelliptic curve

(6) Cproj : Y 2 = 211 · 33X5Z + 27X2Z4 + Z6.

Notice that the ambient space is not the classical projective plane P2, but
rather the weighted P2

(1,3,1). The points of P2
(1,3,1) over Q are the equivalence
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classes of triples [X : Y : Z] ∈ Q3 \ {[0 : 0 : 0]}, where two triples [X1 : Y1 : Z1]
and [X2 : Y2 : Z2] are equivalent if there exists some λ ∈ Q \ {0}, such that
[X2 : Y2 : Z2] = [λ · X1 : λ3 · Y1 : λ · Z1]. A point with integral coordinates
(a, 3b2) maps to the point with coordinates [a : 3b2 : 1] ∈ P2

(1,3,1) on Cproj(Q).

The later smooth projective curve has genus 2 and by Falting’s theorem
we know that

Cproj(Q) = {[X : Y : Z] ∈ P2
(1,3,1)(Q) : Y 2 = 211 · 33X5Z + 27X2Z4 + Z6}

is a finite set. We pursue the task of explicitly determining Cproj(Q).

The Jacobian JC is a 2 (equal to the genus) dimensional abelian variety
that is “functorially associated” to Cproj.

We also know for P0 := [1 : 0 : 0] ∈ Cproj(Q), the Abel-Jacobi map
associated to P0 is the embedding i : Cproj(Q) ↪→ JC(Q) given by P 7→ [P−P0],
for every P ∈ Cproj(Q). Using the computer algebra package Magma [6], we
compute that

JC(Q) ∼= (Z/2Z)⊕ Z.
Moreover, assisted by the same software, we show that the torsion subgroup T
is generated by i([0 : 0 : 1]) and a generator for JC(Q)/T is i([−1 : −5760 : 24]).

As the rank of the Jacobian is strictly less than the genus of our curve, we
can apply the method of the algorithm mentioned in Theorem 2.3 to determine
Cproj(Q). A beautiful presentation of how the method works can be found in
the expository article of McCallum and Poonen [9] and an algorithm suitable
to our set-up is implemented in Magma. For any prime p of good reduction
for Cproj, the closure of JC(Q) in JC(Qp) (under the p-adic topology) can be
described as the locus where certain power series vanish. It turns out that,
under a natural embedding, the image of Cproj in JC meets this closure in a
finite set, a set that must contain Cproj(Q).

A description of the Magma implementation of the aforementioned al-
gorithm can be found at

https://magma.maths.usyd.edu.au/magma/handbook/text/1507.

It takes as input the genus 2 hyperelliptic curve Cproj and i([−1 : −5760 :
24]), the generator of the torsion-free part of its Jacobian. We remark that
the procedure implemented in Magma combines the method of Chabauty-
Coleman with the Mordell-Weil Sieve at primes p ∈ {5, 11, 29} and, in a few
seconds on a personal laptop, it outputs the full set of rational points

Cproj(Q) = {[0 : 0 : 1], [−1 : 5760 : 24], [1 : 0 : 0], [−1 : −5760 : 24]}.

As we cannot find a point of the form [a : 3b2 : 1] for a, b positive integers,
we get our contradiction and the proof of our theorem is complete.

https://magma.maths.usyd.edu.au/magma/handbook/text/1507
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The reader might wonder why we did not apply Chabauty’s method to
the hyperelliptic curve defined by Y 2 = X5 + 8X2 + 6X. It turns out that,
although it has genus 2, this curve has a rank 2 Jacobian and does not satisfy
the hypothesis required by Theorem 2.3. We, therefore, had to work with local
methods and to prove Proposition 3.1 in order to apply Chabauty’s method to
a different hyperelliptic curve.

As a result of extensive computations performed on a computer, we are
confident in formulating the following conjecture.

Conjecture 3.1. The only rational solutions of the equation Y 4 = X5+
8X2 + 6X are (x, y) = (0, 0), (−1, 1) and (−1,−1).

4. THE PROOF OF THEOREM 1.2

The equation X7 + 18X4 + 30X3 + 18X2 + 12X + 8 = Y 6 defines a
curve of genus 15, therefore, by Faltings’ theorem, the latter has finitely many
rational points. The genus is a reflection of the complexity of the curve, hence
trying to determine all the rational points on the given curve effectively is an
extremely difficult task. A näive computer search for rational points returns
{(−1, 1), (−1,−1)} and we suspect these are all of them.

Let us consider the affine hyperelliptic curve

(7) C : Y 2 = X7 + 18X4 + 30X3 + 18X2 + 12X + 8

and its projective model

(8) Cproj : Y 2 = X7 ·Z+18X4 ·Z4+30X3 ·Z5+18X2 ·Z6+12X ·Z7+8 ·Z8.

The latter is a smooth projective curve in the weighted projective plane
P2
(1,4,1)(Q). It is a genus 3, whose geometry is less complicated than the one

of the original curve. We used Magma’s built-in RankBounds command and
computed that the Mordell-Weil rank of its Jacobian is 1. As 1 < 3, Theorem
2.3 tells us that there is an algorithm for determining the rational points on
Cproj(Q), and by letting p = 7, we obtain that

#Cproj(Q) ≤ 12 + 2 · 3− 2 = 16.

If this bound would have been sharp, we could have tried to find 16 ratio-
nal points on Cproj and conclude that this must be all of them. We cannot
finish the problem in this manner, since as we will see, #Cproj(Q) = 3. We,
therefore, have to run the Chabauty-Coleman algorithm, but unfortunately the
implementation available in Magma can only handle curves of genus 2.
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We use instead a recently developed algorithm of Balakhrishnan et. al.
[5], which successfully carries the Chabauty-Coleman algorithm for hyperellip-
tic curves of genus 3 whose Jacobian have Mordell-Weil rank 1. As we saw
above, our curve C falls in this category. In order to succeed, this algorithm
requires as input:

1. An hyperelliptic curve C of genus 3 over Q whose Jacobian J has rank 1.
The curve C should be given by a model y2 = f(x) where f ∈ Z[x] has
degree 7.

2. p ≥ 7, a prime of good reduction which does not divide the leading
coefficient of f .

3. A point P ∈ Cproj(Q) whose image [P −P∞] under the Abel-Jacobi map
ι : Cproj ↪→ JCproj with base point P∞ = [1 : 0 : 0] has infinite order.

4. A list L of known rational points on Cproj(Q).

5. A positive integer which represents the chosen p-adic precision.

When the algorithm terminates, it returns as output, among other things, a
list of all points in Cproj(Q) \ L, modulo hyperelliptic involution. This means,
the output is only going to show one of the points [X : Y : 1] or [X : −Y : 1]
if they both are on Cproj(Q) \ L. This algorithm is implemented in Sage [11]
and can be downloaded from

https://github.com/jbalakrishnan/WIN4.

Proof of Theorem 1.2. A rational point (x, y) on the affine curve C given
by (7) maps to the point [x : y : 1] ∈ Cproj(Q) on the projective model given by
the equation (8). We are therefore going to determine all the rational points
on Cproj. It is easy to see that P∞ = [1 : 0 : 0] and P1 = [−1 : 1 : 1] are in
Cproj(Q). Write ι : Cproj ↪→ JC for the Abel-Jacobi map

P 7→ [P − P∞].

Using Magma’s hyperelliptic curve package, we proved that

1. JC(Q) is a rank 1 free abelian group;

2. ι(P1) is a point of infinite order on JC(Q);

3. The primes of bad reduction for Cproj are 2, 11159 and 1863377.

Running the Sage implementation of the algorithm of Balakhrishnan et.
al. with input C, prime 7, point P1, an empty list of known points on Cproj

and p-adic precision 10, we obtain

https://github.com/jbalakrishnan/WIN4
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sage : load ( ” chabautyg3r1 . sage ” )
sage : R.<x> = PolynomialRing ( Rat iona l s ( ) )
sage : f = xˆ7 + 18∗xˆ4 + 30∗xˆ3 + 18∗xˆ2 + 12∗x + 8
sage : C = Hypere l l i p t i cCurve ( f )
sage : p = 7
sage : prec = 10
sage : P = C(−1 ,1)
sage : po ints , b , c , d = chabauty te s t (C, p ,P , [ ] , prec )
sage : po in t s
[(−1 : 1 : 1 ) , (1 : 0 : 0 ) ]

This confirms that the Chabauty-Coleman algorithm finished successfully
and that [−1 : 1 : 1], [1 : 0 : 0] are all the points on Cproj(Q) modulo the
hyperelliptic involution. Hence

Cproj(Q) = {P∞ = [1 : 0 : 0], [−1 : 1 : 1], [−1 : −1 : 1]}.

Corollary 4.1. When X runs through the set of positive integers, the
expression X7+18X4+30X3+18X2+12X+8 is never a 6-th power, confirming
the conjecture of Andrica and Bagdasar [1], [2].
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