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In this paper, the concept of clean ring is generalized to modules. We call a free
R-module, Rn, clean, whenever every element of Rn can be written as the sum
of a unimodular and an idempotent row. We show that when R is Noetherian,
the R-module Rn is clean if and only if R can be expressed as a finite direct
product of indecomposable rings Ri, say R =

⊕t
i=1 Ri, such that each Ri has at

most 2n − 1 maximal ideals. We also give a new characterization of clean rings.
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1. INTRODUCTION

Throughout this paper, all rings are assumed to be commutative with
identity, Nil(R), J(R) and Max(R) are nilradical, Jacobson radical and the
set of all maximal ideals of R, respectively. Nicholson in [6] studied lifting
idempotents in a noncommutative ring and he considered a class of rings in
which idempotents can be lifted by every left ideal. Then he defined a ring R
to be clean ring if every element is the sum of an idempotent and a unit, and he
showed that in a clean ring, idempotents can be lifted by every left ideal, and
the converse is true if idempotents are central. After Nicholson many authors
considered clean rings and gave several characterizations for this class of rings.
Local rings and zero-dimensional rings are clean. Also every direct product of
clean rings and homomorphic image of a clean ring is a clean ring. For more
information and details see [1, 5]. In Section 3 of this paper, we give a new
characterization of commutative clean rings.

In [3], the authors call a module clean when its endomorphism ring is
clean. If, however, we only want to consider free modules, it is possible to give
a different approach using unimodular rows. In fact, when we consider R(I)

as a free R-module, a unimodular row is a natural extension of unit element
of R. Thus in Section 2 of this note, we extend the concept of clean ring to
free modules of arbitrary rank by using unimodular rows. Then, under some
restrictions on the ring, we give necessary and sufficient conditions under which
a free module is clean.
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2. CLEAN FREE MODULES

In this section, for a positive integer n, we consider Rn = R⊕R⊕ ...⊕R,
n times, as an R-module, and we say that (a1, ..., an) ∈ Rn is a unimodular
row if there exist b1, b2, ..., bn ∈ R such that

∑n
i=1 aibi = 1R, or equivalently,

⟨a1, ..., an⟩ = R.

Definition 2.1. We say that (e1, ..., en) ∈ Rn is an idempotent row if its
components are idempotent elements of R (i.e., e2i = ei for i = 1, 2, ..., n).

Definition 2.2. Let R be a ring and n a positive integer. The R-module
Rn is called clean if every row in Rn is the sum of a unimodular row and an
idempotent row.

When we consider R as an R-module, the unimodular rows of R-module
R = R1 are precisely unit elements of R. Thus R is a clean R-module if and
only if R is a clean ring. We can extend the above definitions to free R-modules
with infinite basis, as follows: let F be the free R-module R(I) with an infinite
basis {ei}i∈I . Then an infinite row (ai)i∈I in R(I) is called a unimodular row
(respectively, an idempotent row), if ⟨{ai}i∈I⟩ = R (respectively, a2i = ai for
all i ∈ I). In this case, the R-module R(I) is called clean if every row in R(I)

is the sum of a unimodular and an idempotent.

Proposition 2.3. Let I be an infinite set. Then R(I) is always a clean
R-module.

Proof. Let α = (ai)i∈I be an arbitrary row in R(I). For j ∈ I, we define
α(j) to be a row in R(I) whose components are equal to the components of α
except in the jth position in which it has −1. Clearly α(j) is a unimodular row.
Now let j be an index in I such that aj = 0. Then α = (ai)i∈I = α(j) + ej ,
where ej has all components 0 except the jth component, which is 1. So every
row in R(I) is the sum of a unimodular and an idempotent, as desired.

Therefore, in the rest of this article, we focus on free modules of finite
rank.

Theorem 2.4. Let n be a positive integer and R a ring. Then R has
at most 2n − 1 maximal ideals if and only if every row of Rn is the sum of a
unimodular row and a row consists of 0’s and 1’s.

Furthermore, if R is indecomposable, Rn is clean if and only if R has at
most 2n − 1 maximal ideals.

Proof. (⇒) Let (r1, r2, ..., rn) ∈ Rn. Taking the set {0, 1}n as an index set,
we define I(i1,i2,...,in) to be the ideal of R generated by r1− i1, r2− i2, ..., rn− in
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for every (i1, i2, ..., in) ∈ {0, 1}n. Let (i1, i2, ..., in) ̸= (j1, j2, ..., jn) be in {0, 1}n
and m be a maximal ideal of R, such that I(i1,i2,...,in) + I(j1,j2,...,jn) ⊆ m. Thus
jk − ik = (ak − ik)− (ak − jk) ∈ m for k = 1, 2, ..., n. Now since (i1, i2, ..., in) ̸=
(j1, j2, ..., jn), there exists k ∈ {1, 2, ..., n}, such that jk−ik = 1 or jk−ik = −1,
a contradiction. Thus,

{I(i1,i2,...,in) : (i1, i2, ..., in) ∈ {0, 1}n}

is a family with 2n pairwise comaximal ideals of R. Since R has at most 2n−1
maximal ideals, there exists (i1, i2, ..., in) ∈ {0, 1}n such that I(i1,i2,...,in) =
R. Thus (a1, a2, ..., an) = (a1 − i1, a2 − i2, ..., an − in) + (i1, i2, ..., in), where
(a1 − i1, a2 − i2, ..., an − in) is a unimodular row and the row (i1, i2, ..., in)
consists of 0’s and 1’s.

(⇐) Assuming that R has at least 2n maximal ideals, we can choose a
subset A = {m(i1,i2,...,in) | (i1, i2, ..., in) ∈ {0, 1}n} of Max(R) with 2n distinct
elements which are indexed by {0, 1}n. For every j ∈ {1, 2, ..., n}, we define Aj

to be the intersection of all elements of A whose index has 0 in jth position and
A

′
j to be the intersection of all elements of A whose index has 1 in jth position.

Clearly, for all j ∈ {1, 2, ..., n}, Aj and A
′
j are comaximal ideals of R, so there

exist αj ∈ Aj and βj ∈ A′
j such that αj − βj = 1(or βj = αj − 1).

Now, we want to show that for every (i1, i2, ..., in) ∈ {0, 1}n, I(i1,i2,...,in) ̸=
R, where I(i1,i2,...,in) = ⟨α1 − i1, α2 − i2, ..., αn − in⟩.

Let (i1, i2, ..., in) be an arbitrary row in {0, 1}n. For every j ∈ {1, 2, ..., n},
if ij = 0, then αj − ij = αj ∈ m(i1,i2,...,in), and if ij = 1, then αj − ij = βj ∈
m(i1,i2,...,in). So we have I(i1,i2,...,in) ⊆ m(i1,i2,...,in). Therefore, (α1 − i1, α2 −
i2, ..., αn − in) ∈ Rn is not a unimodular row. Thus (α1, α2, ..., αn) ∈ Rn is not
the sum of a unimodular row and a row consists of 0′s and 1′s, a contradiction.

The last statement follows because the set of idempotent elements of an
indecomposable ring is {0, 1}.

Lemma 2.5. Let R =
⊕m

i=1Ri be a ring decomposition of R. Then Rn is
a clean R-module if and only if each Rn

i is a clean Ri-module.

Proof. Without loss of generality, we can assume that m = 2. First, we
can easily see that ((a1, b1), (a2, b2), ..., (an, bn)) ∈ (R1

⊕
R2)

n is a unimodular
row if and only if there exist (c1, d1), (c2, d2), ..., (cn, dn) ∈ R1

⊕
R2 such that∑n

i=1(ai, bi)(ci, di) = (1R1 , 1R2) if and only if there exist c1, c2, ..., cn ∈ R1 and
d1, d2, ..., dn ∈ R2 such that

∑n
i=1 aici = 1R1 and

∑n
i=1 bidi = 1R2 if and only

if both (a1, a2, ..., an) and (b1, b2, ..., bn) are unimodular rows in Rn
1 and Rn

2 ,
respectively. Also, it is easily seen that

((e1, f1), (e2, f2), ..., (en, fn)) ∈ (R1

⊕
R2)

n
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is an idempotent row if and only if both (e1, e2, ..., en) and (f1, f2, ..., fn) are
idempotent rows in Rn

1 and Rn
2 , respectively. The rest of the proof is easy to

check.

Theorem 2.6. Let R =
⊕m

i=1Ri be a ring decomposition of R such each
Ri is an indecomposable ring and n be a positive integer. Then Rn is clean
R-module if and only if each Ri has at most 2n − 1 maximal ideals.

Proof. By Theorem 2.4 and Lemma 2.5, Rn is a clean R-module if and
only if each Rn

i is a clean Ri-module if and only if each of Ri has at most 2n−1
maximal ideals.

We remark that if R is a clean ring, then Rn is a clean R-module for
each positive integer n. Now, let m and n be two positive integers such that
m < n. If Rm is a clean R-module, then Rn is a clean R-module as well. To
see this, Let (r1, r2, ..., rn) be an arbitrary row in Rn. Then (r1, r2, ..., rm) is a
row in Rm, and so there exists a unimodular row (a1, a2, ..., am) and an idem-
potent row (e1, e2, ..., em) in Rm such that (r1, r2, ..., rm) = (a1, a2, ..., am) +
(e1, e2, ..., em). Since (a1, a2, ..., am) is a unimodular row in Rm, we have that
(a1, a2, ..., am, rm+1, ..., rn) is also a unimodular row in Rn. Thus,

(r1, r2, ..., rn) = (a1, a2, ..., am, rm+1, ..., rn) + (e1, e2, ..., em, 0, ..., 0).

The converse of the above remark is not true, in general, as the next
example shows.

Example 2.7. Let m and n be positive integers such that m < n. Let
p1, p2, ..., pr be r prime numbers. The ring

R = Qp1,p2,...,pr = {a
b
∈ Q | p1 ∤ b, p2 ∤ b, ..., pr ∤ b}

is a semilocal indecomposable subring of Q with exactly r distinct maximal
ideals (note that Qp1,p2,...,pr is a domain). So by Theorem 2.4, for r = 2n − 1,
the R-module Rn is a clean R-module, while Rm is not.

Therefore, it is possible to define the rank of cleanness of a ring R as the
smallest positive integer m (if there exists any) so that Rm is a clean R-module.
Of course, by Theorem 2.4, for an indecomposable ring R, the rank of cleanness
of R is m if and only if 2m−1 ≤ |Max(R)| ≤ 2m − 1. We will not refer to this
definition again.

Lemma 2.8. Let R be a ring and let n be a positive integer. If Rn is a
clean R-module, then for every ideal I of R, (R/I)n is a clean R/I-module.
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Proof. It is clear that, if (a1, ..., an) ∈ Rn is a unimodular (resp., an
idempotent) row, then (a1 + I, ..., an + I) ∈ (R/I)n is a unimodular (resp., an
idempotent) row. Now if Rn is a clean R-module and (r1+ I, r2+ I, ..., rn+ I)
is an arbitrary row in (R/I)n, then (r1, r2, ..., rn) is the sum of a unimodular
and an idempotent row in Rn, and so (r1 + I, r2 + I, ..., rn + I) is the sum
of a unimodular and an idempotent row in (R/I)n. Thus (R/I)n is a clean
R/I-module.

Although, in general, the converse of Lemma 2.8 is clearly false, it is true
if I is contained in Nil(R). Before proving this, recall that for any ideal I of
R, we say that idempotents can be lifted modulo I (or idempotents in R/I lift
to the idempotents of R) if for each x ∈ R with x + I = x2 + I, there exists
some e2 = e ∈ R such that x+ I = e+ I.

Proposition 2.9. Let R be a ring and let n be a positive integer. Let I be
an ideal of R that is contained in J(R) and let (R/I)n be a clean R/I-module.
If idempotents in R/I lift to idempotents in R, then Rn is a clean R-module.

Proof. Let (a1 + I, a2 + I, ..., an + I) be a unimodular row in (R/I)n, so
there exist b1 + I, b2 + I, ..., bn + I ∈ R/I, such that

∑n
i=1(ai + I)(bi + I) =

1 + I. This gives 1 − (
∑n

i=1 aibi) ∈ I. Now since I ⊆ J(R),
∑n

i=1 aibi =
1−(1−(

∑n
i=1 aibi)) is a unit element of R. Thus (a1, a2, ..., an) is a unimodular

row in Rn. Now let (r1, r2, ..., rn) be an arbitrary row in Rn. Thus there
exist a unimodular row (a1 + I, a2 + I, ..., an + I) and an idempotent row
(e1 + I, e2 + I, ..., en + I) in (R/I)n such that (r1 + I, r2 + I, ..., rn + I) =
(a1+ I, a2+ I, ..., an+ I)+(e1+ I, e2+ I, ..., en+ I). Since idempotents in R/I
lift to idempotents in R, we may assume e2i = ei for i = 1, 2, ..., n. By above
statement, since (r1−e1+I, r2−e2+I, ..., rn−en+I) = (a1+I, a2+I, ..., an+I)
is a unimodular row in (R/I)n, hence (r1−e1, r2−e2, ..., rn−en) is a unimodular
row in Rn. Therefore, (r1, r2, ..., rn) = (r1−e1, r2−e2, ..., rn−en)+(e1, e2, ..., en)
which is a sum of a unimodular and an idempotent row. Therefore Rn is a
clean R-module.

Corollary 2.10. Let R be a ring and let n be a positive integer. If I is
an ideal of R that is contained in Nil(R) and (R/I)n is a clean R/I-module,
then Rn is a clean R-module.

Proof. Since I ⊆ Nil(R), idempotents can be lifted modulo I [2, Propo-
sition 27.1], and the result follows from Proposition 2.9.

By assuming that idempotents in R/I lift to idempotents in R, we may
replace Nil(R) by J(R) in Corollary 2.10.
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Clean rings are pm-rings; i.e. each prime ideal is contained in a unique
maximal ideal (see for example [1]). As an extension of this fact, we have the
following.

Lemma 2.11. Let R be a ring and let n be a positive integer. If Rn is
a clean R-module, then every prime ideal of R is contained in at most 2n − 1
distinct maximal ideals of R.

Proof. Let P be a prime ideal of R, since Rn is a clean R-module, (R/P )n

is a clean R/P -module, by Lemma 2.8. Now as a domain, R/P is an indecom-
posable ring, and therefore by Theorem 2.4, R/P has at most 2n − 1 distinct
maximal ideal. Thus P is contained in at most 2n − 1 distinct maximal ideals
of R.

Before proceeding, we need some notation and terminology. We let
R =

⊕t
i=1Ri be a ring decomposition and suppose that P is a prime ideal

of R =
⊕t

i=1Ri. It is clear that there exists j ∈ {1, 2, ..., t} and a prime ideal
Pj of Rj such that

P = R1
⊕

R2
⊕

...
⊕

Rj−1
⊕

Pj
⊕

Rj+1
⊕

...
⊕

Rt.

In this case, we say P has index j.
Let A be a collection of ideals of a ring R. We define

V (A) = {m ∈ Max(R) | ∃a ∈ A, a ⊆ m}.

In the next result, which may be considered as a generalization of [1, The-
orem 5], some characterizations of a Noetherian ring R satisfying the condition
that Rn is a clean R-module are given.

Theorem 2.12. Let R be a ring and let n be a positive integer. If R
can be expressed as a finite direct product of indecomposable rings Ri, say
R =

⊕t
i=1Ri (e.g., R is Noetherian), then the following are equivalent:

1. Each Ri has at most 2n − 1 maximal ideals.

2. Rn is a clean R-module.

3. There is a partition {P1,P2, ...,Pt} for the set of all minimal prime ideals
of R such that {V (P1), V (P2), ..., V (Pt)} is a partition for Max(R) and
| V (Pi) |≤ 2n − 1, for i = 1, 2, ..., t.

4. Every prime ideal of R is contained in at most 2n−1 maximal ideals and
the union of any 2n distinct maximal ideals contains an idempotent that
is not contained in their intersection.
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Proof. (1)⇔(2) It is clear by Theorem 2.6.

(1)⇒(3) Let {P1,P2, ...,Pt} be the partition for the set of all minimal
prime ideals of R such that for every i = 1, 2, ..., t, Pi contains all minimal prime
ideals of R that have the same index i. Since every maximal ideal contains at
least one minimal prime ideal and each maximal ideal with index i only contains
minimal prime ideals with index i, we have | V (Pi) |≤| Max(Ri) |≤ 2n − 1, for
i = 1, 2, ..., t, and {V (P1), V (P2), ..., V (Pt)} is a partition for Max(R).

(3)⇒(2) Let {P1,P2, ...,Pt} be a partition for the set of all minimal prime
ideals of R such that {V (P1), V (P2), ..., V (Pt)} is a partition for Max(R) and
| V (Pi) |≤ 2n − 1, for every i = 1, 2, ..., t. We define Ii =

⋂
P∈Pi

P , for each
i = 1, 2, ..., t. Clearly, for two distinct parts Pi and Pj , the ideals Ii and
Ij are comaximal and the intersection

⋂
i Ii is Nil(R). Thus, by the Chinese

Remainder Theorem, R/Nil(R) ∼=
∏t

i=1R/Ii. On the other hand, by the
definition of Ii, we have | Max(R/Ii) |≤ 2n − 1. Now Theorem 2.4 implies
that each (R/Ii)

n is a clean R/Ii-module. Therefore (R/Nil(R))n is a clean
R/Nil(R)-module and so by Corollary 2.10, Rn is a clean R-module.

(2) ⇒ (4) Since (1) and (2) are equivalent, every prime ideal of R is
contained in at most 2n − 1 distinct maximal ideals of R, by Lemma 2.11. Let
a family of 2n distinct maximal ideals be given. Let i ∈ {1, 2, ..., t} be the index
of one of the maximal ideals, and e the idempotent of R consisting of a 0 at
ith position and 1’s elsewhere. Then the index of a maximal ideal m of R is i
if and only if e ∈ m. Not all of the 2n maximal ideals can contain e because Ri

has at most 2n − 1 maximal ideals by Theorem 2.6 So (4) holds.

(4)⇒(1) If there exists some j such that | Max(Rj) |≥ 2n, then we
can choose 2n distinct maximal ideals m

′
1,m

′
2, ...,m

′
2n in Max(Rj). For k =

1, 2, 3, ..., 2n, we define

mk = R1 ⊕R2 ⊕ ...⊕Rj−1 ⊕m
′
k ⊕Rj+1 ⊕ ...⊕Rt.

Clearly {m1,m2, ...,m2n} is a subset of Max(R) with 2n distinct elements. But
since each Ri is indecomposable, so every idempotent element in R is a row
whose components are 0 or 1. Now if e is an idempotent row whose jth position
is 0, then e is in all mk, k = 1, 2, ..., 2n, and if e is an idempotent row whose
jth position is 1, then for k = 1, 2, ..., 2n, e is not in any mk, which contradicts
the assumption.

In the following, we shall consider free modules over polynomial or power
series rings and determine when such modules are clean.

Theorem 2.13. Let R be a ring, and n a positive integer.

(1) (R[x])n is never a clean R[x]-module.

(2) (R[[x]])n is a clean R[[x]]-module if and only if Rn is a clean R-module.
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Proof. (1) Letm be a maximal ideal ofR. We haveR[x]/m[x] ∼= (R/m)[x].
Now (R/m)[x] has infinitely many maximal ideals, and since (R/m)[x] is inde-
composable, by Theorem 2.4, (R[x]/m[x])n is never a clean R[x]/m[x]-module.
So by Lemma 2.8, (R[x])n is never a clean R[x]-module.

(2) Since R ∼= R[[x]]/⟨x⟩, if (R[[x]])n is a clean R[[x]]-module, then Rn is
a clean R-module, by Lemma 2.8.

Conversely, note that (r1 + xf1, r2 + xf2, ..., rn + xfn) ∈ (R[[x]])n, where
ri ∈ R and fi ∈ R[[x]], is a unimodular row in (R[[x]])n if and only if
(r1, r2, ..., rn) is a unimodular row in Rn. Assume that Rn is a clean R-module
and (a1 + xf1, a2 + xf2, ..., an + xfn) is an arbitrary row in (R[[x]])n. Since
Rn is a clean R-module, (a1, a2, ..., an) = (r1, r2, ..., rn) + (e1, e2, ..., en), where
(r1, r2, ..., rn) is a unimodular row and (e1, e2, ..., en) is an idempotent row in
Rn. Thus (a1+xf1, a2+xf2, ..., an+xfn) = (r1+xf1, r2+xf2, ..., rn+xfn)+
(e1, e2, ..., en), as desired. So (R[[x]])n is a clean R[[x]]-module.

3. A NEW CHARACTERIZATION OF CLEAN RINGS

A ring R is said to be clean if each element of R is the sum of an idem-
potent and a unit, and R is said to be Gelfand (or pm-ring) if each prime ideal
is contained in only one maximal. In [1], it was shown that clean rings are
Gelfand, but the converse is not true, in general. In this section, we show that
a ring R is clean if and only if every indecomposable homomorphic image of R
is local. The following result will be used in the sequel.

Lemma 3.1. Let I be a proper ideal of R. Then R/I is indecomposable if
and only if R/

√
I is indecomposable.

Proof. (⇒) Since (R/I)/Nil(R/I) = (R/I)/(
√
I/I) ∼= R/

√
I, there is no

loss of generality in assuming I = 0. Now suppose that R is an indecomposable
ring, we wish to show that R/Nil(R) is an indecomposable ring. If, on the
contrary, R/Nil(R) is not indecomposable, then there exists x ∈ R such that
x(x−1) = x2−1 ∈ Nil(R), x ̸∈ Nil(R), and x−1 ̸∈ Nil(R). By [2, Proposition
27.1], there exists an idempotent element e2 = e ∈ R such that x + Nil(R) =
e+Nil(R). Now, since R is indecomposable, e = 0 or e = 1, and so x ∈ Nil(R)
or x− 1 ∈ Nil(R), a contradiction.

(⇐) Let R/I be indecomposable, and let I = A ∩ B and A + B = R in
which A and B are some ideals of R. Thus

√
I =

√
A∩

√
B and

√
A+

√
B = R,

and so
√
A = R or

√
B = R. Therefore, we have A = R or B = R.

As an immediate consequence of Lemma 3.1, we see that if I is a primary
ideal, or a power of a prime ideal, then R/I is indecomposable.
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For a proper ideal I in a ring R we set

Ω(I) = {m ∈ Max(R) | I ⊆ m}.

Recall that the Zariski topology on Max(R) is the topology obtained by taking
the collection of all sets of the form Ω(I) for every ideal I of R as the closed
sets. Also, recall that a topological space is said to be totally disconnected if
each of its connected components contains only one point.

Theorem 3.2 ([4, Theorem I.1]). Let R be a ring. Then the following
conditions are equivalent.

1. R is a Gelfand ring and Max(R) is totally disconnected.

2. R is a clean ring.

Now we want to give a new characterization of clean rings. For this
purpose, we first need the following.

Proposition 3.3. Let {Pi}i∈Λ be a family of prime ideals of R. Then
R/(∩i∈ΛPi) is decomposable if and only if there is a partition Λ = Λ1∪Λ2 such
that ∩i∈Λ1Pi + ∩i∈Λ2Pi = R.

Proof. If e ∈ R represents a nontrivial idempotent in the quotient, then
e(1− e) ∈ ∩i∈ΛPi and we set

Λ1 = {i ∈ ∆ : e ∈ Pi} and Λ2 = {i ∈ ∆ : 1− e ∈ Pi}.

So we have ∩i∈Λ1Pi + ∩i∈Λ2Pi = R. The converse is obvious.

Theorem 3.4. Let R be a ring. Then the following are equivalent.

1. R is a clean ring.

2. Every indecomposable homomorphic image of R is local.

3. For every nonempty collection {Pi}i∈Λ of prime ideals of R, if there does
not exist a partition Λ = Λ1 ∪Λ2 such that ∩i∈Λ1Pi +∩i∈Λ2Pi = R, then
R/(∩i∈ΛPi) is a local ring.

Proof. (1) ⇒ (2) Let R/I be an indecomposable clean ring. Then R/I
must be local, by [1, Theorem 3 ].

(2) ⇒ (1) First, observe that if P is prime, then R/P is indecomposable
hence local. So R is a Gelfand ring (which is exactly a ring such that R/P
is local for every prime ideal P ). By Theorem 3.2, it is sufficient to show
that Max(R) is totally disconnected. Let {mα}α∈Λ be a subset of Max(R)
with |Λ| ≥ 2. By hypothesis, R/ ∩α∈Λ mα is decomposable because it is not
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local. Thus, there exist ideals A and B of R such that ∩α∈Λmα = A ∩ B and
A+B = R. Clearly, {Ω(A),Ω(B)} is a separation of {mα}α∈Λ and so {mα}α∈Λ
is disconnected. Thus Max(R) is totally disconnected.

(2) ⇒ (3) Let {Pi}i∈Λ be a nonempty collection of prime ideals of R
such that there does not exist a partition Λ = Λ1 ∪ Λ2 such that ∩i∈Λ1Pi +
∩i∈Λ2Pi = R. Then R/(∩i∈ΛPi) is indecomposable, by Proposition 3.3. There-
fore, R/(∩i∈ΛPi) is a local ring.

(3) ⇒ (2) Let I be an ideal of R such that R/I is indecomposable. Thus
R/

√
I is also indecomposable, by Lemma 3.1. Now let {Pi}i∈Λ be a collection

of prime ideals with
√
I = ∩i∈ΛPi. Thus R/(∩i∈ΛPi) is indecomposable, and

so, by Proposition 3.3, there does not exist a partition Λ = Λ1 ∪ Λ2 such that
∩i∈Λ1Pi + ∩i∈Λ2Pi = R. Therefore, R/

√
I = R/(∩i∈ΛPi) is local, and so R/I

is local.
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