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In this article, the unified difference and quasi qudratization method are devel-
oped and discussed to obtain an approximate numerical solution for the Troesch’s
problem, a nonlinear differential equation and corresponding boundary value
problems. The degree of accuracy in numerical solution by the proposed method
is good and comparable to other existing methods in literature for the range of
values of parameter in Troesch’s problem.
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1. INTRODUCTION

A second order differential equation arises in the studies models of physi-
cal sciences. The Troesch’s problem is defined by a Troesch’s parameter, second
order nonlinear differential equation and boundary conditions. This problem
arises in the investigation of confinement of a plasma column by a radiation
pressure [5], theory of gas porous electrodes [3] and defined as,

(1)
d2u(x)

dx2
= λ sinh(λu(x)), 0 < x < 1

and boundary conditions are

u(0) = 0 and u(1) = 1.

The analytical solution of Troesch’s problem (1) is developed and stud-
ied in [13]. In practice, it is often required to consider well-suited schemes
for the numerical solution of different types of nonlinear problems. The diffi-
culty in computing the solution to Troesch’s problem is studied in [13, 1] and
showed sensitivity towards numerical methods. So Troesch’s problem became
a test case for methods of solving unstable two-point boundary value prob-
lems because of difficulties and sensitivity in the computation of its numerical
solution. In order to overcome such sensitivity and difficulties, there are sev-
eral numerical techniques for the solution of Troesch’s problem reported in the
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literature such as: finite difference method [10], transformation method [8],
shooting method [4, 11], homotopy perturbation method [12, 7], non-standard
finite difference method [14], asymptotic approximation method [6] and loga-
rithmic finite difference method [9] and references therein. Recently, efficient
and accurate work on numerical solution method for large values of Troesch’s
parameter were reported in [7, 9].

In this article, we have assumed the existence and uniqueness of the solu-
tion of the problem (1). Inspired by the logarithmic finite difference method, in
this article we consider the unified difference method for the numerical solution
of the considered boundary value problems (1). We consider moderate value
of Troesch’s parameter in numerical computation and discuss the findings in
the approximate solution.

We have presented our work in this article as follows. In Section 2, we
derive a unified difference method. We have discussed derivation and conver-
gence of the proposed method under appropriate condition in Section 3 and
Section 5, respectively. In Section 5, we introduce quasi quadratization, an
iterative method for the solution of system of equations. The application of
the proposed method on the model problems and numerical results were pro-
duced to show the efficiency in Section 6. Discussion and conclusion on the
performance of the proposed method are presented in Section 7.

2. THE DIFFERENCE METHOD

Let us consider following two points boundary value problem,

(2)
d2u(x)

dx2
= f(x, u(x), u′(x)), 0 < x < 1

subject to boundary conditions

u(0) = 0 and u(1) = 1.

In fact, problem (1), is a particular case of problem (2). To solve problem
(2) numerically by the present procedure, first let us consider N a positive
integer, define h = 1

N+1 a uniform step length and grid points xi = i · h, i =
0, 1, · · · , N + 1 in the domain [0, 1] of the considered problem. Our aim is
to determine the numerical solution of the problem at these grid points. In
our discussion and derivation, ui and fi denote, respectively, the numerical
approximation of solution of problem u(x) and forcing function f(x, u(x), u′(x))
at grid point x = xi for different values of i = 0, 1, · · · , N + 1. We may write
problem (2) at these grid points x = xi, i = 0, 1, · · · , N + 1. That is

(3) u′′i = fi, a ≤ xi ≤ b
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and boundary conditions are

u0 = 0 and uN+1 = 1.

Define the following approximations,

(4) u′ =
ui+1 − ui−1

2h

and

(5) f i = f(xi, ui, u
′
i)

Thus, by the application of approximations (4-5) and following the ideas
in [15], we propose our unified finite difference method for the numerical solu-
tion of the considered problem (3),

(6) ui+1 − (1 + exp(λh))ui + exp(λh)ui−1 = h2 exp(
λh

2
)f i

Hence, we have obtained (6), a system of equations in the variables ui,
i = 1, 2, · · · , N . The solution of a system of equations (6) is the approxi-
mate numerical solution of the considered problem (3). To solve the system of
equations (6), we employ an appropriate iterative method.

3. DEVELOPMENT OF THE FINITE DIFFERENCE METHOD

In this section, we will discuss the development of the proposed unified
finite difference method (6). There are diverse methods to form a discrete
problem from a continuous problem i.e. difference equations from differential
equations. To begin, consider the problem defined by

(7)
d2y

dx2
− β

dy

dx
= 0, 0 ≤ x ≤ 1

and boundary conditions are

(8) y(0) = 0 and y(1) = 1

where β is a constant. The exact solution of the problem (7-8) is

(9) y(x) =
exp(βx)− 1

exp(β)− 1
.

If we assume approximate solution of the type (9) for the problem (7-8) then
we can derive approximate difference equation [15] for the numerical solution
of the problem (7-8) in the following form,

(10) yi+1 − (1 + exp(βh))yi + exp(βh)yi−1 = 0
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Let us rewrite (2) in the following second order differential equation,

u′′(x)− λu′(x) = f(x, u, u′).

We considerthe following linear combination of u(x) the solution of the problem
and forcing function f(x, u(x), u′(x)) at grid node xi,

(11) ui+1 − (1 + exp(λh))ui + exp(λh)ui−1 − h2b0fi = 0 and b0 ̸= 0,

where b0 is a constant to be determined under appropriate conditions. Let us
expand each term of (11) in a Taylor series about grid node xi up to fourth
terms and simplify. We obtain
(12)

h(1−exp(λh))u′i+
h2

2
(1+exp(λh))u′′i +

h3

6
(1−exp(λh))u′′′i +O(h4)−h2b0fi = 0.

Substituting 1+hλ+ h2λ2

2 + .. for exp(λh) and fi for u
′′
i −λu′i in (12), we obtain

(13) h2(1 +
hλ

2
− b0)fi +O(h4) = 0.

If we choose b0 = 1 + hλ
2 , we find the remainder term of O(h4) in above

expression. If we approximate 1 + hλ
2 by exp(λh2 ) then we have

(14) ui+1 − (1 + exp(λh))ui + exp(λh)ui−1 = h2 exp(
λh

2
)fi

and O(h4), the remainder term in the above equation (14), is

Ri =
h4

24
(λ2f − 2λ

∂f

∂x
+ 6

∂2f

∂x2
− 4u(4)(x))i .

But from (4) and (5), we have

(15) f i = fi +O(h2).

Hence from (14) and (15), we obtain our unified finite difference method

(16) ui+1 − (1 + exp(λh))ui + exp(λh)ui−1 = h2 exp(
λh

2
)f i .

4. QUASI QUADRATIZATION

It is an iterative method which will produce approximate zero of contin-
uous function f(x). Let x = x0 be the approximate zero of f(x). Let quasi
quadratize f(x), i.e.

(17) f(x0) ≡ f(x) + (x0 − x)f ′(x) +
(x0 − x)2

2
f ′′(x) = 0.
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Solving the quadratic equation (16), we have

(18) (x0 − x) =
−f ′(x)±

√
(f ′(x))2 − 2f(x)f ′′(x)

f ′′(x)
.

In order to get the next approximation to the correct root, we write (19) as

(19) xk+1 − xk =
−f ′(xk)±

√
(f ′(xk))2 − 2f(xk)f ′′(xk)

f ′′(xk)
.

So, we have two approximate zeros of the continuous function f(x).

5. CONVERGENCE ANALYSIS

In this section, we discuss the convergence of the proposed unified finite
difference method (6). Consider the following test problem,

(20) u′′(x)− λu′(x) = f(x, u, u′), a < x < b

subject to the boundary conditions u0 = 0 and uN+1 = 1. We assume that
(i) f(x, u, u′) is continuous
(ii) ∂f

∂u and ∂f
∂u′ exist and are continuous

(iii) ∂f
∂u > 0 and ∃w > 0 such that

∣∣∣ ∂f∂u′

∣∣∣ ≤ w.

Then solution of problem (20) exists and it is unique. Let U(x) and
u(x) be, respectively, the exact and the approximate solutions of the above
considered problem. Applying method (6) to solving problem (20), we obtain
the following matrix equation,

(21) JU = RF+T

where matrix T is the truncation error term in the method and

(22) Ju = Rf .

Subtract (19) from (18), we have

(23) J(U− u) = RF−Rf+T

where U = [U1, · · · , UN ] and u = [u1, · · · , uN ]. Let define the forcing function
at node xi,

Fi = f(xi, U(xi), U
′(xi)) and F i = f(xi, U(xi), U

′
(xi)) .

We use (14) and linearize the forcing function f(x, u, u′). Hence, we have,

(24) Fi − fi = (Ui − ui)(
∂f

∂u
)i + (U ′

i − u′i)(
∂f

∂u′
)i .

Further, let us define

(25) ϵi = Ui − ui, i = 1, · · · , N .
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From (6) and i = 1, we obtain

ϵi+1 − (1 + exp(λh)ϵi = h2 exp(
λh

2
)(

1

2h
ϵi+1(

∂f

∂u′
)i + ϵi(

∂f

∂u
)i .

Similarly, we can write other equations for i = 2, 3, · · · , N . We use (4), (24),
(25) in (23) and simplify. We write the simplified expression in the following
matrix equation,

(26) (J−D)ϵ = T

J =


−(1+exp(λh)) 1 0

exp(λh) −(1+exp(λh)) 1
. . .

0 exp(λh) −(1+exp(λh))


N×N

,

D = h2 exp(
λh

2
)


G1

1
2hH1 0

− 1
2hH2 G2

1
2hH2

. . .

0 − 1
2hHN GN


N×N

where Gi = (∂f∂u)i, Hi = ( ∂f
∂u′ )i, ϵ = [ϵ1, · · · , ϵN ], and T = (Ti)N×1 with

Ti = Ri +
h4

6
(u(3)

∂f

∂u′
)i, i = 1, · · · , N.

We have determined J−1 = (jl,m) explicitly as

jl,m =


(1−exp(lhλ))(exp(−Nhλ)−exp((1−m)hλ))

(exp(hλ)−1)(exp(−Nhλ)−exp(hλ)) , l ≤ m

(1−exp(mhλ))(exp(−(N−l)hλ)−exp(hλ))
(exp(hλ)−1)(exp(−Nhλ)−exp(hλ)) , l ≥ m.

Let us assume that

F 0 = max
x∈[a,b]

∣∣∣∣∂f∂u
∣∣∣∣ , F 1 = max

x∈[a,b]

∣∣∣∣ ∂f∂u′
∣∣∣∣ and M = max

x∈[a,b]

∣∣∣∣(2λ2f − λ
∂f

∂x
+

∂2f

∂x2
)

∣∣∣∣ ,
and ||J−1D|| < 1. Then, by [2],

(27) ||(J−D)−1|| ≤ ||J−1||
1− ||J−1D||

.

Hence, from (26) we have,

(28) ∥ϵ∥ ≤ 1

1− ∥J−1∥∥D∥
∥J−1∥∥T∥.
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It is easy to calculate the value of the terms in (28). Thus, the error in
proposed unified finite difference method is bounded and ∥ϵ∥ → 0 as h → 0.
Moreover, we can prove that the rate of convergence of proposed unified finite
difference method is at least O(h2).

6. NUMERICAL RESULTS

To validate the theoretical development, we tested the proposed method
on Troesch’s problem (1). With different parameters N and λ, we tabulated
MAE, the maximum absolute error. We have used the following formula in the
computation of MAE,

MAE = max
1≤i≤N

|U(xi)− ui|

where U(xi) and ui are, respectively, the exact and the computed value of the
the solution of the considered problem.

For the solution of the system of equations (6), we have used Newton-
Raphson and quasi quadratization method. All computations were performed
on a Windows 2007 Home Basic operating system in the GNU FORTRAN
environment version 99 compiler (2.95 of gcc) on Intel Core i3-2330M, 2.20
Ghz PC. The solutions are computed on N nodes and iteration is continued
until either the maximum difference between two successive iterates is less than
10−10 or the number of iterations reached 104.

Problem 1. The non linear model problem in [5, 1] with different bound-
ary conditions is given by

(29)
d2u(x)

dx2
= λ sinh(λu(x)) + f(x), 0 < x < 1

and boundary conditions are

u(0) = 0 and u(1) = 1,

where f(x) is calculated so that the analytical solution of the problem is

u(x) =
1

sinh(λ)
sinh(λx).

The MAE computed by method (6) for different values of N and λ are
presented in the Tables below. We also presented RMAE, the rate of change
maximum absolute error, with change in the parameter λ in the table.
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Table 1 – Approximate estimation of the Order (Problem 1)

UFD

NR QQ

λ h MAE Order MAE Order

.001 .1248582743(-5) - .1247588222(-5) -

.0005 .3121135637(-6) 2.0001 .3058244051(-6) 2.0284

16 .00025 .7367088032(-7) 2.0829 .5345156375(-7) 2.5164

.000125 .1269858213(-7) 2.5364 .8194248614(-10) 9.3494

.0000625 .1551980037(-8) 3.0325 .1219520361(-12) 9.3922

Table 2 – The maximum absolute error (Problem 1)

MAE

h λ NR QQ

0.5 .6564844154(-15) .5540273101(-16)

1.0 .9705723638(-14) .5545694112(-16)

.0005 5.0 .2669049882(-7) .2509654880(-7)

10.0 .1158846439(-6) .1158322463(-6)

Table 3 – Comparison in the maximum absolute error (Problem 1)

MAE

UFD LOG

h λ NR QQ

.0005 1.0 .9705723638(-14) .5540273101(-16) .27(-8)

0.5 .6564844154(-15) .5545694112(-16) .2(-9)

Table 4 – Observation in change in the maximum absolute error and λ
(Problem 1)

UFD

NR QQ

h λ MAE RMAE MAE RMAE

4.0 .7338053829(-7) - .4284847531(-8) -

8.0 .1559114923(-6) 2.1247 .1132621429(-6) 26.4332

.0005 16.0 .3121135637(-6) 2.0019 .3058244051(-6) 2.7001

32.0 .6242848153(-6) 2.0002 .6235041106(-6) 2.0388

64.0 .1248419326(-5) 1.9998 .1248419326(-5) 2.0023
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Table 5 – Observation in change in the maximum absolute error, h and λ
(Problem 1)

UFD

NR QQ

h λ MAE RMAE MAE RMAE

.0005 16.0 .3121135637(-6) - .3058244051(-6) -

.00025 32.0 .1560386305(-6) 2.0002 .1519345608(-6) 2.0129

.000125 64.0 .7800120280(-7) 2.0005 .7371304936(-7) 2.0612

.0000625 128.0 .3898103297(-7) 2.0010 .3415570805(-7) 2.1581

.00003125 256.0 .1947015110(-7) 2.0021 .1463625491(-7) 2.3336

Table 6 – Comparison of the maximum absolute error with Numerov Method
(Problem 1)

MAE

λ N UFD Numerov Method

500 .1154819262(-3) .1358319871(-28)

1000 .2868705037(-4) .4070522271(-27)

2000 .7189970767(-5) .8652980620(-9)

368.730026244 4000 .1798068770(-5) .2656571687(-8)

8000 .4494932455(-6) Diverge

16000 .1119155431(-6) Diverge

32000 .2570056184(-7) Diverge

The computational efficiency of the proposed unified finite difference
method (6) was tested on Troesch’s problem (1). Numerical results are in
good agreement for the theoretical development of the proposed method. In
numerical experiment for a particular value of λ in the test problem our method
converged, but the fourth order Numerov method failed. Thus, it is evident
from the tabulated results that method (6) is converging for the moderate value
of λ.

7. CONCLUSION

A Troesch’s problem (1), a second order nonlinear boundary value prob-
lem, was considered for the numerical solution. A unified finite difference
method was developed for the numerical solution of the considered problem.
The numerical experiment was carried out with the proposed unified finite
difference method on the test problem. In making an evaluation of the per-
formance of method, there is a balance between the level of accuracy achieved
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and computational efficiency of the method. Thus, the numerical results we ob-
tained by the application of the proposed method (6) approves the theoretical
development of the proposed method and balance.
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