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Let S be a ring of polynomials in finitely many variables over a field. In this
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These new bounds are much sharper than the existing bounds for the classes of
ideals we considered.

AMS 2020 Subject Classification: Primary: 13C15, 05E40; Secondary: 13F20,
13F55.

Key words: depth, Stanley depth, monomial ideal, edge ideal, tree.

INTRODUCTION

Let K be a field and S = K[x1, . . . , xm] be the polynomial ring in m
variables over K. Let N be a finitely generated Zm-graded S-module. Let
uK[Z] be the K-subspace generated by all elements of the form uy where u is a
homogeneous element in N , y is a monomial in K[Z] and Z ⊆ {x1, x2, . . . , xm}.
If uK[Z] is a free K[Z]-module then it is called a Stanley space of dimension
|Z|. A decomposition D of the K-vector space N as a finite direct sum of
Stanley spaces is called a Stanley decomposition of N . Let

D : N =

r⊕
j=1

ujK[Zj ].

The Stanley depth of D is sdepth(D) = min{|Zj |}. The number

sdepth(N) := max{sdepth(D) | D is a Stanley decomposition ofN},

is called the Stanley depth of N . If m := (x1, x2, . . . , xm) then the depth of
N is defined to be the common length of all maximal N -sequences in m. In
[19], Stanley conjectured that sdepth(N) ≥ depth(N). This conjecture was
later disproved by Duval et al. [7] in 2016. Stanley depth has been studied
extensively in the last two decades, see, for example, [12, 13, 15, 16, 18]. Let
I be a monomial ideal of S. It is known, in general, that the depth of the
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powers of I, depth(S/It), stabilize for large t. Indeed, this follows from the
general theorems that apply to any graded ideal of S. In particular, by [3]
min{depth(S/It)} ≤ n − l(I), where l(I) is the analytic spread of I, and
the minimum is taken over all powers t. In [2], Brodmann showed that for
sufficiently large t, depth(S/It) is a constant, and this constant is bounded
above by n − l(I). However, relatively little is known about depth(S/It) for
specific values of t other than t = 1. For some classes of powers of monomial
ideals for which values or bounds are known, we refer the readers to [10, 8, 14].

LetG be a finite, undirected and simple graph onm vertices v1, v2, . . . , vm.
The edge ideal I(G) of the graph G is the ideal of S generated by all monomials
of the form xixj such that {vi, vj} is an edge of G. Let m ≥ 2. A path Pm

of length m − 1 is a graph on m vertices such that the vertex set of Pm can
be ordered in a way that whenever two vertices are consecutive in the list,
there is an edge between them. A tree is a graph in which any two vertices are
connected by exactly one path. The diameter of a connected graph G is the
maximum distance between any two vertices, where the distance between two
vertices is given by the minimum length of a path connecting the vertices. For
t ≥ 1, Morey gave a lower bound for depth of S/It(T ) when T is a tree in [14],
in terms of the diameter of T . Later on, in [16] Pournaki et. al. proved that
this lower bound also serves as a lower bound for Stanley depth of S/It(T ).
This lower bound being dependent on the diameter of a tree is weak in general.

The main focus of this paper is to give a better lower bound for some
classes of trees. These bounds are independent of the diameters of the trees we
considered and are much better than the bounds given in [14, 16]. Note that
the lower bound for the depth of an edge ideal of a tree also provide a lower
bound on the power for which the depth stabilizes. Our work encompasses
the computation of lower bounds for depth and Stanley depth of the powers
of the edge ideals associated with some classes of caterpillar and lobster trees.
The lower bound for the caterpillar trees depends on the power of the edge
ideal, the number of leaves and the order of the path, see Theorem 2.7 and
Corollary 2.8, while for the lobster trees it depends upon the power of the edge
ideal and the number of near leaves, see Theorem 3.5 and Corollary 3.6. These
parameters collectively make much sharper bounds than the bounds given in
[14, 16]. We gratefully acknowledge the use of the computer algebra system
CoCoA ([6]).

1. DEFINITIONS AND NOTATIONS

We start this section with a review of some notations and definitions, for
more details, see [9, 20]. Note that by abuse of notation, xi will at times be
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used to denote both a vertex of a graph G and the corresponding variable of
the polynomial ring S. Let G be a graph with V (G) := {x1, x2, . . . , xm} and
edge set E(G). For a vertex xi of G the set N(xi) := {xj |xixj ∈ E(G)} is
called the neighborhood of the vertex xi. A vertex xi is called a leaf (or pendant
vertex ) if N(xi) has cardinality one and xi is called isolated if N(xi) = ∅. The
parity of an integer is its attribute of being even or odd. A graph with one
vertex and no edges is called a trivial graph. An internal vertex is a vertex in a
tree which is not a leaf. A graph with one internal vertex and k leaves is called
a k-star, denoted by Sk. Note that S0 is a trivial graph. A caterpillar tree is
a tree in which the removal of all pendant vertices results in a path. A lobster
tree is a tree with the property that the removal of pendant vertices leaves a
caterpillar.

Definition 1.1. Let n ≥ 1 and k ≥ 2 be integers and Pn be a path on n
vertices {u1, u2, . . . , un} that is E(Pn) = {uiui+1 : 1 ≤ i ≤ n − 1} (for n = 1,
E(Pn) = ∅). We define a graph on nk vertices by attaching k − 1 pendant
vertices at each ui. We denote this graph by Pn,k.

u1 u2 u3 u4

Figure 1 – P4,7

For example of Pn,k, see Fig. 1.

Let n ≥ 2, k ≥ 2 and l ≥ 1 be integers with l ∈ [k] := {1, 2, . . . , k}. Let
Pn,k,l be a graph which is obtained by removing k− l pendant vertices attached
to the vertex un of the graph Pn,k. Note that Pn,k,k = Pn,k. For examples of
Pn,k,l, see Fig. 2. It is easy to see that Pn,k,l belongs to the family of caterpillar
graphs.

Remark 1.2. In Definition 1.1, P1,k represents a (k − 1)-star.

Figure 2 – From left to right, P4,7,5 and P4,7,1, respectively.

Definition 1.3. Let r ≥ 2 and p ≥ 1 be integers. Let Sr be a star on
r+1 vertices say {v1, v2, . . . , vr, vr+1} with vr+1 as a central vertex. We define
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a graph by adding p pendant vertices to each vertex vi with 1 ≤ i ≤ r. We
denote this graph by Sr,p.

v1

v2

v3

v4
v5

v6

v7

v8

v9

Figure 3 – S8,4

For example of Sr,p, see Fig. 3.

Let q ≥ 0 with q ≤ p be an integer, then Sr,p,q is a graph which is
obtained by removing p − q leaves from exactly one vi. Clearly, Sr,p,p = Sr,p.
For examples of Sr,p,q, see Fig. 4.

Figure 4 – From left to right, S8,4,2 and S8,4,0, respectively

In order to make the paper self contained, we recall some known results
that we use in this paper.

Lemma 1.4 (Depth Lemma, [4, Proposition 1.2.9]). If

0 −→ A1 −→ A2 −→ A3 −→ 0,

is a short exact sequence of Zm-graded S-modules, then

1. depthA2 ≥ min{depthA1, depthA3},

2. depthA1 ≥ min{depthA2, depthA3 + 1},
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3. depthA3 ≥ min{depthA2, depthA1 − 1}.

A. Rauf proved the following lemma for Stanley depth.

Lemma 1.5 ([18, Lemma 2.2]). If

0 −→ A1 −→ A2 −→ A3 −→ 0,

is a short exact sequence of Zm-graded S-modules, then

sdepthA2 ≥ min{sdepthA1, sdepthA3}.
Lemma 1.6 ([11, Lemma 3.6]). Let I be a monomial ideal of S. If S′ =

S[y] is the polynomial ring over S in the variable y, then depth(S′/IS′) =
depth(S/I) + 1 and sdepth(S′/IS′) = sdepth(S/I) + 1.

Lemma 1.7 ([15, Lemma 1.1]). Let I ⊂ K[x1, . . . , xr] = S1 and J ⊂
K[xr+1, . . . , xm] = S2 be monomial ideals, where 1 < r < m. Then

depthS(S/(IS + JS)) = depthS1
(S1/I) + depthS2

(S2/J).

Lemma 1.8 ([18, Theorem 3.1]). Let I ⊂ K[x1, . . . , xr] = S1 and J ⊂
K[xr+1, . . . , xm] = S2 be monomial ideals, where 1 < r < m. Then

sdepthS(S/(IS + JS)) ≥ sdepthS1
(S1/I) + sdepthS2

(S2/J).

The following two lemmas play a key role in the proofs of our main theorems.

Lemma 1.9 ([14, Lemma 2.10]). Let G be a graph and I = I(G). Let xi
be a leaf of G and xj be the unique neighbor of xi. Then (It : xixj) = It−1, for
any t ≥ 2.

Lemma 1.10 ([14, Lemma 2.5]). Let I be a square-free monomial ideal in
a polynomial ring S and let M be a monomial in S. If y is a variable such that
y does not divide M and J is the extension in R of the minor of I formed by
setting y = 0, then ((It : M), y) = ((J t : M), y), for any t ≥ 1.

Proposition 1.11 ([1, Theorems 2.6 and 2.9]). If I = I(Sm−1), which is
a square-free monomials ideal of S, then depth(S/I) = sdepth(S/I) = 1 and
depth(S/It), sdepth(S/It) ≥ 1.

Lemma 1.12 ([14, Lemma 2.6]). Let G be a bipartite graph and I = I(G).
Then for all t ≥ 1,

depth(S/It) ≥ 1.

Theorem 1.13 ([5, Theorem 1.4]). For a finitely generated Zm-graded
S-module N , if sdepth(N) = 0 then depth(N) = 0.

A forest is a graph with each connected component a tree. The following
theorems give lower bounds for depth and Stanley depth of powers of an edge
ideal corresponding to a forest.
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Theorem 1.14 ([14, Theorem 3.4]). Let G be a forest having s number of
connected components G1, G2 , . . . , Gs. Let I = I(G) and dj be the diameter
of Gj and suppose d = max

j
{dj}. Then for t ≥ 1

depth(S/It) ≥ max
{⌈d− t+ 2

3

⌉
+ s− 1, s

}
.

Theorem 1.15 ([16, Theorem 2.7]). Let G be a forest having s number of
connected components G1, G2 , . . . , Gs. Let I = I(G) and dj be the diameter
of Gj and suppose d = max

j
{dj}. Then for t ≥ 1

sdepth(S/It) ≥ max
{⌈d− t+ 2

3

⌉
+ s− 1, s

}
.

Let v be a vertex of G, v is called a near leaf of G if v is not a leaf and
N(v) contains at most one vertex that is not a leaf. Let a denote the number
of near leaves of G. The bounds for depth and Stanley depth are strengthened
by the following results in the same papers.

Corollary 1.16 ([14, Corollary 3.7]). Let G be a forest having s number
of connected components G1, G2 , . . . , Gs. Let I = I(G) and dj be the diameter
of Gj and suppose d = max

j
{dj}, and let a be the number of near leaves of a

component of diameter d. Then for t ≥ 1

depth(S/It) ≥ max
{⌈d− t+ a

3

⌉
+ s− 1, s

}
.

Corollary 1.17 ([16, Corollary 3.2]). Let G be a forest having s number
of connected components G1, G2 , . . . , Gs. Let I = I(G) and dj be the diameter
of Gj and suppose d = max

j
{dj}, and let a be the number of near leaves of a

component of diameter d. Then for t ≥ 1

sdepth(S/It) ≥ max
{⌈d− t+ a

3

⌉
+ s− 1, s

}
.

If T is a tree, then the following corollary is an immediate consequence
of the Corollary 1.16 and 1.17.

Corollary 1.18. Let T be a tree and d be the diameter of T and let a
be the number of near leaves of T . If I = I(T ), then for t ≥ 1

depth(S/It), sdepth(S/It) ≥ max
{
⌈d− t+ a

3

⌉
, 1
}
.

The bound in Corollary 1.18 depends on the diameter of T and the num-
ber of near leaves in T . If I is the edge ideal of Pn,k or Sr,p, we give lower
bounds for depth and Stanley depth of S/It as Corollary 2.8 and Corollary
3.6. We observe that our bounds are much sharper than the bounds given in
Corollary 1.18.
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2. POWERS OF EDGE IDEAL OF A SUBCLASS OF
CATERPILLAR TREE

Let n, k ≥ 2 and l ∈ [k]. We define Ai := {y1i, y2i, . . . , y(k−1)i}, for
1 ≤ i ≤ n − 1, and An := {y1n, y2n, . . . , y(l−1)n}, where An = ∅ if l = 1. Let
Āi := {ui} ∪ Ai, Ān := {un} ∪ An and A := Ā1 ∪ Ā2 ∪ · · · ∪ Ān. Let S be the
polynomial ring over a field K in variables of set A that is S := K[A]. Let
I = I(Pn,k), in this section, we give lower bounds for depth and Stanley depth
of S/It for t ≥ 1. We denote by G(I), the minimal set of monomial generators
of the monomial ideal I. If l ≥ 2, then

u1 u2 u3 u4

y11 y21 y31

y41y51y61

y12 y22 y32

y42y52y62

y13 y23 y33

y43y53y63

y14 y24

y34y44

Figure 5 – Graph P4,7,5 with labelled vertices.

G(I(Pn,k,l)) =

n−1⋃
i=1

{
uiui+1, uiy1i, uiy2i, . . . , uiy(k−1)i

}
∪
{
uny1n, uny2n, . . . , uny(l−1)n

}
.

If l = 1, then

G(I(Pn,k,1)) =

n−1⋃
i=1

{
uiui+1, uiy1i, uiy2i, . . . , uiy(k−1)i

}
.

Note that Pn,k,k = Pn,k. Also for 1 ≤ j ≤ n− 1, we have

I(Pj,k) := I(Pn,k,l) ∩K[Ā1 ∪ · · · ∪ Āj−1 ∪ Āj ].

Lemma 2.1. If I = I(Pn,k,l) then for t ≥ 1, (It, un) = (It(Pn−1,k), un).

Proof. The inclusion (It(Pn−1,k), un) ⊆ (It, un) is clear. Conversely, if
u ∈ It is a monomial which is not divisible by un, then, by the definition of
G(I), it follows that u ∈ It(Pn−1,k).

Remark 2.2. Let t ≥ 1. From Proposition 1.11 it follows,

depth(S/I(P1,k)) = sdepth(S/I(P1,k)) = 1

and depth(S/It(P1,k)), sdepth(S/I
t(P1,k)) ≥ 1.
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Lemma 2.3. Let k ≥ 2, l ∈ [k] and I = I(P2,k,l). We have that

depth(S/I) , sdepth(S/I) ≥ l.

Proof. Clearly, u1 and u2 have k − 1 and l − 1 pendant vertices, respec-
tively. Consider the short exact sequence:

0 −→ S/(I : u2)
·u2−−→ S/I −→ S/(I, u2) −→ 0.

Now (I : u2) = (x : x ∈ N(u2)) and S/(I : u2) ∼= K[A1 ∪ {u2}], thus
depth(S/(I : u2)) = k. S/(I, u2) ∼= (K[Ā1]/I(P1,k))[A2]. Thus by Lemma
1.6 and Proposition 1.11 depth(S/(I, u2)) = 1 + l − 1 = l. By Depth Lemma,
depth(S/I) ≥ min{depth(S/(I : u2)),depth(S/(I, u2))} ≥ l. Proof for Stanley
depth is similar using Lemma 1.5.

Proposition 2.4. Let n, k ≥ 2, l ∈ [k] and I = I(Pn,k,l). We have that

depth(S/I), sdepth(S/I) ≥


(
n−2
2

)
k + l , if n is even;(

n−1
2

)
k + 1 , if l ≥ 2 and n is odd;(

n−1
2

)
k , if l = 1 and n is odd.

Proof. For n = 2, the conclusion follows from Lemma 2.3. For n = 3, we
consider the following short exact sequence

0 −→ S/(I : u3)
·u3−−→ S/I −→ S/(I, u3) −→ 0.

Now

S/(I : u3) ∼= S/((y : y ∈ N(u3)) + I(P1,k)) ∼=
(
K[Ā1]/I(P1,k)

)
[A2 ∪ {u3}].

From Lemma 1.6 and Proposition 1.11 it follows that

depthS/(I : u3) = k + depth(K[Ā1]/I(P1,k)) = k + 1.

Now, since S/(I, u3) ∼= S/(I(P2,k), u3) ∼=
(
K[Ā1∪Ā2]/(I(P2,k)

)
[A3], by Lemma

1.6 and Lemma 2.3 it follows that

depth(S/(I, u3)) = l− 1 + depth(K[Ā1 ∪ Ā2]/(I(P2,k)) ≥ l− 1 + k = k+ l− 1.

So by Depth Lemma

depth(S/I) ≥
{

k + 1 , if l ≥ 2;
k , if l = 1.

Similarly, from Lemma 1.5 it follows that

sdepth(S/I) ≥
{

k + 1 , if l ≥ 2;
k , if l = 1.
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For n ≥ 4, we consider the following short exact sequence

0 −→ S/(I : un)
·un−−→ S/I −→ S/(I, un) −→ 0.

Notice that

S/(I : un) = S/((y : y ∈ N(un)) + I(Pn−2,k))
∼=

(
K[A\(Ān−1 ∪ Ān)]/I(Pn−2,k)

)
[An−1 ∪ un].

and
S/(I, un) ∼=

(
K[A\Ān]/I(Pn−1,k)

)
[An].

Case 1: n is even.
For k ≥ 2, since Pn−2,k = Pn−2,k,k and Pn−1,k = Pn−1,k,k, using induction

on n and Lemma 1.6, it follows that:

depth(S/(I : un)) = depth
(
K[A\(Ān−1 ∪ Ān)]/I(Pn−2,k)

)
+ (k − 1) + 1

≥
((n− 2− 2

2

)
k + k

)
+ k =

(n
2

)
k,

and

depth(S/(I, un)) = depth
(
K[A\Ān]/I(Pn−1,k)

)
+ (l − 1) ≥((n− 2

2

)
k + 1

)
+ (l − 1) =

(n− 2

2

)
k + l.

Thus by Depth Lemma,

depth(S/I) ≥
(n− 2

2

)
k + l.

Case 2: n is odd.
Again by induction on n and Lemma 1.6,

depth(S/(I : un)) = depth
(
K[A\(Ān−1 ∪ Ān)]/I(Pn−2,k)

)
+ (k − 1) + 1

≥
((n− 3

2

)
k + 1

)
+ k =

(n− 1

2

)
k + 1,

and

depth(S/(I, un)) = depth
(
K[A\Ān]/I(Pn−1,k)

)
+ (l − 1) ≥((n− 1− 2

2

)
k + k

)
+ (l − 1) =

(n− 1

2

)
k + (l − 1).

Thus by Depth Lemma,

depth(S/I) ≥
{ (

n−1
2

)
k + 1 , if l ≥ 2;(

n−1
2

)
k , if l = 1.

Proof for the Stanley depth is similar by using Lemma 1.5 instead of Depth
Lemma.
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Corollary 2.5. If n ≥ 2, k ≥ 2 and I = I(Pn,k) then

depth(S/I), sdepth(S/I) ≥
{ (

n
2

)
k , if n is even;(

n−1
2

)
k + 1 , if n is odd.

Example 2.6. By using CoCoA (for sdepth we use SdepthLib.coc [17])
it has been noticed that the equality may hold in some cases. For instance,
depth(S/I(P4,4)) = sdepth(S/I(P4,4)) = 8 =

(
4
2

)
4, and depth(S/I(P5,3)) =

sdepth(S/I(P5,3)) = 7 =
(
5−1
2

)
3 + 1.

For convenience, we label the vertices of An = {y1n, y2n, . . . , y(l−1)n} by
s1, s2, . . . , sl−1. Set Si := K[A]/(s1, s2, . . . , si) and Ii := I ∩ Si.

Theorem 2.7. Let n, k ≥ 2, l ∈ [k], t ≥ 1, and I = I(Pn,k,l). We have
that

depth(S/It), sdepth(S/It) ≥



max
{
1,
(
n−t−1

2

)
k + l − 1

}
, if n and t have

opposite parity;

max
{
1,
(
n−t
2

)
k
}
, if n and t have

the same parity
and 2 ≤ l ≤ k;

max
{
1,
(
n−t
2

)
k − 1

}
, if n and t have

the same parity
and l = 1.

Proof. Since Pn,k,l is a bipartite graph, from Lemma 1.12 it follows that
depth(S/It) ≥ 1 for all t ≥ 1. We use induction on n and t. For n ≥ 2 and
t = 1, the result follows from Proposition 2.4. For n = 2 and t ≥ 1, the result
follows from Lemma 1.12. Let n = 3. For t ≥ 3, the result again follows
from Lemma 1.12. If t = 2 then we need to prove the desired inequality. Let
I = I(P3,k,l). We will prove that

depth(S/I2) ≥ max
{
1,
(3− 2− 1

2

)
k + l − 1

}
= max{1, l − 1}.

If l = 1, then max{1, l − 1} = 1 and from Lemma 1.12 we have that
depth(S/I2) ≥ 1. Assume that l ≥ 2 and consider the following short exact
sequence

0 −→ S/(I2 : u3)
·u3−−→ S/I2 −→ S/(I2, u3) −→ 0.

By Lemma 2.1, S/(I2, u3) ∼= S/(I2(P2,k), u3) ∼= (K[A\(Ā3)]/I
2(P2,k))[A3].

Therefore,
depth(S/(I2, u3)) ≥ 1 + (l − 1) = l.
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We consider the following family of short exact sequences:

0 −→ S0/(I
2
0 : u3s1)

·s1−−→ S0/(I
2
0 : u3) −→ S0/((I

2
0 : u3), s1) −→ 0,

0 −→ S1/(I
2
1 : u3s2)

·s2−−→ S1/(I
2
1 : u3) −→ S1/((I

2
1 : u3), s2) −→ 0,

...

0 −→ Sl−2/(I
2
l−2 : u3sl−1)

·sl−1−−−→
Sl−2/(I

2
l−2 : u3) −→ Sl−2/((I

2
l−2 : u3), sl−1) −→ 0.

By Lemma 1.9, depth(Si/(I
2
i : u3si+1)) = depth(Si/Ii) and by Proposition 2.4

depth(Si/(I
2
i : u3si+1)) ≥ k + 1.

Since Sl−2/((I
2
l−2 : u3), sl−1) ∼= Sl−1/(I

2
l−1 : u3), consider the following short

exact sequence

0 → Sl−1/(I
2
l−1 : u3u2)

·u2−−→ Sl−1/(I
2
l−1 : u3) → Sl−1/((I

2
l−1 : u3), u2) → 0.

By Lemma 1.9, depth(Sl−1/(I
2
l−1 : u3u2)) = depth(Sl−1/Il−1), here l = 1 and

by Proposition 2.4

depth(Sl−1/(I
2
l−1 : u3u2)) ≥ k.

Clearly, Sl−1/((I
2
l−1 : u3), u2)

∼=
(
K[A\(Ā2∪ Ā3)]/I

2(P1,k))
)
[A2∪{u3}], there-

fore by Lemma 1.6 and Proposition 1.11, we have

depth(Sl−1/((I
2
l−1 : u3), u2)) = depth

(
K[A\(Ā2 ∪ Ā3)]/I

2(P1,k)
)
+ (k − 1) + 1

≥ k + 1.

Depth Lemma implies

depth(S/I2) ≥ l.

Now let n ≥ 4, t ≥ 2 and I = I(Pn,k,l). We consider two cases:

Case 1: n and t have the same parity.

(a). Let l = 1. Consider the following short exact sequence

0 −→ S/(It : un)
·un−−→ S/It −→ S/(It, un) −→ 0.

By Lemma 2.1, S/(It, un) = S/(un, I
t(Pn−1,k)). For k ≥ 2, since Pn−1,k =

Pn−1,k,k, n− 1 and t have the opposite parity, using induction on n, it follows
that:

depth(S/(It, un)) ≥
(n− 1− t− 1

2

)
k + (k − 1) =

(n− t

2

)
k − 1.

We consider another short exact sequence as follows

0 −→ S/(It : unun−1)
·un−1−−−−→ S/(It : un) −→ S/((It : un), un−1) −→ 0.
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Since un−1 is the unique neighbor of un, from Lemma 1.9 it follows that
(It : unun−1) = It−1. Now n and t − 1 have the opposite parity, thus, by
induction on t

depth(S/(It : unun−1)) = depth(S/It−1)

≥
(n− (t− 1)− 1

2

)
k + 1− 1

=
(n− t

2

)
k,

and by Lemma 1.10 we have

S/((It : un), un−1) ∼=
(
K[A\(Ān−1 ∪ Ān)]/I

t(Pn−2,k)
)
[An−1 ∪ {un}].

By induction on n and Lemma 1.6

depth(S/((It : un), un−1) ≥
((n− t− 2

2

)
k
)
+ k ≥

(n− t

2

)
k.

Thus, by Depth Lemma we have,

depth(S/It) ≥
(n− t

2

)
k − 1.

(b). Let l ≥ 2. Consider the following short exact sequence

0 −→ S/(It : un)
·un−−→ S/It −→ S/(It, un) −→ 0.

By Lemma 2.1, S/(It, un) ∼=
(
K[A\Ān]/(I

t(Pn−1,k))
)
[An]. Therefore, by Lemma

1.6 we have

depth(S/(It, un)) = depth(K[A\Ān]/(I
t(Pn−1,k)) + |An|

Here n− 1 and t have the opposite parity, so by induction on n,

depth(S/(It, un)) ≥
((n− t− 2

2

)
k + k − 1

)
+ (l − 1) ≥

(n− t

2

)
k + l − 2.

Now, we find lower bound for depth of module S/(It : un).

Let 0 ≤ i ≤ l− 2. By Lemma 1.10, Si/((I
t
i : un), si+1) ∼= Si+1/(I

t
i+1 : un)

where S0 = S and I0 = I. We consider the following family of short exact
sequences:

0 −→ S0/(I
t
0 : uns1)

·s1−−→ S0/(I
t
0 : un) −→ S0/((I

t
0 : un), s1) −→ 0,

0 −→ S1/(I
t
1 : uns2)

·s2−−→ S1/(I
t
1 : un) −→ S1/((I

t
1 : un), s2) −→ 0,

...

0 −→ Sl−2/(I
t
l−2 : unsl−1)

·sl−1−−−→
Sl−2/(I

t
l−2 : un) −→ Sl−2/((I

t
l−2 : un), sl−1) −→ 0.



13 Depth and Stanley depth and caterpillar and lobster trees 211

By Lemma 1.9, depth(Si/(I
t
i : unsi+1)) = depth(Si/I

t−1
i ). Here n and t − 1

have the opposite parity so, by using induction on t,

depth(Si/(I
t
i : unsi+1)) ≥

(n− (t− 1)− 1

2

)
k + (l − 1− i) ≥

(n− t

2

)
k.

Again by Lemma 1.10, Sl−2/((I
t
l−2 : un), sl−1) ∼= Sl−1/(I

t
l−1 : un). Now con-

sider the following short exact sequence

0 −→ Sl−1/(I
t
l−1 : unun−1)

·un−1−−−−→
Sl−1/(I

t
l−1 : un) −→ Sl−1/((I

t
l−1 : un), un−1) −→ 0,

by Lemma 1.9, depth(Sl−1/(I
t
l−1 : unun−1)) = depth(Sl−1/I

t−1
l−1 ). By using

induction on t,

depth(Sl−1/(I
t
l−1 : unun−1)) ≥

(n− (t− 1)− 1

2

)
k+

(
l−(l−1)

)
−1 =

(n− t

2

)
k.

Clearly, Sl−1/((I
t
l−1 : un), un−1) ∼= S′/Itl−1S

′, where S′ = K[A\(An ∪ {un−1})].
Thus un and all variables in An−1 are regular on S′/Itl−1S

′. Since

S′/Itl−1S
′ ∼=

(
K[A\(Ān−1 ∪ Ān)]/I

t(Pn−2,k))
)
[An−1 ∪ {un}],

therefore, by Lemma 1.6, we get depth(S′/Itl−1S
′) = depth

(
K[A\(Ān−1 ∪

Ān)]/I
t(Pn−2,k)

)
+ (k − 1) + 1. Here n − 2 and t have the same parity, so by

induction on n

depth(S′/Itl−1S
′) ≥

(n− 2− t

2

)
k + (k − 1) + 1 =

(n− t

2

)
k.

Depth Lemma implies

depth(S/It) ≥
(n− t

2

)
k.

Case 2: n and t have the opposite parity.
(a). Let l = 1. For this, consider the following short exact sequence:

0 −→ S/(It : un)
·un−−→ S/It −→ S/(It, un) −→ 0.

By Lemma 2.1, S/(It, un) = S/(un, I
t(Pn−1,k)). Here n − 1 and t have

the same parity, so by induction on n,

depth(S/(It, un)) ≥
(n− t− 1

2

)
k.

For the depth of module S/(It : un), we consider another short exact sequence
as follows:

0 −→ S/(It : unun−1)
·un−1−−−−→ S/(It : un) −→ S/((It : un), un−1) −→ 0,



212 T. Zahid, Z. Sajid, and M. Ishaq 14

since un−1 is the unique neighbor of un thus by Lemma 1.9 we have (It :
unun−1) = It−1. Now n and t− 1 have the same parity, thus, by induction on
t

depth(S/(It : unun−1)) = depth(S/It−1)

≥
(n− (t− 1)

2

)
k − 1

=
(n− t− 1

2

)
k + k − 1

>
(n− t− 1

2

)
k,

and by Lemma 1.10 we have

S/((It : un), un−1) ∼=
(
K[A\(Ān−1 ∪ Ān)]/I

t(Pn−2,k)
)
[An−1 ∪ un],

by induction on n and Lemma 1.6

depth(S/((It : un), un−1)) ≥
((n− t− 3

2

)
k + k − 1

)
+ k

=
(n− t− 1

2

)
k − 1 + k

>
(n− t− 1

2

)
k.

Thus by Depth Lemma we have,

depthS/It ≥
(n− t− 1

2

)
k.

(b). Let l ≥ 2. Consider the short exact sequence

0 −→ S/(It : un)
·un−−→ S/It −→ S/(It, un) −→ 0.

By Lemma 2.1, S/(It, un) ∼=
(
K[A\Ān]/(I

t(Pn−1,k))
)
[An].

depth(S/(It, un) = depth
(
K[A\Ān]/(I

t(Pn−1,k))
)
+ |An|.

Here n− 1 and t have the same parity, so by induction on n,

depth(S/(It, un)) ≥
(n− t− 1

2

)
k + l − 1.

Consider again the following family of short exact sequences:

0 −→ S0/(I
t
0 : uns1)

·s1−−→ S0/(I
t
0 : un) −→ S0/((I

t
0 : un), s1) −→ 0,

0 −→ S1/(I
t
1 : uns2)

·s2−−→ S1/(I
t
1 : un) −→ S1/((I

t
1 : un), s2) −→ 0,

...

0 −→ Sl−2/(I
t
l−2 : unsl−1)

·sl−1−−−→
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Sl−2/(I
t
l−2 : un) −→ Sl−2/((I

t
l−2 : un), sl−1) −→ 0.

By Lemma 1.9, depth(Si/(I
t
i : unsi+1)) = depth(Si/I

t−1
i ). Here n and t − 1

have the same parity so, by using induction on t,

depth(Si/(I
t
i : unsi+1)) ≥

(n− (t− 1)

2

)
k

=
(n− t+ 1

2

)
k

>
(n− t− 1

2

)
k + l − 1.

Since Sl−2/((I
t
l−2 : un), sl−1) ∼= Sl−1/(I

t
l−1 : un), consider the following short

exact sequence

0 −→ Sl−1/(I
t
l−1 : unun−1)

·un−1−−−−→
Sl−1/(I

t
l−1 : un) −→ Sl−1/((I

t
l−1 : un), un−1) −→ 0.

By Lemma 1.9, depth(Sl−1/(I
t
l−1 : unun−1)) = depth(Sl−1/I

t−1
l−1 ), here l = 1

and n and t− 1 have the same parity, thus by induction on t,

depth(Sl−1/(I
t
l−1 : unun−1)) ≥

(n− (t− 1)

2

)
k − 1 ≥

(n− t− 1

2

)
k + l − 1.

Clearly Sl−1/((I
t
l−1 : un), un−1) ∼= S′/Itl−1S

′, where S′ = K[A\(An ∪ {un−1})].
Thus un and all variables in An−1 are regular on S′/Itl−1S

′. Since

S′/Itl−1S
′ ∼=

(
K[A\(Ān−1 ∪ Ān)]/I

t(Pn−2,k)
)
[An−1 ∪ {un}],

therefore depth(S′/Itl−1S
′) = depth

(
K[A\(Ān−1∪Ān)]/I

t(Pn−2,k)
)
+(k−1)+

1. Since n−2 and t have the opposite parity, so by induction on n and Lemma
1.6, we get

depth(S′/Itl−1S
′) ≥

(n− 2− t− 1

2

)
k + (k − 1) + k ≥

(n− t− 1

2

)
k + l − 1.

Depth Lemma implies

depth(S/It) ≥
(n− t− 1

2

)
k + l − 1.

This completes the proof for depth. Note that from Lemma 1.12 and Theorem
1.13 we have that sdepth(S/It) ≥ 1, for all t ≥ 1. Proof for the Stanley depth
is similar by using Lemma 1.5 instead of Depth Lemma.
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Corollary 2.8. If n ≥ 2, t ≥ 1 and I = I(Pn,k) then

depth(S/It), sdepth(S/It) ≥



max{1,
(
n−t+1

2

)
k − 1} , if n and t have

opposite parity;

max{1,
(
n−t
2

)
k} , if n and t have

same parity.

A comparison of the actual values of depth with lower bound in Corollary 2.8
is shown in the following example.

Example 2.9. By using CoCoA we have, depth(S/I2(P4,4)) = 5 and
depth(S/I2(P5,3)) = 6, while by our Corollary 2.8, depth(S/I2(P4,4)) ≥ 4
and depth(S/I2(P5,3)) ≥ 5.

Also, this new bound is much sharper than the one given in Corollary 1.18, as
shown in the following example.

Example 2.10. Let I = I(Pn,k) with n = 50 and k = 10. Clearly Pn,k has
two near leaves and its diameter is 51. Let t = 15. By Corollary 1.18

depth(S/I15) , sdepth(S/I15) ≥
⌈51− 15 + 2

3

⌉
= 13.

Whereas our Corollary 2.8 shows that

depth(S/I15) , sdepth(S/I15) ≥
(50− 15 + 1

2

)
10− 1 = 179.

Comparison shows a noteworthy difference between both the lower bounds.

3. POWERS OF EDGE IDEAL OF A SUBCLASS OF LOBSTER
TREE

Let r ≥ 2 and p, t ≥ 1 be some integers. In this section, we give an upper
bound for depth and Stanley depth of S/It(Sr,p). Our bounds depend only on
r and t. We significantly improve the bound for the depth and Stanley depth
of S/It(Sr,p) given in Corollary 1.18. It is easy to see that the diameter of Sr,p

is fixed for any r and p. The bound given in Corollary 1.18 depends on t and
diameter of Sr,p so this bound becomes weak for bigger values of t. Where as
our bound given in Corollary 3.6 being independent of the diameter of Sr,p is
better. Before proving the results of this section, we introduce some notations.
Let p ≥ 1 and q ≥ 0 be integers such that q ≤ p. Let 1 ≤ i ≤ r − 1, Bi :=
{x1i, x2i, . . . , xpi}, Br := {x1r, x2r, . . . , xqr} (Br = ∅, if q = 0), B̄i := Bi ∪ {vi}
and B̄r := Br∪{vr}. Let B := {vr+1}∪B̄1∪B̄2∪· · ·∪B̄r and define S := K[B].
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Figure 6 – Graph S8,4,2 with labelled vertices.

If q ≥ 1, then

G(I(Sr,p,q)) = {vr+1vr, vrx1r, vrx2r, . . . , vrxqr}∪
r−1⋃
i=1

{vr+1vi, vix1i, vix2i, . . . , vixpi}.

If q = 0, then

G(I(Sr,p,q)) = {vr+1vr} ∪
r−1⋃
i=1

{vr+1vi, vix1i, vix2i, . . . , vixpi}.

Note that for 1 ≤ j ≤ r − 1, we have that

I(Sj,k) := I(Sr,p,q) ∩K[{vr+1} ∪ B̄1 ∪ · · · ∪ B̄j−1 ∪ B̄j ].

Before proving the main result of this section we prove the result when t = 1
in the following lemma.

Lemma 3.1. Let r ≥ 2 and I = I(Sr,p,q). We have that

depth(S/I) , sdepth(S/I) ≥
{

r − 1, if q = 0;
r, otherwise.

.

Proof. Consider the short exact sequence

0 −→ S/(I : vr+1)
·vr+1−−−−→ S/I −→ S/(I, vr+1) −→ 0,

we have S/(I : vr+1) ∼= K[B1 ∪B2 ∪ · · · ∪Br ∪ {vr+1}], therefore

depth(S/(I : vr+1)) = (r − 1)p+ q + 1 ≥ r.
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By definition of I, (I, vr+1) = (I(H), vr+1), where H is a forest with r con-
nected components, say H1, H2, . . . ,Hr−1, Hr. It can easily be seen that among
these r connected components, r − 1 components are p-star graphs while one
component is a q-star. Without loss of generality, we may assume that for
1 ≤ i ≤ r − 1, Hi

∼= Sp and Hr
∼= Sq. If q = 0 then Hr

∼= S0 is a trivial graph
on one vertex, say v. From Lemma 1.7 and Proposition 1.11 it follows that

depth(S/(I, vr+1)) = depth(K[B\{vr+1}]/(I(H)))

= depth(K[V (H1)]/I(H1)) + · · ·+ depth(K[V (Hr−1)]/I(Hr−1))+

depth(K[v]/(v)) = 1 + 1 + . . .+ 1︸ ︷︷ ︸
(r−1)− times

+0 = r − 1.

If q ̸= 0 then Hr
∼= Sq. From Lemma 1.7 and Proposition 1.11 it follows that

depth(S/(I, vr+1)) = depth(K[B\{vr+1}]/(I(H))) =

depth(K[V (H1)]/I(H1)) + · · ·+ depth(K[V (Hr−1)]/I(Hr−1))+

depth(K[V (Hr)]/I(Hr)) = 1 + 1 + . . .+ 1︸ ︷︷ ︸
r− times

= r.

Hence, by applying Depth Lemma the required result follows. The result for
Stanley depth can be proved in the same lines by using Lemma 1.5 instead of
Depth Lemma and Lemma 1.8 instead of Lemma 1.7.

Corollary 3.2. Let r ≥ 2 and I = I(Sr,p). We have that

depth(S/I) , sdepth(S/I) ≥ r.

Example 3.3. We use CoCoA and show that the equality may hold in
Corollary 3.2. For instance, we have depth(S/I(S4,2)) = sdepth(S/I(S4,2)) = 4
and depth(S/I(S5,2))= sdepth(S/I(S5,2)) = 5.

Lemma 3.4. If I = I(Sr,p,q) then for t ≥ 1, (It, vr) = (It(Sr−1,p), vr).

Proof. The inclusion (It(Sr−1,p), vr) ⊆ (It, vr) is clear. Conversely, if
w ∈ It is a monomial which is not divisible by vr, then, by definition of G(I),
it follows that w ∈ It(Sr−1,p).

Now moving towards the main result of this section.

Theorem 3.5. Let r ≥ 2, t ≥ 1, p ≥ 1 and 0 ≤ q ≤ p. If I = I(Sr,p,q)
then

depth(S/It) , sdepth(S/It) ≥
{

max{1, r − t}, if q = 0;
max{1, r − t+ 1}, otherwise.
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Proof. We use induction on r and t. If r = 2 and t ≥ 1, the result follows
from Lemma 1.12. If t = 1 and r ≥ 2, the result follows from Lemma 3.1.
Assume r ≥ 3 and t ≥ 2. Consider the short exact sequence

(3.1) 0 −→ S/(It : vr)
·vr−−→ S/It −→ S/(It, vr) −→ 0

by Depth Lemma

(3.2) depth(S/It) ≥ min{depth(S/(It : vr)), depth(S/(It, vr))}.

Case 1: q = 0. From Lemma 3.4 it follows that (It, vr) = (It(Sr−1,p), vr).
Since Sr−1,p = Sr−1,p,p and p ≥ 1, using induction on r, it follows that

depth(S/(It, vr)) = depth(K[B\{vr}]/It(Sr−1,p)) ≥ (r − 1)− t+ 1 = r − t.

We consider the short exact sequence

(3.3) 0 −→ S/(It : vrvr+1)
·vr+1−−−−→ S/(It : vr) −→ S/((It : vr), vr+1) −→ 0,

since by Lemma 1.9, (It : vrvr+1) = It−1 so by induction on t

depth(S/(It : vrvr+1)) = depth(S/It−1) ≥ r − (t− 1) = r − t+ 1.

Let R′ = K[B\{vr+1}] and I ′ = IR′. By Lemma 1.10, S/((It : vr), vr+1) ∼=
R′/(It : vr) ∼= R′/(I ′)t. Clearly, vr is a regular variable on R′/(I ′)t and I ′ cor-
responds to the edge ideal of a forest consisting of r−1 connected components
and each component is a p-star. Therefore, by Lemma 1.6 and Theorem 1.14

depth(S/((It : vr), vr+1)) = depth(R′/(I ′)t)

≥ max
{⌈2− t+ 2

3

⌉
+ (r − 1)− 1, r − 1

}
+ 1

= (r − 1) + 1

= r

> r − t.

By applying Depth Lemma on sequence (3.3) we get depth(S/(It : vr)) ≥ r− t.
From Eq. (3.2) the result follows.

Case 2: q ≥ 1. Let us label the vertices of Br ̸= ∅ with {y1, y2, . . . , yq}.
By Lemma 3.4, (It, vr) = (It(Sr−1,p), vr), therefore

S/(It, vr) ∼= (K[B\B̄r]/I
t(Sr−1,p))[Br].

Thus by Lemma 1.6 and induction on r

depth(S/(It, vr)) = depth(S/It(Sr−1,p)) + |Br|
≥ ((r − 1)− t+ 1) + q = q + r − t,
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Let Ri = S/(y1, . . . , yi) and Ii = IRi, where R0 = S and I0 = I. We consider
a family of short exact sequences:

0 −→ R0/(I
t
0 : vry1)

·y1−−→ R0/(I
t : vr) −→ R0/((I

t : vr), y1) −→ 0

0 −→ R1/(I
t
1 : vry2)

·y2−−→ R1/(I
t
1 : vr) −→ R1/((I

t
1 : vr), y2) −→ 0

0 −→ R2/(I
t
2 : vry3)

·y3−−→ R2/(I
t
2 : vr) −→ R2/((I

t
2 : vr), y3) −→ 0

...

0 −→ Rq−1/(I
t
q−1 : vryq)

·yq−−→
Rq−1/(I

t
q−1 : vr) −→ Rq−1/((I

t
q−1 : vr), yq) −→ 0.

For 0 ≤ i ≤ q− 1, by Lemma 1.9 we have Ri/(I
t
i : vryi+1) ∼= Ri/I

t−1
i . Thus by

induction on t

(3.4) depth(Ri/(I
t
i : vryi+1)) = depth(Ri/I

t−1
i ) ≥ r − (t− 1) + 1 = r − t+ 2.

By Lemma 1.10, Rq−1/((I
t
q−1 : vr), yq) ∼= Rq/(I

t
q : vr), now we have the short

exact sequence

0 −→ Rq/(I
t
q : vrvr+1)

·vr+1−−−−→ Rq/(I
t
q : vr) −→ Rq/((I

t
q : vr), vr+1) −→ 0,

by Lemma 1.9 we have depth(Rq/(I
t
q : vrvr+1)) = depth(Rq/I

t−1
q ). Thus it is

easy to see that Rq/Iq ∼= K[B\Br]/I(Sr,p,0). Thus by induction on t and case
(1), depth(Rq/I

t−1
q ) ≥ r − (t − 1) = r − t + 1. Clearly Rq/((I

t
q : vr), vr+1) ∼=

R′′/Lt, where R′′ = [B\(Br ∪ {vr+1})] and L = IR′′ is the edge ideal of a
forest consisting of r − 1 connected components and each component is a p-
star. Clearly vr is a regular variable on R′′/Lt. Therefore by Lemma 1.6 and
Theorem 1.14

depth(Rq/((I
t
q : vr), vr+1)) = depth(R′′/Lt)

≥ max
{⌈2− t+ 2

3

⌉
+ (r − 1)− 1, r − 1

}
+ 1

= (r − 1) + 1

= r

≥ r − t+ 1.

Thus, by Depth Lemma depth(S/(It : vr)) ≥ r− t+1, and hence by Eq. (3.2)
depth(S/It) ≥ r − t + 1. On the same lines by using Lemma 1.5 instead of
Depth Lemma one can prove the result for Stanley depth.

Corollary 3.6. Let t ≥ 1, p ≥ 1 and I = I(Sr,p). We have that

depth(S/It) , sdepth(S/It) ≥ max{1, r − t+ 1}.
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A comparison of the actual values of depth with lower bound in Corollary 3.6
is shown in the following example.

Example 3.7. By using CoCoA we have, depth(S/I2(S4,2)) = 4 and
depth(S/I2(S5,2)) = 5, while by our Corollary 3.6, depth(S/I2(S4,2)) ≥ 3 and
depth(S/I2(S5,2)) ≥ 4.

Also this new bound is much sharper than the one given in Corollary 1.18, as
shown in the following example. Note that Sr,p has r near leaves.

Example 3.8. Let I = I(Sr,p) with r = 55 and t = 10. Clearly d = 4,
thus by Corollary 1.18 we have

depth(S/I10) , sdepth(S/I10) ≥
⌈4− 10 + 55

3

⌉
= 17.

While by our Corollary 3.6,

depth(S/I10) , sdepth(S/I10) ≥ 55− 10 + 1 = 46.
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