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In this note, we give some lower and upper bounds for the gaps between consecu-
tive elements of an integer sequence whose elements are expressible in the form
P (m) + P (n), where P is a degree d polynomial with integer coefficients, and
m,n are nonnegative integers.
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1. INTRODUCTION

Throughout, let P ∈ Z[x] be a polynomial of degree d with leading coef-
ficient a ∈ N. Consider the set of nonnegative integers

(1) S = {P (j) ≥ 0 : j ∈ {0, 1, 2, . . . }},

and the sumset of S with itself

(2) SP = S + S = {s1 < s2 < s3 < . . . },

so that each sj ∈ SP is expressible in the form P (m)+P (n) with some m,n ∈
N ∪ {0}. In this note, we show that

Theorem 1.1. For each ε > 0 there are infinitely many j ∈ N such that

(3) sj+1 − sj >
1

a

(
195

898
− ε

)
log sj

if d = 2 and

(4) sj+1 − sj > (4− ε)
dΓ(2/d)a2/d

Γ(1/d)2
s
1−2/d
j

if d ≥ 3. On the other hand, there is a positive constant γ = γ(P ) such that

(5) sj+1 − sj < γs
(1−1/d)2

j

for each j ∈ N.
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The most known case of this problem is that with P (x) = x2, when
{sj}∞j=1 is the sequence of integers expressible by the sum of two perfect squares.
Those are the integers whose prime decomposition contains primes of the form
4k + 3 in even powers only. For P (x) = x2 the lower bound of the form
sj+1 − sj ≫ log sj is due to Richards [11]. Then, the constant implicit in
≫ has been improved by Dietmann and Elsholtz [5], and by Kalmynin and
Konyagin [9] (both preprints were included in a subsequent paper [6]). The

upper bound sj+1 − sj ≪ s
1/4
j is due to Bambah and Chowla [1], with subse-

quent improvements by Uchiyama [14], Shiu [12], [13], and Jameson [8]. See
also the related results of Kaplan and Williams [10] (on numbers expressible
by a quadratic form), and Diananda [4], where the upper bound in the case
P (x) = xd has been obtained.

Despite all the work, the gap between (3) and (5) for d = 2 is a huge one.
However, for d ≥ 3 it is not so large, since both bounds are exponential: the
exponents of sj in (4) and (5) are 1− 2/d and 1− 2/d+ 1/d2, respectively. It
would be of interest to find the correct growth of the gaps for d ≥ 3 when the
problems seem easier, even though the arithmetical structure of the set SP is
much more complicated. See, for instance, the paper of Broughan [2] for the
characterization of integers expressible by the sum of two cubes.

Of course, there are infinitely many bounded gaps between sj and sj+1.
To see this, simply select any two fixed integers m1,m2 ≥ 0 such that 0 ≤
P (m1) < P (m2). Taking g = P (m2) − P (m1) ∈ N and infinitely many n ∈ N
satisfying P (n) ≥ 0, we see that the elements P (n)+P (m1) and P (n)+P (m2)
both belong to SP . Hence, for infinitely many j ∈ N, we have 1 ≤ sj+1−sj ≤ g.

Results similar to those in Theorem 1.1 hold for integer-valued polynomi-
als, namely, those P ∈ Q[x] for which P (j) ∈ Z for each j ∈ Z. Clearly, each
integer-valued polynomial of degree d multiplied by d! belongs to Z[x] (see,
e. g., [3]). So, inequalities (3), (4) and (5) of Theorem 1.1 for the correspond-
ing sumsets of integer values polynomials also hold (although with different
constants but with the same exponents 1− 2/d and (1− 1/d)2 in (4) and (5)).

In the next section, we will give two auxiliary results. With these in hand,
the proof of Theorem 1.1 becomes elementary.

2. AUXILIARY RESULTS

We begin with a recent result of Kalmynin and Konyagin [9].

Lemma 2.1. Let S be the sequence of all positive integers that can be
represented by the sum of two squares of integers. For each X ≥ 2 let g(X)
be the largest gap between two consecutive elements of S that do not exceed X.
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Then, for each ε > 0 there exists X(ε) such that

g(X) >
(390
449

− ε
)
logX

for X ≥ X(ε).

In principle, the next result can be verified by a direct calculation. How-
ever, we will give a much shorter proof applying a recent result on the cardi-
nality of sumsets from [7]. (Throughout, Γ(x) =

∫∞
0 tx−1e−tdt is the gamma

function.)

Lemma 2.2. For each ε > 0 there exists X1(ε) such that the number of
distinct elements of the sequence (2) not exceeding X is less than

(1 + ε)
Γ(1/d)2

4da2/dΓ(2/d)
X2/d

for X ≥ X1(ε).

Proof. Since P (x) = axd+ bxd−1+ · · ·+ c, the number of (not necessarily
distinct) elements of the set S defined in (1) is asymptotic to (X/a)1/d as
X → ∞. Hence, by [7, Corollary 2] (with α = 2/d there) and (2), it follows
that

lim sup
X→∞

#{(S + S) ∩ [1, X]}
X2/d

≤ a−2/d Γ(1/d)2

4dΓ(2/d)
.

This implies the assertion of Lemma 2.2.

3. PROOF OF THEOREM 1.1

Suppose first that d = 2, that is, P (x) = ax2+ bx+ c ∈ Z[x]. For sj ∈ SP

we have

sj = P (m) + P (n) = am2 + bm+ an2 + bn+ 2c

= a
(
m+

b

2a

)2
+ a

(
n+

b

2a

)2
− b2

2a
+ 2c.

Hence,

(6) 4asj + 2b2 − 8ac = (2am+ b)2 + (2an+ b)2.

Combining (6) with Lemma 2.1, for infinitely many j ∈ N, we obtain

4a(sj+1 − sj) = (4asj+1 + 2b2 − 8ac)− (4asj + 2b2 − 8ac)

> (c0 − ε) log(4asj+1 + 2b2 − 8ac) > (c0 − ε) log sj ,
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where c0 = 390/449. This implies (3). Observe that in the special case, when
2a divides b, by (6) and the same argument as above, we have

sj+1 − sj > a
(390
449

− ε
)
log sj ,

for infinitely many j ∈ N.
Suppose now that d ≥ 3. Assume that the sequence SP has exactly l ≥ 2

distinct elements not exceeding X, say s1 < s2 < · · · < sl. Then, at least
one gap sj+1 − sj , where j = 1, . . . , l − 1 is at least (sl − s1)/(l − 1). By the
inequality (5), which will be proved later, for each fixed ϵ and each sufficiently
large X ≥ X(ϵ), we obtain

sl − s1 ≥ sl −
ϵX

2
= sl+1 − (sl+1 − sl)−

ϵX

2
> sl+1 − γs

(1−1/d)2

l − ϵX

2

> X − γX(1−1/d)2 − ϵX

2
> X − ϵX

2
− ϵX

2
= (1− ϵ)X.

So, applying Lemma 2.2 with ε = ϵ/2 for this largest gap, we deduce that

sj+1 − sj ≥
sl − s1
l − 1

≥ (1− ϵ)X

l − 1
>

(1− ϵ)X

(1 + ϵ/2) Γ(1/d)2

4da2/dΓ(2/d)
X2/d

>
(1− 2ϵ)4da2/dΓ(2/d)X1−2/d

Γ(1/d)2
,

which yields (4) with an appropriate choice of ϵ by X ≥ sl > sj .

In order to prove (5), we will show first that for each sufficiently large
X ∈ R the open interval (X,X + γ1X

(1−1/d)2), γ1 > 0, contains an element of
SP .

Given

P (x) = axd + bxd−1 + · · ·+ c ∈ Z[x],
we first take a real number t satisfying

(7) {t} = {(X/a)1/d} and
b

ad
< t ≤ 1 +

b

ad
.

(Here and in (9), {y} stands for the fractional part of y ∈ R.) With this choice,
as X → ∞, the number u = (X/a)1/d − t is a positive integer and

(8) P (u) = X −
(X
a

)(d−1)/d
(adt− b) +O(X(d−2)/d).

Hence, 0 < P (u) < X and P (u) ∈ S, for each sufficiently large X.

Next, we select q ∈ R satisfying

(9) {q} = {X(d−1)/d2(adt− b)1/da(1−2d)/d2} and
b

ad
− 1 ≤ q <

b

ad
.
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Then, v = X(d−1)/d2(adt− b)1/da(1−2d)/d2 − q is also a positive integer and

P (v) =
(X
a

)(d−1)/d
(adt− b)

+ (b− adq)
X(d−1)2/d2(adt− b)(d−1)/d

a(2d−1)(d−1)/d2
+O(X(d−1)(d−2)/d2)

as X → ∞.
Now, to evaluate the sum P (u)+P (v), we add the last equality with (8).

Then, the term (X/a)(d−1)/d(adt−b) cancels out. The coefficient for X(d−1)2/d2

is positive by the choice of t and q in (7), (9). Therefore, as the exponents
(d−2)/d in (8) and (d−1)(d−2)/d2 are smaller than (d−1)2/d2 = (1−1/d)2,
the inequalities

X < P (u) + P (v) < X + γ1X
(1−1/d)2

hold with some positive number γ1.
Summarising, we have proved that for each sufficiently large X ∈ R the

interval (X,X + γ1X
(1−1/d)2) contains an element of the set SP .

By increasing γ1 to γ, if necessary, we conclude that (X,X + γX(1−1/d)2)
contains an element of SP for every X ≥ 1. Therefore, for every j ∈ N choosing
X = sj , we deduce (5).
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