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In this paper, we introduce the concepts niltorsionless modules and NS-
modules (which are generalisations of NI-rings). We prove that the class of
niltorsionless modules contains the classes of semiprime and, in particular, the
class of regular modules. We prove that over an NI-ring, every module is an
NS-module. An example is provided to show that the converse is false. We also
prove that over an Nl-ring, W&M) is reduced. Further, the concepts weak
Armendariz modules and weakly semicommutative modules (analogues of the
corresponding ring-theoretic concepts) are briefly studied.
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1. INTRODUCTION

Marks [10] called a ring R an NI-ring if the set Nil(R) of its nilpotent
elements is an ideal of R. NI-rings have been a focus of attention recently.
Hizem [7, Theorem 1], established the following characterization of NI-rings: a
ring R is an Nl-ring if and only if it is a nil power serieswise Armendariz ring,
i.e., whenever power series f(X) = > a;X?, g(X) = Y b; X7 in R[[X]] satisfy
f(X)g(X) € Nil(R)[[X]], then a;b; € Nil(R), for all i and j. An Armendariz
ring which is not an NI-ring was constructed by Antoine [2], Example 4.8]. Chun
et al. [0], studied rings satisfying the condition ‘the set of nilpotent elements
form a subring (which may not contain the identity of the ring)’. Armendariz
rings as well as NI rings satisfy this condition.

We denote the factor ring R/Nil(R) of an NI-ring R by R; it is clear that
R is a reduced ring, i.e., it has no nonzero nilpotent elements. In Section 3, we
prove a module-theoretic analogue of this result (Theorem 3.10).

After introduction of the notion of an Armendariz ring by Rege et al. [13],
a large number of generalizations of that concept were introduced and studied
by many authors. (See, for example, the references in [I1].) In paragraph 4.7
of [13], the possibility of extending the concept of an Armendariz ring to mod-
ules was mentioned. A study of Armendariz modules and semicommutative
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modules (also called zero-insertive (ZI)) was carried out by Buhphang et al.
[3]. The concept of a weak Armendariz ring, a ring-theoretic analogue of the
concept of an Armendariz ring, was introduced and studied by Liu et al. [§].
Weakly semicommutative rings have also been studied by Liang et al. [9]. In
Section 4, we introduce and briefly study the module theoretic extensions of
the concepts of weak Armendariz and weakly semicommutative rings.

The dual (right) R-module M* := Hompg(M, R) associated with a left R-
module M has played an important role in the study of some known concepts
of interest to us - namely, torsionless modules, (Zelmanowitz) regular modules
and semiprime modules (see, [I4] and [15]). We use M* to define and study
the three concepts mentioned in the abstract.

2. PRELIMINARIES

By a ring we mean an associative ring with an identity element; R always
denotes a ring. The set of all nonzero idempotents of R is denoted by I(R).
Unless otherwise mentioned, by a module we mean a unitary left module.
Module homomorphisms are written on the opposite side of the scalars. All our
left-sided concepts and results have right-sided counterparts. For unexplained
concepts and results we refer to [I] and Section 2A of [12].

Remark 2.1. Let M be a left R-module. By the standard Morita context
of M we mean the quadruple (R, M, M*, E(M)). Here E(M) denotes the ring
of endomorphisms of the left R-module M. There is a natural structure of
a left F(M)—, right R—, bimodule on M* := Hompg(M, R). For m,n € M
and ¢ € M*, we define the element [g,n] of E(M) by mlg,n] = (mg)n. The
‘generalized associativity situation’ in the Morita context is exploited without
explicit mention.

Next, we recall some definitions. If M and @ are left R-modules then the

reject of M in @ is defined in [II, Section 8], as the R-submodule N Kerf
f€eHom(M,Q

of M; it is denoted by Rejn(Q). By Rej(M) we mean the R-submodule
Rejy(R) of M.

Definitions 2.2. A module M is regular [14] (resp., semiprime) if given a
non-zero element m € M, there exists ¢ € M* such that (mqg)m = m (resp.,
(mg)m # 0). M is torsionless if given m € M, there exists ¢ € M* such that

mq # 0.

Remark 2.3. Denoting the right ideal mM™ of R by J,,, it is easy to check
that M is torsionless < Rej(M) =0 < J,, # 0, for all m # 0.
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In the next definition, we introduce the concept of antisemiprime module.

Definition 2.4. A left R-module M is antisemiprime if for a given non-
zero element m € M there exists a non-zero ¢ € M* such that g(mgq) # 0.

Antiregular modules were defined and studied by Choudhuri et al. in a
series of papers beginning with [4]. Their endomorphism rings were studied in

[5].

Definition 2.5. A module M is antireqular if for each non-zero element
m of M, there is a non-zero element ¢ € M* such that ¢(mq) = q.

In the next proposition, we record some implications. We recall the proof
of (a) for the sake of completeness.

PRrROPOSITION 2.6. The following implications hold for a module.

(a) Regular = antiregular.
(b) Antiregular modules are semiprime as well as antisemiprime.

(¢) If a module is semiprime or antisemiprime then it is torsionless.

Proof. (a) Suppose for a non-zero element m of a left R-module M we
have (mg)m = m for some ¢ € M*. Then 0 # mq = (mgq)(mgq) implies that
mq € I(R), the set of all non-zero idempotents of R. Write § = q(mq) € M*.
Then m§ = (mq)? = mq # 0 = § # 0. We also have §(mq) = q(mq)® =
qg(mq) = ¢ # 0 showing that M is antiregular.

(b) Let m be a non-zero element of an antiregular module M. Now there
exists ¢ € M* satisfying q(mgq) = ¢ # 0, proving M is antisemiprime. Further,
[(mgq)m|q = (mq)(mgq) = mq # 0 yields (mq)m # 0. Hence, M is semiprime.

(c) Let m € M,m # 0. If M is semiprime (resp., antisemiprime), there
exists ¢ € M* satisfying (mgq)m # 0 (resp., ¢(mgq) # 0). In either case mq # 0,
showing that M is torsionless. [J

Remark 2.7. Tt is clear that for every ring R the modules R and Rp are
antisemiprime, so the term ‘antisemiprime ring’ is redundant.

Next, we define four new concepts.
Definition 2.8. The NilReject of a left R-module M is the subset
{m € M | mq € Nil(R),¥q € M*} of M.

We denote the NilReject of a left R-module M by NilRej;;(R) (and by
NilRej(M) if there is no possibility of confusion). The conditions ‘NilReject is
a submodule’ and ‘NilReject vanishes’ are of interest. In order to study these
conditions, we introduce Definitions to [2.11)
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Definition 2.9. A left R-module M is an NS-module if NilRej(M) is an
R-submodule of M.

Definition 2.10. A left R-module M is niltorsionless if NilRej(M) = 0.

Definition 2.11. A ring R is left niltorsionless if it is niltorsionless as a
left R-module.

3. NS-MODULES AND NILTORSIONLESS MODULES

In this section, we record a number of results involving NS-modules and
niltorsionless modules and rings.

Remarks 3.1. 1. Niltorsionless modules are, trivially, NS-modules.

2. Let M be a nonzero module for which M* = 0. (The additive group of
rationals and finite nontrivial abelian groups, regarded as modules over Z, have
this property.) Then NilRej(M) = M # 0, showing that M is an NS-module
which is not niltorsionless.

3. An analogue of Remark M is niltorsionless < J,,, = mM* ¢
Nil(R),Vm # 0.

4. Tt is easy to see that
A:={a € RlaR C Nil(R)} = {a € R|[Ra C rmNil(R)}.

(So we can write NilRej(R) unambiguously in place of the subset A of R.) It
follows that R is left niltorsionless < A = 0 < the ring R is right niltorsionless.
In view of this, we talk simply of niltorsionless rings.

5. Clearly, if R is reduced, then NilRej(R) = 0, and so R is niltorsionless.

6. We have, trivially NilRej(R) C Nil(R). We also have: if R is a NI-ring,
NilRej(R) = Nil(R).

7. Subrings of niltorsionless rings need not be niltorsionless. For exam-
ple, consider R = M(K) the ring of 2 x 2 matrices over a field K which is
niltorsionless since it is von Neumann regular. However, the subring UT5(K)
of 2 x 2 upper triangular matrices over K is not niltorsionless since there does
not exist any upper triangular matrix A with entries in K such that AFE1 is
non nilpotent.

We note in part (a) of the next proposition that the class of niltorsionless
modules contains (over a given ring) the class of antiregular modules; we note
in part (c¢) that modules belonging to this larger class are also semiprime as
well as antisemiprime.
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PROPOSITION 3.2. Let M be a left R-module.

(a) If M is antiregular, then M is niltorsionless.
(b) If M is regular, then M is niltorsionless.

(¢) Niltorsionless modules are semiprime as well as antisemiprime.

Proof. (a) Let m € M, m # 0. Since M is antiregular there exists ¢ € M*
such that g(mgq) = g # 0. Hence, (mq) € I(R) yielding mq ¢ Nil(R).

(b) follows from (a).

(¢c) Let m be a non-zero element of a niltorsionless module M. Now
there exists ¢ € M* such that mq ¢ Nil(R). Hence, we have (mq)(mq) # 0,
yielding (mgq)m # 0 as well as ¢(mgq) # 0. Therefore, M is semiprime as well
as antisemiprime. [

Remark 3.3. It follows from the above proposition that antiregular rings
(in particular, (von Neumann) regular rings) are niltorsionless and niltorsion-
less rings are semiprime.

In Proposition we record a result concerning modules over NI-rings.

PROPOSITION 3.4. Let M be a left module over an NI-ring R. Then
1. M is an NS-module.
2. Nil(R)M < NilRej(M).
Proof. Since NilRej(M) = qe%*qfl(Nil(R)), it is an R-submodule of M.

Next let ¢t € Nil(R),m € M and ¢ € M*. Since R is an Nl-ring, (tm)q =
t(mgq) € Nil(R) for each ¢ € M* implying that ¢tm € NilRej(M). Hence,
Nil(R)M < NilRej(M). O

Ezamples 3.5. A ring over which all (left) modules are NS-modules need
not be an NI-ring. (We use semisimple in the sense of Bourbaki.) If M is a left
module over a semisimple ring R, then M is semisimple and projective, and
therefore regular. Hence, by Proposition b)7 M is niltorsionless and hence
is an NS-module. However, semisimple rings are NI-rings exactly when they
are (finite) products of division rings, by the Wedderburn structure theorem.

We also have:

PROPOSITION 3.6. Let M and W be left R-modules, and let 5 : M — W
be an R-homomorphism. Then NilRej(M )5 < NilRej(W).

Proof. Let m € NilRej(M). Note that if ¢ € W*, then foq € M*. Hence
(mB)q = (m)(B o q) € Nil(R) yielding m € NilRej(W). O
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COROLLARY 3.7. NilRej(M) is invariant under E(M).

COROLLARY 3.8. If M is an N S-module then NilRej(M) is an R—E(M)-
bisubmodule of the bimodule R Mgy -

Remarks 3.9. 1. Given an NS-module M, we shall use the notation M

M
for its factor module W If R is an Nl-ring, as noted in Proposition
3.4)2), for every left R-module M we have Nil(R)M < NilRej(M). It follows

that Nil(R) < ann(gM) yielding a canonical R-structure on M.

2. Let R be an Nl-ring, and let M be a left R-module. Let ¢ € M*.
By the definition of NilRej(M), we have (NilRej(M))g < Nil(R), and hence g
induces an R-linear map qo : M — R defined by mqg = mq which is easily seen
to be R-linear.

The notation introduced in Remarks is used in the proof of the fol-
lowing analogue of the result that if R is an NI-ring, the ring R/Nil(R) is
reduced.

THEOREM 3.10. If M is a left module over an NI-ring R, then
— M
M=———
NilRej(M)
1s reduced as an R-module.

Proof. Let T be a nonzero element of M. Then m ¢ NilRej(M). So
for some ¢ € M* the element mgq is non-nilpotent, yielding mqy = mq # 0
in R. Hence M is torsionless as a left R-module. As R is a reduced ring, M
is reduced as an R-module, by Proposition 2.4 of [12] and — by applying the
‘change of rings’ result noted in Proposition 3.2(2) of [12] — is reduced as an
R-module as well. [

Remark 3.11. Zimmermann proved Proposition We reproduce its
short proof from [16] (Bemerkung 3.6, p. 33) since [16] is not easily accessible.
We use the notation of Remark 2.1

PROPOSITION 3.12. If rM is regular then Mgy is also reqular.

Proof. Let m € M. Now there exists ¢ € M* such that (mg)m = m.
Clearly, m[q,m] = (mg)m = m. So Mg,y is regular. [

Since regular = antiregular = niltorsionless, we can ask whether similar
results are valid for the other two classes of modules. The answer in the
antiregular case is in the affirmative by Proposition 2.2 of [5]. We consider the
niltorsionless case below.
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PROPOSITION 3.13. If gM s niltorsionless then Mgy is niltorsionless.

Proof. Let m € M, m # 0. Then there exists ¢ € M* such that mq ¢
Nil(R). We claim that [¢,m] ¢ Nil(E(M)). If [¢,m] € Nil(E(M)), then there
exists k& € N such that [¢,m]* = 0. This implies 0 = m|[q, m]¥ = (mq)*m and
so 0 = (mq)¥*!. Thus mq € Nil(R) which is a contradiction. This proves the
claim. Notice that the map 6 M — E(M) defined by 6(n) = [¢,n] is (by Morita
context associativity) right F(M)— linear. Now 6(m) = [¢,m] ¢ Nil(E(M))
shows that the right F(M)—module M is niltorsionless. [

We note that on putting M = R in the above proposition we recover
Remark [3.1)(4).

Remarks 3.14. 1. The converse of Proposition does not hold. Con-
sider the group of rationals over the ring of integers. Thus, R = Z and M = Q.
Then Mgy is niltorsionless, since E(M) = Q However, g M is not niltorsion-
less, since M* = 0.

2. Let B = End(Mg) = Biend(gM), the biendomorphism ring of
rM. Using the left B-, right E(M)-bimodule structure of M, we deduce from
Proposition that the condition Mp(,s) is niltorsionless is sufficient for the
niltorsionlessness of pM. It is also a necessary condition for the niltorsion-

lessness of M, since the natural development that leads from R to E(M) to
B = Biend(g M) stabilizes, i.e., E(M) = End(pM) = Biend(Mg(r))-

We have for a left module M over a reduced ring R, Rej(M)=NilRej(M).

ProrosiTIiON 3.15. For a module M over a reduced ring we have: M is
torsionless < M s niltorsionless < M 1is semiprime < M is antisemiprime.

Proof. This is a consequence of Proposition[3.2)(c) and Proposition [2.6(c).
O

The following result establishes the equivalence of some ring theoretic
concepts when R is niltorsionless.

PRrOPOSITION 3.16. If R is a niltorsionless ring then the following con-
ditions are equivalent.

1. R is reduced.

2. R is reversible.
3. R is symmetric.
4

. R s semicommutative.
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5. R is an NI-ring.
6. For all b € R,Nil(R)b C Nil(R).

Proof. The implications (1) = (2) = (3) = (4) = (5) = (6) hold
without the niltorsioness assumption. They are well-known and easy to prove.
(See the literature, e.g. [12], Section 2A] for the relevant definitions and proofs.)

(6) = (1). Let a € Nil(R). We have aR C Nil(R) yielding a € NilRej(R)
= 0, since R is niltorsionless. [

In the following result, we use the notation y = (y;) for an I-tuple be-
longing to the module ITM;.

PROPOSITION 3.17. Let I be an indexing set and let, for each i € I, the
module M; be niltorsionless over R;. Then M = IIM; and W = &M, are
niltorsionless over R = I1R;.

Proof. Let 0 # m = (m;) € M. Then m; # 0 for some j € I. Since
M; is niltorsionless over R;, there exists an R;-homomorphism ¢; from M;
to R; such that mjq; ¢ Nil(R;). Let ¢ : M — R be defined as yq = yj;q;,
where y;q; is regarded as an element of R via the inclusion R; — R. Then
mq = mjq; ¢ Nil(R). Therefore, pM is niltorsionless. The proof of the
niltorsionlessness of gW is similar. [

PROPOSITION 3.18. Let I be an indexing set and let, for each i € I, M;
be a niltorsionless module over R, then M = IIM; is niltorsionless over R.

Proof. Let 0 # m = (m;) € M. Then m; # 0, for some j € I. Since
Mj is niltorsionless over R, there exists ¢; € M = Hompg(M;, R) such that
m;q; ¢ Nil(R). Let ¢ : M — R be the R-homomorphism defined as yq = y;¢;.
Then mq = mjq; ¢ Nil(R). Therefore pM is niltorsionless. [

4. SOME ‘WEAK’ CONDITIONS ON MODULES

The concept of a weak Armendariz ring, an analogue of the concept
of an Armendariz ring, was introduced and studied by Liu et al. [8]. (This
reference may be consulted for the definition and basic properties of weak
Armendariz rings.) In the next definition, we propose an extension to modules
of this concept.

Definition 4.1. A module g M is weak Armendarizif given f(X) = a; X*
and m(X) = Y. m; X’ with coefficients in R and M respectively, the condition
F(X)m(X) = 0 implies a;m; € NilRej(M) for every i and j.
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Notation 4.2. Let q : My — M> be an R-module homomorphism. We
denote by ¢[X] the R[X]-linear map from M;[X] to M>[X] defined by
(EmiX") (q[X]) = B(miq) X" If ¢ € M* then ¢[X] € Hompx(M[X], R[X]).

PROPOSITION 4.3. The following conditions are equivalent for a ring R.

(i) The ring R is weak Armendariz.
(ii) Ewvery left R-module is weak Armendariz.

(iii) The left R-module R is weak Armendariz.

Proof. (i) = (i1). Let M be a left R-module. Assume that for polyno-
mials f(X) = Y. ;X" and m(X) = > m; X7 with coefficients in R and M
respectively, the condition f(X)m(X) = 0 holds. For ¢ € M* consider the
R[X]-linear map ¢[X] : M[X] — R[X] defined in Notice that g(X) :=
m(X)q[X] = > (m;jq)X? € R[X] and we have f(X)g(X) = f(X)m(X)q[X]
0, yielding, since R is a weak Armendariz ring, (a;m;)q = a;(m;q) € Nil(R
for all 4, j (and for all ¢ € M*). This implies that a;m; € NilRej(M) for all i, j
proving that M is a weak Armendariz module.

The implication (i) = (#4i) is trivial. Next assume condition (i4i). Sup-
pose that for polynomials f(X) = > a;X* and g(X) = > b; X7 with coeffi-
cients in R we have f(X)g(X) = 0. By hypothesis, a;.b; € NilRej(R) for all
i,j. Hence by Remark [3.1)(6), a;b; € Nil(R) for all 4,j. [

~—

<

Armendariz modules are, of course, weak Armendariz. Semicommutative
rings are weak Armendariz [§, Corollary 3.4], but need not be Armendariz [13]
Example 3.2]. Hence, by Proposition weak Armendariz modules need not
be Armendariz.

Following [9], we call a ring R weakly semicommutative if for elements
a,b € R the condition ab = 0 implies aRb C Nil(R). The class of semicom-
mutative rings is properly contained in the class of weakly semicommutative
rings. We extend this concept to modules as follows.

Definition 4.4. A left R-module M is weakly semicommutative if when-
ever a € R and m € M satisfy the condition am = 0, then for each ¢t € R and
each ¢ € M* we have at(mgq) € Nil(R).

Semicommutative modules are weakly semicommutative. In the following
proposition, we characterize weakly semicommutative rings through modules
over them.

PRrOPOSITION 4.5. The following conditions are equivalent for a ring R.

(i) The ring R is weakly semicommutative.
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(ii) Ewvery left R-module is weakly semicommutative.

(iii) The left R-module R is weakly semicommutative.

Proof. (i) = (ii) Let M be a left R-module. Let am = 0 and ¢ € M*. We
have a(mgq) = (am)q = 0. Hence, for each t € R we must have at(mq) € Nil(R),
proving that M is weakly semicommutative.

The implication (i) = (#4i) is trivial. Next assume condition (i4i). Sup-
pose that for a,b € R we have ab = 0. Since the module grR is weakly semi-
commutative, for each t € R we have atb € NilRej(R). Hence, by Remark
3.1(6), atb € Nil(R), proving that the ring R is weakly semicommutative. ]

We end this paper by stating a result which is an immediate consequence
of the definitions of the concepts involved.

PROPOSITION 4.6. If a niltorsionless module is weak Armendariz (resp.,
weakly semicommutative), then it is Armendariz (resp., semicommutative).
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