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In this paper, we introduce the concepts niltorsionless modules and NS-
modules (which are generalisations of NI-rings). We prove that the class of
niltorsionless modules contains the classes of semiprime and, in particular, the
class of regular modules. We prove that over an NI-ring, every module is an
NS-module. An example is provided to show that the converse is false. We also
prove that over an NI-ring, M

NilRej(M)
is reduced. Further, the concepts weak

Armendariz modules and weakly semicommutative modules (analogues of the
corresponding ring-theoretic concepts) are briefly studied.
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1. INTRODUCTION

Marks [10] called a ring R an NI-ring if the set Nil(R) of its nilpotent
elements is an ideal of R. NI-rings have been a focus of attention recently.
Hizem [7, Theorem 1], established the following characterization of NI-rings: a
ring R is an NI-ring if and only if it is a nil power serieswise Armendariz ring,
i.e., whenever power series f(X) =

∑
aiX

i, g(X) =
∑

bjX
j in R[[X]] satisfy

f(X)g(X) ∈ Nil(R)[[X]], then aibj ∈ Nil(R), for all i and j. An Armendariz
ring which is not an NI-ring was constructed by Antoine [2, Example 4.8]. Chun
et al. [6], studied rings satisfying the condition ‘the set of nilpotent elements
form a subring (which may not contain the identity of the ring)’. Armendariz
rings as well as NI rings satisfy this condition.

We denote the factor ring R/Nil(R) of an NI-ring R by R; it is clear that
R is a reduced ring, i.e., it has no nonzero nilpotent elements. In Section 3, we
prove a module-theoretic analogue of this result (Theorem 3.10).

After introduction of the notion of an Armendariz ring by Rege et al. [13],
a large number of generalizations of that concept were introduced and studied
by many authors. (See, for example, the references in [11].) In paragraph 4.7
of [13], the possibility of extending the concept of an Armendariz ring to mod-
ules was mentioned. A study of Armendariz modules and semicommutative
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modules (also called zero-insertive (ZI)) was carried out by Buhphang et al.
[3]. The concept of a weak Armendariz ring, a ring-theoretic analogue of the
concept of an Armendariz ring, was introduced and studied by Liu et al. [8].
Weakly semicommutative rings have also been studied by Liang et al. [9]. In
Section 4, we introduce and briefly study the module theoretic extensions of
the concepts of weak Armendariz and weakly semicommutative rings.

The dual (right) R-module M∗ := HomR(M,R) associated with a left R-
module M has played an important role in the study of some known concepts
of interest to us - namely, torsionless modules, (Zelmanowitz) regular modules
and semiprime modules (see, [14] and [15]). We use M∗ to define and study
the three concepts mentioned in the abstract.

2. PRELIMINARIES

By a ring we mean an associative ring with an identity element; R always
denotes a ring. The set of all nonzero idempotents of R is denoted by I(R).
Unless otherwise mentioned, by a module we mean a unitary left module.
Module homomorphisms are written on the opposite side of the scalars. All our
left-sided concepts and results have right-sided counterparts. For unexplained
concepts and results we refer to [1] and Section 2A of [12].

Remark 2.1. Let M be a left R-module. By the standard Morita context
of M we mean the quadruple (R,M,M∗, E(M)). Here E(M) denotes the ring
of endomorphisms of the left R-module M . There is a natural structure of
a left E(M)−, right R−, bimodule on M∗ := HomR(M,R). For m,n ∈ M
and q ∈ M∗, we define the element [q, n] of E(M) by m[q, n] = (mq)n. The
‘generalized associativity situation’ in the Morita context is exploited without
explicit mention.

Next, we recall some definitions. If M and Q are left R-modules then the
reject ofM inQ is defined in [1, Section 8], as the R-submodule ∩

f∈Hom(M,Q
Kerf

of M ; it is denoted by RejM (Q). By Rej(M) we mean the R-submodule
RejM (R) of M .

Definitions 2.2. A module M is regular [14] (resp., semiprime) if given a
non-zero element m ∈ M , there exists q ∈ M∗ such that (mq)m = m (resp.,
(mq)m ̸= 0). M is torsionless if given m ∈ M , there exists q ∈ M∗ such that
mq ̸= 0.

Remark 2.3. Denoting the right ideal mM∗ of R by Jm, it is easy to check
that M is torsionless ⇔ Rej(M) = 0 ⇔ Jm ̸= 0, for all m ̸= 0.
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In the next definition, we introduce the concept of antisemiprime module.

Definition 2.4. A left R-module M is antisemiprime if for a given non-
zero element m ∈ M there exists a non-zero q ∈ M∗ such that q(mq) ̸= 0.

Antiregular modules were defined and studied by Choudhuri et al. in a
series of papers beginning with [4]. Their endomorphism rings were studied in
[5].

Definition 2.5. A module M is antiregular if for each non-zero element
m of M , there is a non-zero element q ∈ M∗ such that q(mq) = q.

In the next proposition, we record some implications. We recall the proof
of (a) for the sake of completeness.

Proposition 2.6. The following implications hold for a module.

(a) Regular ⇒ antiregular.

(b) Antiregular modules are semiprime as well as antisemiprime.

(c) If a module is semiprime or antisemiprime then it is torsionless.

Proof. (a) Suppose for a non-zero element m of a left R-module M we
have (mq)m = m for some q ∈ M∗. Then 0 ̸= mq = (mq)(mq) implies that
mq ∈ Ī(R), the set of all non-zero idempotents of R. Write q̃ = q(mq) ∈ M∗.
Then mq̃ = (mq)2 = mq ̸= 0 ⇒ q̃ ̸= 0. We also have q̃(mq̃) = q(mq)3 =
q(mq) = q̃ ̸= 0 showing that M is antiregular.

(b) Let m be a non-zero element of an antiregular module M . Now there
exists q ∈ M∗ satisfying q(mq) = q ̸= 0, proving M is antisemiprime. Further,
[(mq)m]q = (mq)(mq) = mq ̸= 0 yields (mq)m ̸= 0. Hence, M is semiprime.

(c) Let m ∈ M,m ̸= 0. If M is semiprime (resp., antisemiprime), there
exists q ∈ M∗ satisfying (mq)m ̸= 0 (resp., q(mq) ̸= 0). In either case mq ̸= 0,
showing that M is torsionless.

Remark 2.7. It is clear that for every ring R the modules RR and RR are
antisemiprime, so the term ‘antisemiprime ring’ is redundant.

Next, we define four new concepts.

Definition 2.8. The NilReject of a left R-module M is the subset
{m ∈ M | mq ∈ Nil(R),∀q ∈ M∗} of M .

We denote the NilReject of a left R-module M by NilRejM (R) (and by
NilRej(M) if there is no possibility of confusion). The conditions ‘NilReject is
a submodule’ and ‘NilReject vanishes’ are of interest. In order to study these
conditions, we introduce Definitions 2.9 to 2.11.
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Definition 2.9. A left R-module M is an NS-module if NilRej(M) is an
R-submodule of M .

Definition 2.10. A left R-module M is niltorsionless if NilRej(M) = 0.

Definition 2.11. A ring R is left niltorsionless if it is niltorsionless as a
left R-module.

3. NS-MODULES AND NILTORSIONLESS MODULES

In this section, we record a number of results involving NS-modules and
niltorsionless modules and rings.

Remarks 3.1. 1. Niltorsionless modules are, trivially, NS-modules.

2. Let M be a nonzero module for which M∗ = 0. (The additive group of
rationals and finite nontrivial abelian groups, regarded as modules over Z, have
this property.) Then NilRej(M) = M ̸= 0, showing that M is an NS-module
which is not niltorsionless.

3. An analogue of Remark 2.1: M is niltorsionless ⇔ Jm = mM∗ ⊈
Nil(R), ∀m ̸= 0.

4. It is easy to see that

A := {a ∈ R|aR ⊂ Nil(R)} = {a ∈ R|Ra ⊂ rmNil(R)}.

(So we can write NilRej(R) unambiguously in place of the subset A of R.) It
follows that R is left niltorsionless ⇔ A = 0 ⇔ the ring R is right niltorsionless.
In view of this, we talk simply of niltorsionless rings.

5. Clearly, if R is reduced, then NilRej(R) = 0, and so R is niltorsionless.

6. We have, trivially NilRej(R) ⊆ Nil(R). We also have: if R is a NI-ring,
NilRej(R) = Nil(R).

7. Subrings of niltorsionless rings need not be niltorsionless. For exam-
ple, consider R = M2(K) the ring of 2 × 2 matrices over a field K which is
niltorsionless since it is von Neumann regular. However, the subring UT2(K)
of 2× 2 upper triangular matrices over K is not niltorsionless since there does
not exist any upper triangular matrix A with entries in K such that AE12 is
non nilpotent.

We note in part (a) of the next proposition that the class of niltorsionless
modules contains (over a given ring) the class of antiregular modules; we note
in part (c) that modules belonging to this larger class are also semiprime as
well as antisemiprime.
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Proposition 3.2. Let M be a left R-module.

(a) If M is antiregular, then M is niltorsionless.

(b) If M is regular, then M is niltorsionless.

(c) Niltorsionless modules are semiprime as well as antisemiprime.

Proof. (a) Let m ∈ M,m ̸= 0. Since M is antiregular there exists q ∈ M∗

such that q(mq) = q ̸= 0. Hence, (mq) ∈ I(R) yielding mq /∈ Nil(R).
(b) follows from (a).
(c) Let m be a non-zero element of a niltorsionless module M . Now

there exists q ∈ M∗ such that mq /∈ Nil(R). Hence, we have (mq)(mq) ̸= 0,
yielding (mq)m ̸= 0 as well as q(mq) ̸= 0. Therefore, M is semiprime as well
as antisemiprime.

Remark 3.3. It follows from the above proposition that antiregular rings
(in particular, (von Neumann) regular rings) are niltorsionless and niltorsion-
less rings are semiprime.

In Proposition 3.4, we record a result concerning modules over NI-rings.

Proposition 3.4. Let M be a left module over an NI-ring R. Then

1. M is an NS-module.

2. Nil(R)M ≤ NilRej(M).

Proof. Since NilRej(M) = ∩
q∈M∗

q−1(Nil(R)), it is an R-submodule of M .

Next let t ∈ Nil(R),m ∈ M and q ∈ M∗. Since R is an NI-ring, (tm)q =
t(mq) ∈ Nil(R) for each q ∈ M∗ implying that tm ∈ NilRej(M). Hence,
Nil(R)M ≤ NilRej(M).

Examples 3.5. A ring over which all (left) modules are NS-modules need
not be an NI-ring. (We use semisimple in the sense of Bourbaki.) If M is a left
module over a semisimple ring R, then M is semisimple and projective, and
therefore regular. Hence, by Proposition 3.2(b), M is niltorsionless and hence
is an NS-module. However, semisimple rings are NI-rings exactly when they
are (finite) products of division rings, by the Wedderburn structure theorem.

We also have:

Proposition 3.6. Let M and W be left R-modules, and let β : M → W
be an R-homomorphism. Then NilRej(M)β ≤ NilRej(W ).

Proof. Let m ∈ NilRej(M). Note that if q ∈ W ∗, then β ◦ q ∈ M∗. Hence
(mβ)q = (m)(β ◦ q) ∈ Nil(R) yielding m ∈ NilRej(W ).
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Corollary 3.7. NilRej(M) is invariant under E(M).

Corollary 3.8. If M is an NS-module then NilRej(M) is an R−E(M)-
bisubmodule of the bimodule RME(M).

Remarks 3.9. 1. Given an NS-module M , we shall use the notation M

for its factor module
M

NilRej(M)
. If R is an NI-ring, as noted in Proposition

3.4(2), for every left R-module M we have Nil(R)M ≤ NilRej(M). It follows
that Nil(R) ≤ ann(RM) yielding a canonical R-structure on M .

2. Let R be an NI-ring, and let M be a left R-module. Let q ∈ M∗.
By the definition of NilRej(M), we have (NilRej(M))q ≤ Nil(R), and hence q
induces an R-linear map q0 : M → R defined by mq0 = mq which is easily seen
to be R-linear.

The notation introduced in Remarks 3.9 is used in the proof of the fol-
lowing analogue of the result that if R is an NI-ring, the ring R/Nil(R) is
reduced.

Theorem 3.10. If M is a left module over an NI-ring R, then

M =
M

NilRej(M)

is reduced as an R-module.

Proof. Let m be a nonzero element of M . Then m /∈ NilRej(M). So
for some q ∈ M∗ the element mq is non-nilpotent, yielding mq0 = mq ̸= 0
in R. Hence M is torsionless as a left R-module. As R is a reduced ring, M
is reduced as an R-module, by Proposition 2.4 of [12] and – by applying the
‘change of rings’ result noted in Proposition 3.2(2) of [12] – is reduced as an
R-module as well.

Remark 3.11. Zimmermann proved Proposition 3.12. We reproduce its
short proof from [16] (Bemerkung 3.6, p. 33) since [16] is not easily accessible.
We use the notation of Remark 2.1.

Proposition 3.12. If RM is regular then ME(M) is also regular.

Proof. Let m ∈ M. Now there exists q ∈ M∗ such that (mq)m = m.
Clearly, m[q,m] = (mq)m = m. So ME(M) is regular.

Since regular ⇒ antiregular ⇒ niltorsionless, we can ask whether similar
results are valid for the other two classes of modules. The answer in the
antiregular case is in the affirmative by Proposition 2.2 of [5]. We consider the
niltorsionless case below.
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Proposition 3.13. If RM is niltorsionless then ME(M) is niltorsionless.

Proof. Let m ∈ M,m ̸= 0. Then there exists q ∈ M∗ such that mq /∈
Nil(R). We claim that [q,m] /∈ Nil(E(M)). If [q,m] ∈ Nil(E(M)), then there
exists k ∈ N such that [q,m]k = 0. This implies 0 = m[q,m]k = (mq)km and
so 0 = (mq)k+1. Thus mq ∈ Nil(R) which is a contradiction. This proves the
claim. Notice that the map θM → E(M) defined by θ(n) = [q, n] is (by Morita
context associativity) right E(M)− linear. Now θ(m) = [q,m] /∈ Nil(E(M))
shows that the right E(M)−module M is niltorsionless.

We note that on putting M = R in the above proposition we recover
Remark 3.1(4).

Remarks 3.14. 1. The converse of Proposition 3.13 does not hold. Con-
sider the group of rationals over the ring of integers. Thus, R = Z and M = Q.
Then ME(M) is niltorsionless, since E(M) = Q However, RM is not niltorsion-
less, since M∗ = 0.

2. Let B = End(ME(M)) = Biend(RM), the biendomorphism ring of

RM . Using the left B-, right E(M)-bimodule structure of M , we deduce from
Proposition 3.13 that the condition ME(M) is niltorsionless is sufficient for the
niltorsionlessness of BM . It is also a necessary condition for the niltorsion-
lessness of BM , since the natural development that leads from R to E(M) to
B = Biend(RM) stabilizes, i.e., E(M) = End(BM) = Biend(ME(M)).

We have for a left moduleM over a reduced ring R, Rej(M)=NilRej(M).

Proposition 3.15. For a module M over a reduced ring we have: M is
torsionless ⇔ M is niltorsionless ⇔ M is semiprime ⇔ M is antisemiprime.

Proof. This is a consequence of Proposition 3.2(c) and Proposition 2.6(c).

The following result establishes the equivalence of some ring theoretic
concepts when R is niltorsionless.

Proposition 3.16. If R is a niltorsionless ring then the following con-
ditions are equivalent.

1. R is reduced.

2. R is reversible.

3. R is symmetric.

4. R is semicommutative.
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5. R is an NI-ring.

6. For all b ∈ R,Nil(R)b ⊆ Nil(R).

Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (6) hold
without the niltorsioness assumption. They are well-known and easy to prove.
(See the literature, e.g. [12, Section 2A] for the relevant definitions and proofs.)

(6) ⇒ (1). Let a ∈ Nil(R). We have aR ⊂ Nil(R) yielding a ∈ NilRej(R)
= 0, since R is niltorsionless.

In the following result, we use the notation y = (yi) for an I-tuple be-
longing to the module ΠMi.

Proposition 3.17. Let I be an indexing set and let, for each i ∈ I, the
module Mi be niltorsionless over Ri. Then M = ΠMi and W = ⊕Mi are
niltorsionless over R = ΠRi.

Proof. Let 0 ̸= m = (mi) ∈ M . Then mj ̸= 0 for some j ∈ I. Since
Mj is niltorsionless over Rj , there exists an Rj-homomorphism qj from Mj

to Rj such that mjqj /∈ Nil(Rj). Let q : M → R be defined as yq = yjqj ,
where yjqj is regarded as an element of R via the inclusion Rj → R. Then
mq = mjqj /∈ Nil(R). Therefore, RM is niltorsionless. The proof of the
niltorsionlessness of RW is similar.

Proposition 3.18. Let I be an indexing set and let, for each i ∈ I, Mi

be a niltorsionless module over R, then M = ΠMi is niltorsionless over R.

Proof. Let 0 ̸= m = (mi) ∈ M . Then mj ̸= 0, for some j ∈ I. Since
Mj is niltorsionless over R, there exists qj ∈ M∗

j = HomR(Mj , R) such that
mjqj /∈ Nil(R). Let q : M → R be the R-homomorphism defined as yq = yjqj .
Then mq = mjqj /∈ Nil(R). Therefore RM is niltorsionless.

4. SOME ‘WEAK’ CONDITIONS ON MODULES

The concept of a weak Armendariz ring, an analogue of the concept
of an Armendariz ring, was introduced and studied by Liu et al. [8]. (This
reference may be consulted for the definition and basic properties of weak
Armendariz rings.) In the next definition, we propose an extension to modules
of this concept.

Definition 4.1. Amodule RM is weak Armendariz if given f(X) =
∑

aiX
i

and m(X) =
∑

mjX
j with coefficients in R and M respectively, the condition

f(X)m(X) = 0 implies aimj ∈ NilRej(M) for every i and j.
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Notation 4.2. Let q : M1 → M2 be an R-module homomorphism. We
denote by q[X] the R[X]-linear map from M1[X] to M2[X] defined by(
ΣmiX

i
)
(q[X]) = Σ(miq)X

i. If q ∈ M∗ then q[X] ∈ HomR[X](M [X], R[X]).

Proposition 4.3. The following conditions are equivalent for a ring R.

(i) The ring R is weak Armendariz.

(ii) Every left R-module is weak Armendariz.

(iii) The left R-module R is weak Armendariz.

Proof. (i) ⇒ (ii). Let M be a left R-module. Assume that for polyno-
mials f(X) =

∑
aiX

i and m(X) =
∑

mjX
j with coefficients in R and M

respectively, the condition f(X)m(X) = 0 holds. For q ∈ M∗ consider the
R[X]-linear map q[X] : M [X] → R[X] defined in 4.2. Notice that g(X) :=
m(X)q[X] =

∑
(mjq)X

j ∈ R[X] and we have f(X)g(X) = f(X)m(X)q[X] =
0, yielding, since R is a weak Armendariz ring, (aimj)q = ai(mjq) ∈ Nil(R)
for all i, j (and for all q ∈ M∗). This implies that aimj ∈ NilRej(M) for all i, j
proving that M is a weak Armendariz module.

The implication (ii) ⇒ (iii) is trivial. Next assume condition (iii). Sup-
pose that for polynomials f(X) =

∑
aiX

i and g(X) =
∑

bjX
j with coeffi-

cients in R we have f(X)g(X) = 0. By hypothesis, ai.bj ∈ NilRej(R) for all
i, j. Hence by Remark 3.1(6), aibj ∈ Nil(R) for all i, j.

Armendariz modules are, of course, weak Armendariz. Semicommutative
rings are weak Armendariz [8, Corollary 3.4], but need not be Armendariz [13,
Example 3.2]. Hence, by Proposition 4.3, weak Armendariz modules need not
be Armendariz.

Following [9], we call a ring R weakly semicommutative if for elements
a, b ∈ R the condition ab = 0 implies aRb ⊂ Nil(R). The class of semicom-
mutative rings is properly contained in the class of weakly semicommutative
rings. We extend this concept to modules as follows.

Definition 4.4. A left R-module M is weakly semicommutative if when-
ever a ∈ R and m ∈ M satisfy the condition am = 0, then for each t ∈ R and
each q ∈ M∗ we have at(mq) ∈ Nil(R).

Semicommutative modules are weakly semicommutative. In the following
proposition, we characterize weakly semicommutative rings through modules
over them.

Proposition 4.5. The following conditions are equivalent for a ring R.

(i) The ring R is weakly semicommutative.
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(ii) Every left R-module is weakly semicommutative.

(iii) The left R-module R is weakly semicommutative.

Proof. (i) ⇒ (ii) Let M be a left R-module. Let am = 0 and q ∈ M∗. We
have a(mq) = (am)q = 0. Hence, for each t ∈ R we must have at(mq) ∈ Nil(R),
proving that M is weakly semicommutative.

The implication (ii) ⇒ (iii) is trivial. Next assume condition (iii). Sup-
pose that for a, b ∈ R we have ab = 0. Since the module RR is weakly semi-
commutative, for each t ∈ R we have atb ∈ NilRej(R). Hence, by Remark
3.1(6), atb ∈ Nil(R), proving that the ring R is weakly semicommutative.

We end this paper by stating a result which is an immediate consequence
of the definitions of the concepts involved.

Proposition 4.6. If a niltorsionless module is weak Armendariz (resp.,
weakly semicommutative), then it is Armendariz (resp., semicommutative).
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