ARMENDARIZ MODULES AND NILTORSIONLESS MODULES

KH. HERA SINGH, A. M. BUHPHANG*, and M. B. REGE

Communicated by Sorin Dăscălescu

In this paper, we introduce the concepts niltorsionless modules and NSmodules (which are generalisations of NI-rings). We prove that the class of niltorsionless modules contains the classes of semiprime and, in particular, the class of regular modules. We prove that over an NI-ring, every module is an NS-module. An example is provided to show that the converse is false. We also prove that over an NI-ring, $\frac{M}{\text{NilRej}(M)}$ is reduced. Further, the concepts weak Armendariz modules and weakly semicommutative modules (analogues of the corresponding ring-theoretic concepts) are briefly studied.

AMS 2020 Subject Classification: 16D10, 16D80.

Key words: torsionless module, niltorsionless module, reject of a module, semiprime module, Armendariz module.

1. INTRODUCTION

Marks [10] called a ring R an *NI-ring* if the set Nil(R) of its nilpotent elements is an ideal of R. NI-rings have been a focus of attention recently. Hizem [7, Theorem 1], established the following characterization of NI-rings: a ring R is an NI-ring if and only if it is a nil power serieswise Armendariz ring, i.e., whenever power series $f(X) = \sum a_i X^i$, $g(X) = \sum b_j X^j$ in R[[X]] satisfy $f(X)g(X) \in \text{Nil}(R)[[X]]$, then $a_ib_j \in \text{Nil}(R)$, for all i and j. An Armendariz ring which is not an NI-ring was constructed by Antoine [2, Example 4.8]. Chun et al. [6], studied rings satisfying the condition 'the set of nilpotent elements form a subring (which may not contain the identity of the ring)'. Armendariz rings as well as NI rings satisfy this condition.

We denote the factor ring R/Nil(R) of an NI-ring R by \overline{R} ; it is clear that \overline{R} is a reduced ring, i.e., it has no nonzero nilpotent elements. In Section 3, we prove a module-theoretic analogue of this result (Theorem 3.10).

After introduction of the notion of an Armendariz ring by Rege et al. [13], a large number of generalizations of that concept were introduced and studied by many authors. (See, for example, the references in [11].) In paragraph 4.7 of [13], the possibility of extending the concept of an Armendariz ring to modules was mentioned. A study of Armendariz modules and semicommutative MATH. REPORTS **25(75)** (2023), *2*, 319–329 doi: 10.59277/mrar.2023.25.75.2.319

modules (also called *zero-insertive (ZI)*) was carried out by Buhphang et al. [3]. The concept of a weak Armendariz ring, a ring-theoretic analogue of the concept of an Armendariz ring, was introduced and studied by Liu et al. [8]. Weakly semicommutative rings have also been studied by Liang et al. [9]. In Section 4, we introduce and briefly study the module theoretic extensions of the concepts of weak Armendariz and weakly semicommutative rings.

The dual (right) R-module $M^* := \operatorname{Hom}_R(M, R)$ associated with a left Rmodule M has played an important role in the study of some known concepts of interest to us - namely, torsionless modules, (Zelmanowitz) regular modules and semiprime modules (see, [14] and [15]). We use M^* to define and study the three concepts mentioned in the abstract.

2. PRELIMINARIES

By a ring we mean an associative ring with an identity element; R always denotes a ring. The set of all nonzero idempotents of R is denoted by $\overline{I}(R)$. Unless otherwise mentioned, by a module we mean a unitary left module. Module homomorphisms are written on the opposite side of the scalars. All our left-sided concepts and results have right-sided counterparts. For unexplained concepts and results we refer to [1] and Section 2A of [12].

Remark 2.1. Let M be a left R-module. By the standard Morita context of M we mean the quadruple $(R, M, M^*, E(M))$. Here E(M) denotes the ring of endomorphisms of the left R-module M. There is a natural structure of a left E(M)-, right R-, bimodule on $M^* := \text{Hom}_R(M, R)$. For $m, n \in M$ and $q \in M^*$, we define the element [q, n] of E(M) by m[q, n] = (mq)n. The 'generalized associativity situation' in the Morita context is exploited without explicit mention.

Next, we recall some definitions. If M and Q are left R-modules then the reject of M in Q is defined in [1, Section 8], as the R-submodule $\bigcap_{f \in \operatorname{Hom}(M,Q)} Kerf$ of M; it is denoted by $Rej_M(Q)$. By Rej(M) we mean the R-submodule $Rej_M(R)$ of M.

Definitions 2.2. A module M is regular [14] (resp., semiprime) if given a non-zero element $m \in M$, there exists $q \in M^*$ such that (mq)m = m (resp., $(mq)m \neq 0$). M is torsionless if given $m \in M$, there exists $q \in M^*$ such that $mq \neq 0$.

Remark 2.3. Denoting the right ideal mM^* of R by J_m , it is easy to check that M is torsionless $\Leftrightarrow Rej(M) = 0 \Leftrightarrow J_m \neq 0$, for all $m \neq 0$.

In the next definition, we introduce the concept of antisemiprime module.

Definition 2.4. A left R-module M is antisemiprime if for a given non-zero element $m \in M$ there exists a non-zero $q \in M^*$ such that $q(mq) \neq 0$.

Antiregular modules were defined and studied by Choudhuri et al. in a series of papers beginning with [4]. Their endomorphism rings were studied in [5].

Definition 2.5. A module M is antiregular if for each non-zero element m of M, there is a non-zero element $q \in M^*$ such that q(mq) = q.

In the next proposition, we record some implications. We recall the proof of (a) for the sake of completeness.

PROPOSITION 2.6. The following implications hold for a module.

- (a) $Regular \Rightarrow antiregular$.
- (b) Antiregular modules are semiprime as well as antisemiprime.
- (c) If a module is semiprime or antisemiprime then it is torsionless.

Proof. (a) Suppose for a non-zero element m of a left R-module M we have (mq)m = m for some $q \in M^*$. Then $0 \neq mq = (mq)(mq)$ implies that $mq \in \overline{I}(R)$, the set of all non-zero idempotents of R. Write $\tilde{q} = q(mq) \in M^*$. Then $m\tilde{q} = (mq)^2 = mq \neq 0 \Rightarrow \tilde{q} \neq 0$. We also have $\tilde{q}(m\tilde{q}) = q(mq)^3 = q(mq) = \tilde{q} \neq 0$ showing that M is antiregular.

(b) Let *m* be a non-zero element of an antiregular module *M*. Now there exists $q \in M^*$ satisfying $q(mq) = q \neq 0$, proving *M* is antisemiprime. Further, $[(mq)m]q = (mq)(mq) = mq \neq 0$ yields $(mq)m \neq 0$. Hence, *M* is semiprime.

(c) Let $m \in M, m \neq 0$. If M is semiprime (resp., antisemiprime), there exists $q \in M^*$ satisfying $(mq)m \neq 0$ (resp., $q(mq) \neq 0$). In either case $mq \neq 0$, showing that M is torsionless. \Box

Remark 2.7. It is clear that for every ring R the modules $_RR$ and R_R are antisemiprime, so the term 'antisemiprime ring' is redundant.

Next, we define four new concepts.

Definition 2.8. The NilReject of a left R-module M is the subset $\{m \in M \mid mq \in \text{Nil}(R), \forall q \in M^*\}$ of M.

We denote the NilReject of a left R-module M by NilRej_M(R) (and by NilRej(M) if there is no possibility of confusion). The conditions 'NilReject is a submodule' and 'NilReject vanishes' are of interest. In order to study these conditions, we introduce Definitions 2.9 to 2.11.

Definition 2.9. A left *R*-module *M* is an *NS*-module if NilRej(M) is an *R*-submodule of *M*.

Definition 2.10. A left R-module M is niltorsionless if NilRej(M) = 0.

Definition 2.11. A ring R is left niltorsionless if it is niltorsionless as a left R-module.

3. NS-MODULES AND NILTORSIONLESS MODULES

In this section, we record a number of results involving NS-modules and niltorsionless modules and rings.

Remarks 3.1. 1. Niltorsionless modules are, trivially, NS-modules.

2. Let M be a nonzero module for which $M^* = 0$. (The additive group of rationals and finite nontrivial abelian groups, regarded as modules over \mathbb{Z} , have this property.) Then NilRej $(M) = M \neq 0$, showing that M is an NS-module which is not niltorsionless.

3. An analogue of Remark 2.1: M is niltorsionless $\Leftrightarrow J_m = mM^* \nsubseteq Nil(R), \forall m \neq 0.$

4. It is easy to see that

 $A := \{a \in R | aR \subset \operatorname{Nil}(R)\} = \{a \in R | Ra \subset rmNil(R)\}.$

(So we can write NilRej(R) unambiguously in place of the subset A of R.) It follows that R is left niltorsionless $\Leftrightarrow A = 0 \Leftrightarrow$ the ring R is right niltorsionless. In view of this, we talk simply of niltorsionless rings.

5. Clearly, if R is reduced, then NilRej(R) = 0, and so R is niltorsionless.

6. We have, trivially NilRej $(R) \subseteq$ Nil(R). We also have: if R is a NI-ring, NilRej(R) = Nil(R).

7. Subrings of niltorsionless rings need not be niltorsionless. For example, consider $R = M_2(K)$ the ring of 2×2 matrices over a field K which is niltorsionless since it is von Neumann regular. However, the subring $UT_2(K)$ of 2×2 upper triangular matrices over K is not niltorsionless since there does not exist any upper triangular matrix A with entries in K such that AE_{12} is non nilpotent.

We note in part (a) of the next proposition that the class of niltorsionless modules contains (over a given ring) the class of antiregular modules; we note in part (c) that modules belonging to this larger class are also semiprime as well as antisemiprime. PROPOSITION 3.2. Let M be a left R-module.

- (a) If M is antiregular, then M is niltorsionless.
- (b) If M is regular, then M is niltorsionless.
- (c) Niltorsionless modules are semiprime as well as antisemiprime.

Proof. (a) Let $m \in M, m \neq 0$. Since M is antiregular there exists $q \in M^*$ such that $q(mq) = q \neq 0$. Hence, $(mq) \in \overline{I}(R)$ yielding $mq \notin \text{Nil}(R)$.

(b) follows from (a).

(c) Let m be a non-zero element of a niltorsionless module M. Now there exists $q \in M^*$ such that $mq \notin \operatorname{Nil}(R)$. Hence, we have $(mq)(mq) \neq 0$, yielding $(mq)m \neq 0$ as well as $q(mq) \neq 0$. Therefore, M is semiprime as well as antisemiprime. \Box

Remark 3.3. It follows from the above proposition that antiregular rings (in particular, (von Neumann) regular rings) are niltorsionless and niltorsionless rings are semiprime.

In Proposition 3.4, we record a result concerning modules over NI-rings.

PROPOSITION 3.4. Let M be a left module over an NI-ring R. Then

- 1. M is an NS-module.
- 2. $\operatorname{Nil}(R)M \leq \operatorname{NilRej}(M)$.

Proof. Since NilRej $(M) = \bigcap_{q \in M^*} q^{-1}(Nil(R))$, it is an *R*-submodule of *M*. Next let $t \in Nil(R), m \in M$ and $q \in M^*$. Since *R* is an NI-ring, $(tm)q = t(mq) \in Nil(R)$ for each $q \in M^*$ implying that $tm \in NilRej(M)$. Hence, $Nil(R)M \leq NilRej(M)$. \Box

Examples 3.5. A ring over which all (left) modules are NS-modules need not be an NI-ring. (We use semisimple in the sense of Bourbaki.) If M is a left module over a semisimple ring R, then M is semisimple and projective, and therefore regular. Hence, by Proposition 3.2(b), M is niltorsionless and hence is an NS-module. However, semisimple rings are NI-rings exactly when they are (finite) products of division rings, by the Wedderburn structure theorem.

We also have:

PROPOSITION 3.6. Let M and W be left R-modules, and let $\beta : M \to W$ be an R-homomorphism. Then NilRej $(M)\beta \leq \text{NilRej}(W)$.

Proof. Let $m \in \text{NilRej}(M)$. Note that if $q \in W^*$, then $\beta \circ q \in M^*$. Hence $(m\beta)q = (m)(\beta \circ q) \in \text{Nil}(R)$ yielding $m \in \text{NilRej}(W)$. \Box

COROLLARY 3.7. NilRej(M) is invariant under E(M).

COROLLARY 3.8. If M is an NS-module then NilRej(M) is an R-E(M)bisubmodule of the bimodule $_RM_{E(M)}$.

Remarks 3.9. 1. Given an NS-module M, we shall use the notation \overline{M} for its factor module $\frac{M}{\text{NilRej}(M)}$. If R is an NI-ring, as noted in Proposition 3.4(2), for every left R-module M we have $\text{Nil}(R)M \leq \text{NilRej}(M)$. It follows that $\text{Nil}(R) \leq ann(R\overline{M})$ yielding a canonical \overline{R} -structure on \overline{M} .

2. Let R be an NI-ring, and let M be a left R-module. Let $q \in M^*$. By the definition of NilRej(M), we have $(NilRej(M))q \leq Nil(R)$, and hence q induces an R-linear map $q_0 : \overline{M} \to \overline{R}$ defined by $\overline{m}q_0 = \overline{mq}$ which is easily seen to be \overline{R} -linear.

The notation introduced in Remarks 3.9 is used in the proof of the following analogue of the result that if R is an NI-ring, the ring R/Nil(R) is reduced.

THEOREM 3.10. If M is a left module over an NI-ring R, then

$$\overline{M} = \frac{M}{\text{NilRej}(M)}$$

is reduced as an R-module.

Proof. Let \overline{m} be a nonzero element of \overline{M} . Then $m \notin \operatorname{NilRej}(M)$. So for some $q \in M^*$ the element mq is non-nilpotent, yielding $\overline{m}q_0 = \overline{mq} \neq \overline{0}$ in \overline{R} . Hence \overline{M} is torsionless as a left \overline{R} -module. As \overline{R} is a reduced ring, \overline{M} is reduced as an \overline{R} -module, by Proposition 2.4 of [12] and – by applying the 'change of rings' result noted in Proposition 3.2(2) of [12] – is reduced as an R-module as well. \Box

Remark 3.11. Zimmermann proved Proposition 3.12. We reproduce its short proof from [16] (Bemerkung 3.6, p. 33) since [16] is not easily accessible. We use the notation of Remark 2.1.

PROPOSITION 3.12. If $_RM$ is regular then $M_{E(M)}$ is also regular.

Proof. Let $m \in M$. Now there exists $q \in M^*$ such that (mq)m = m. Clearly, m[q,m] = (mq)m = m. So $M_{E(M)}$ is regular. \Box

Since regular \Rightarrow antiregular \Rightarrow niltorsionless, we can ask whether similar results are valid for the other two classes of modules. The answer in the antiregular case is in the affirmative by Proposition 2.2 of [5]. We consider the niltorsionless case below.

PROPOSITION 3.13. If $_RM$ is niltorsionless then $M_{E(M)}$ is niltorsionless.

Proof. Let $m \in M, m \neq 0$. Then there exists $q \in M^*$ such that $mq \notin \operatorname{Nil}(R)$. We claim that $[q,m] \notin \operatorname{Nil}(E(M))$. If $[q,m] \in \operatorname{Nil}(E(M))$, then there exists $k \in \mathbb{N}$ such that $[q,m]^k = 0$. This implies $0 = m[q,m]^k = (mq)^k m$ and so $0 = (mq)^{k+1}$. Thus $mq \in \operatorname{Nil}(R)$ which is a contradiction. This proves the claim. Notice that the map $\theta M \to E(M)$ defined by $\theta(n) = [q,n]$ is (by Morita context associativity) right E(M) – linear. Now $\theta(m) = [q,m] \notin \operatorname{Nil}(E(M))$ shows that the right E(M) – module M is niltorsionless. \Box

We note that on putting M = R in the above proposition we recover Remark 3.1(4).

Remarks 3.14. 1. The converse of Proposition 3.13 does not hold. Consider the group of rationals over the ring of integers. Thus, $R = \mathbb{Z}$ and $M = \mathbb{Q}$. Then $M_{E(M)}$ is niltorsionless, since $E(M) = \mathbb{Q}$ However, $_RM$ is not niltorsionless, since $M^* = 0$.

2. Let $B = \operatorname{End}(M_{E(M)}) = \operatorname{Biend}(_RM)$, the biendomorphism ring of $_RM$. Using the left B-, right E(M)-bimodule structure of M, we deduce from Proposition 3.13 that the condition $M_{E(M)}$ is niltorsionless is sufficient for the niltorsionlessness of $_BM$. It is also a necessary condition for the niltorsionlessness of $_BM$, since the natural development that leads from R to E(M) to $B = \operatorname{Biend}(_RM)$ stabilizes, i.e., $E(M) = \operatorname{End}(_BM) = \operatorname{Biend}(M_{E(M)})$.

We have for a left module M over a reduced ring R, Rej(M) = NilRej(M).

PROPOSITION 3.15. For a module M over a reduced ring we have: M is torsionless \Leftrightarrow M is niltorsionless \Leftrightarrow M is semiprime \Leftrightarrow M is antisemiprime.

Proof. This is a consequence of Proposition 3.2(c) and Proposition 2.6(c). \Box

The following result establishes the equivalence of some ring theoretic concepts when R is niltorsionless.

PROPOSITION 3.16. If R is a niltorsionless ring then the following conditions are equivalent.

- 1. R is reduced.
- 2. *R* is reversible.
- 3. R is symmetric.
- 4. *R* is semicommutative.

5. R is an NI-ring.

6. For all $b \in R$, Nil $(R)b \subseteq$ Nil(R).

Proof. The implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5) \Rightarrow (6)$ hold without the niltorsioness assumption. They are well-known and easy to prove. (See the literature, e.g. [12, Section 2A] for the relevant definitions and proofs.)

(6) \Rightarrow (1). Let $a \in Nil(R)$. We have $aR \subset Nil(R)$ yielding $a \in NilRej(R) = 0$, since R is niltorsionless. \Box

In the following result, we use the notation $\mathbf{y} = (y_i)$ for an I-tuple belonging to the module ΠM_i .

PROPOSITION 3.17. Let I be an indexing set and let, for each $i \in I$, the module M_i be niltorsionless over R_i . Then $M = \prod M_i$ and $W = \bigoplus M_i$ are niltorsionless over $R = \prod R_i$.

Proof. Let $0 \neq \mathbf{m} = (m_i) \in M$. Then $m_j \neq 0$ for some $j \in I$. Since M_j is niltorsionless over R_j , there exists an R_j -homomorphism q_j from M_j to R_j such that $m_j q_j \notin \operatorname{Nil}(R_j)$. Let $q : M \to R$ be defined as $\mathbf{y}q = y_j q_j$, where $y_j q_j$ is regarded as an element of R via the inclusion $R_j \to R$. Then $\mathbf{m}q = m_j q_j \notin \operatorname{Nil}(R)$. Therefore, $_RM$ is niltorsionless. The proof of the niltorsionlessness of $_RW$ is similar. \Box

PROPOSITION 3.18. Let I be an indexing set and let, for each $i \in I$, M_i be a niltorsionless module over R, then $M = \prod M_i$ is niltorsionless over R.

Proof. Let $0 \neq \mathbf{m} = (m_i) \in M$. Then $m_j \neq 0$, for some $j \in I$. Since M_j is niltorsionless over R, there exists $q_j \in M_j^* = \operatorname{Hom}_R(M_j, R)$ such that $m_j q_j \notin \operatorname{Nil}(R)$. Let $q: M \to R$ be the R-homomorphism defined as $\mathbf{y}q = y_j q_j$. Then $\mathbf{m}q = m_j q_j \notin \operatorname{Nil}(R)$. Therefore $_R M$ is niltorsionless. \Box

4. SOME 'WEAK' CONDITIONS ON MODULES

The concept of a weak Armendariz ring, an analogue of the concept of an Armendariz ring, was introduced and studied by Liu et al. [8]. (This reference may be consulted for the definition and basic properties of weak Armendariz rings.) In the next definition, we propose an extension to modules of this concept.

Definition 4.1. A module $_RM$ is weak Armendariz if given $f(X) = \sum a_i X^i$ and $m(X) = \sum m_j X^j$ with coefficients in R and M respectively, the condition f(X)m(X) = 0 implies $a_i m_j \in \text{NilRej}(M)$ for every i and j. Notation 4.2. Let $q: M_1 \to M_2$ be an *R*-module homomorphism. We denote by q[X] the R[X]-linear map from $M_1[X]$ to $M_2[X]$ defined by $(\Sigma m_i X^i) (q[X]) = \Sigma(m_i q) X^i$. If $q \in M^*$ then $q[X] \in \operatorname{Hom}_{R[X]}(M[X], R[X])$.

PROPOSITION 4.3. The following conditions are equivalent for a ring R.

- (i) The ring R is weak Armendariz.
- (ii) Every left R-module is weak Armendariz.
- (iii) The left R-module R is weak Armendariz.

Proof. (i) \Rightarrow (ii). Let M be a left R-module. Assume that for polynomials $f(X) = \sum a_i X^i$ and $m(X) = \sum m_j X^j$ with coefficients in R and M respectively, the condition f(X)m(X) = 0 holds. For $q \in M^*$ consider the R[X]-linear map $q[X] : M[X] \to R[X]$ defined in 4.2. Notice that $g(X) := m(X)q[X] = \sum (m_jq)X^j \in R[X]$ and we have f(X)g(X) = f(X)m(X)q[X] = 0, yielding, since R is a weak Armendariz ring, $(a_im_j)q = a_i(m_jq) \in \operatorname{Nil}(R)$ for all i, j (and for all $q \in M^*$). This implies that $a_im_j \in \operatorname{NilRej}(M)$ for all i, j proving that M is a weak Armendariz module.

The implication $(ii) \Rightarrow (iii)$ is trivial. Next assume condition (iii). Suppose that for polynomials $f(X) = \sum a_i X^i$ and $g(X) = \sum b_j X^j$ with coefficients in R we have f(X)g(X) = 0. By hypothesis, $a_i.b_j \in \text{NilRej}(R)$ for all i, j. Hence by Remark 3.1(6), $a_ib_j \in \text{Nil}(R)$ for all i, j. \Box

Armendariz modules are, of course, weak Armendariz. Semicommutative rings are weak Armendariz [8, Corollary 3.4], but need not be Armendariz [13, Example 3.2]. Hence, by Proposition 4.3, weak Armendariz modules need not be Armendariz.

Following [9], we call a ring R weakly semicommutative if for elements $a, b \in R$ the condition ab = 0 implies $aRb \subset Nil(R)$. The class of semicommutative rings is properly contained in the class of weakly semicommutative rings. We extend this concept to modules as follows.

Definition 4.4. A left R-module M is weakly semicommutative if whenever $a \in R$ and $m \in M$ satisfy the condition am = 0, then for each $t \in R$ and each $q \in M^*$ we have $at(mq) \in Nil(R)$.

Semicommutative modules are weakly semicommutative. In the following proposition, we characterize weakly semicommutative rings through modules over them.

PROPOSITION 4.5. The following conditions are equivalent for a ring R.

(i) The ring R is weakly semicommutative.

- (ii) Every left R-module is weakly semicommutative.
- (iii) The left R-module R is weakly semicommutative.

Proof. $(i) \Rightarrow (ii)$ Let M be a left R-module. Let am = 0 and $q \in M^*$. We have a(mq) = (am)q = 0. Hence, for each $t \in R$ we must have $at(mq) \in Nil(R)$, proving that M is weakly semicommutative.

The implication $(ii) \Rightarrow (iii)$ is trivial. Next assume condition (iii). Suppose that for $a, b \in R$ we have ab = 0. Since the module $_RR$ is weakly semicommutative, for each $t \in R$ we have $atb \in \text{NilRej}(R)$. Hence, by Remark 3.1(6), $atb \in \text{Nil}(R)$, proving that the ring R is weakly semicommutative. \Box

We end this paper by stating a result which is an immediate consequence of the definitions of the concepts involved.

PROPOSITION 4.6. If a niltorsionless module is weak Armendariz (resp., weakly semicommutative), then it is Armendariz (resp., semicommutative).

Acknowledgments. The authors express their gratitude to the referee for his/her careful suggestions and comments and also to the Editorial Secretary of the journal for her prompt action toward the paper.

REFERENCES

- F.W. Anderson and K.R. Fuller, *Rings and Categories of Modules*. Grad. Texts in Math. 13, New York, Heidelberg, Berlin, Springer-Verlag, 1974.
- [2] R. Antoine, Nilpotent element and Armendariz rings. J. Algebra **318** (2008), 3128-3140.
- [3] A.M. Buhphang and M.B. Rege, Semi-commutative modules and Armendariz modules. Arab J. Math. Sci. 8 (2002), 53-65.
- [4] I. Choudhuri, M.I. Devi, and M.B. Rege, Anti-regularity in modules. Nat. Acad. Sci. Lett. 13 (1990), 6, 253-255.
- [5] I. Choudhuri, M.I. Devi, and M.B. Rege, Endomorphism rings of anti-regular modules. Nat. Acad. Sci. Lett. 13 (1990), 7, 279-281.
- [6] Y. Chun, Y.C. Jeon, S. Kang, K.N. Lee, and Y. Lee, A concept unifying the Armendariz and NI conditions. Bull. Korean Math. Soc. 48 (2011), 1, 115-127.
- [7] S. Hizem, A note on nil power serieswise Armendariz rings. Rend. Circ. Mat. Palermo (2) 59 (2010), 87-99.
- [8] Z. Liu and R. Zhao, On weak Armendariz rings. Comm. Algebra 34 (2006), 7, 2607-2616.
- L. Liang, L. Wang, and Z. Liu, On a generalization of semicommutative rings. Taiwanese J. Math. 11 (2007), 5, 1359-1368.
- [10] G. Marks, On 2-primal Ore extensions. Comm. Algebra 29 (2001), 5, 2113-2123.
- [11] G. Marks, R. Mazurek, and M. Ziembowski, A unified approach to various generalizations of Armendariz rings. Bull. Aust. Math. Soc. 81 (2010), 361-397.

- [12] M.B. Rege and A.M. Buhphang, On reduced modules and rings. Int. Electron. J. Algebra 3 (2008), 58-74.
- [13] M.B. Rege and S.C. Chhawchharia, Armendariz rings. Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), 14-17.
- [14] J. Zelmanowitz, Regular modules. Trans. Amer. Math. Soc. 163 (1972), 341-355.
- [15] J. Zelmanowitz, Semiprime modules with maximum conditions. J. Algebra 25 (1973), 554-574.
- [16] B. Zimmermann-Huisgen, Endomorphismenringe von Selbstgeneratoren. Dissertation, Ludwig-Maximilians Universität, München, 1974.

Received January 13, 2020

Manipur University Department of Mathematics Canchipur-795003, Imphal, India heranerist@gmail.com

North Eastern Hill University Department of Mathematics Permanent Campus Shillong-793022, Meghalaya, India. ardeline170gmail.com, mb29rege0gmail.com