HOMOLOGY THEORY OF MULTIPLICATIVE HOM-LIE ALGEBRAS

MAOSEN XU and ZHIXIANG WU

Communicated by Sorin Dăscălescu

Abstract

In this article, we establish Serre-Hochschild spectral sequences of Hom-Lie algebras. By using these spectral sequences, we describe homology groups of finite dimensional multiplicative Hom-Lie algebras in terms of homology groups of Lie algebras and abelian Hom-Lie algebras.

AMS 2020 Subject Classification: 17D30,16E40.
Key words: homology group, Hom-Lie algebra, spectral sequence.

1. INTRODUCTION

In recent years, many mathematicians and physicists studied various Hom-type algebras. M. Hassanzadeh, I. Shapiro and S. Sütlü studied the cyclic homology of Hom-associative algebras in [7]. B. Guan, L. Chen and B. Sun introduced Hom-Lie superalgebras in [3]. A. Makhlouf and S. Silvestrov studied Hom-associative, Hom-Leibniz and Hom-Lie admissible algebraic structures in [9] and Hom-Lie admissible Hom-coalgebras and Hom-Hopf algebras in [10]. The theory of quantum Hom-algebra was established in [15, [16, ,17. The notion of Hom-Lie algebras originated from the q-deformation of Witt algebras and Virasoro Lie algebras (see [5]). Hom-Lie algebras are studied extensively. Especially, the representation theory of Hom-Lie algebras was well-developed. For example, the irreducible representations of simple Hom-Lie algebras were obtained in [2]. The Ado theorem for a nilpotent Hom-Lie algebra was proved in [11. D. Yau constructed the universal enveloping algebra of a Hom-Lie algebra in [14]. In addition, the cohomology of Hom-Lie algebras was studied in [1] and [12]. From these articles, we know that the low dimension cohomology groups can be interpreted as the central extensions and derivations of HomLie algebras. Dually, there is a homology theory of Hom-Lie algebras, which was developed by many researchers. Especially, D. Yau defined the ChevalleyEilenberg type complex of a Hom-Lie algebra in [13], which is the main object we focus on in this paper. Since Serre-Hochschild spectral sequence of Lie algebras plays a very important role in the homology theory of Lie algebras (see MATH. REPORTS 25(75) (2023), 2, 331-347 doi: $10.59277 / \mathrm{mrar} .2023 .25 .75 .2 .331$
[6]), we construct a counterpart Serre-Hochschild spectral sequence of HomLie algebras. Using this spectral sequence, we establish the bridge between the homology groups of Hom-Lie algebras and that of Lie algebras.

This paper is arranged as follows: in Section 2, we recall some basic definitions of Hom-Lie algebras and provide some examples of different type of Hom-Lie algebras. We prove that every multiplicative Hom-Lie algebra is a semi-direct product of a regular Hom-Lie algebra and a module over this regular Hom-Lie algebra.

In Section 3, the definition of homology groups of a multiplicative HomLie algebra are given. In addition, we investigate the module structures on the Hom-chains.

In Section 4, we establish the Serre-Hochschild spectral sequence of HomLie algebras. By using this method, we describe the homology groups of finite dimensional multiplicative Hom-Lie algebras in terms of homology groups of Lie algebras and abelian Hom-Lie algebras, see the formula (16).

In this article, \mathbf{k} is an algebraically closed field of characteristic zero. In addition, all the vectors and algebras are over the field $\mathbf{k} . \mathbb{Z}$ is the ring of integers and \mathbb{Z}_{+}is the set of non-negative integers.

2. PRELIMINARY

In this section, we recall some basic concept and prove some elementary results related to Hom-Lie algebras. First, let us recall the definitions of various Hom-Lie algebras.

Definition 2.1. Suppose that \mathfrak{g} is a vector space with an endomorphism α and $[\cdot, \cdot]_{\mathfrak{g}}: \wedge^{2} \mathfrak{g} \rightarrow \mathfrak{g}$ is a skew-symmetric map. Then the triple $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, \alpha\right)$ is called a Hom-Lie algebra if it satisfies the Hom-Jacobi Identity:

$$
\begin{equation*}
\left[\alpha(x),[y, z]_{\mathfrak{g}}\right]_{\mathfrak{g}}+\left[\alpha(y),[z, x]_{\mathfrak{g}}\right]_{\mathfrak{g}}+\left[\alpha(z),[x, y]_{\mathfrak{g}}\right]_{\mathfrak{g}}=0 \tag{1}
\end{equation*}
$$

for $x, y, z \in \mathfrak{g}$.

1. A Hom-subalgebra \mathfrak{h} of a Hom-Lie $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, \alpha\right)$ is a α-invariant subspace \mathfrak{h} of \mathfrak{g} such that $[\mathfrak{h}, \mathfrak{h}]_{\mathfrak{g}} \subset \mathfrak{h}$.
2. A Hom-subalgebra \mathfrak{h} is called a Hom-ideal of \mathfrak{g} if $[\mathfrak{h}, \mathfrak{g}]_{\mathfrak{g}} \subset \mathfrak{h}$.
3. A Hom Lie algebra $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, \alpha\right)$ is said to be multiplicative if $\alpha\left([a, b]_{\mathfrak{g}}\right)=$ $[\alpha(a), \alpha(b)]_{\mathfrak{g}}$.
4. A regular Hom-Lie algebra $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, \alpha\right)$ is a multiplicative Hom-Lie algebra with an invertible α.

It is obvious that a Hom-subalgebra \mathfrak{h} of a $\operatorname{Hom}-\operatorname{Lie}\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, \alpha\right)$ is itself a Hom-Lie algebra with the restriction map $\alpha_{\mathfrak{h}}$ and restriction bracket. In the sequel of this paper, to simplify notations, we usually abbreviate the Hom-Lie triple $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, \alpha\right)$ to \mathfrak{g}.

Example 2.2. Let W_{1} be the Lie algebra generated by the set $\left\{e_{i}\right\}_{i \geq-1}$ together with the brackets: $\left[e_{i}, e_{j}\right]=(j-i) e_{i+j}$. For any $k \in \mathbb{Z}_{+}$, we define $\alpha_{k}\left(e_{i}\right)=e_{i+k}$. Then $\left(W_{1},[\cdot, \cdot], \alpha_{k}\right)$ is a Hom-Lie algebra, but it is not multiplicative for positive k.

Example 2.3. (Yau twist) Let \mathfrak{g} be a Lie algebra with bracket $[\cdot, \cdot]$. Suppose α is an endomorphism of \mathfrak{g}. Define $[x, y]_{\mathfrak{g}}:=\alpha([x, y])=[\alpha(x), \alpha(y)]$. Then $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, \alpha\right)$ is a multiplicative Hom-Lie algebra. In particular, any Lie algebra is a Hom-Lie algebra with $\alpha=i d$.

Definition 2.4. Suppose that $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, \alpha\right)$ is a Yau twist of a Lie \mathfrak{g}_{L} by its endomorphism α, then we call it a Hom-Lie algebra of Lie type of the Lie algebra \mathfrak{g}_{L}.

Every regular Hom-Lie algebra is a Hom-Lie algebra of Lie type. In fact, if $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, \alpha\right)$ is a regular Hom-Lie algebra, then it is a Hom-Lie algebra of Lie type of \mathfrak{g}_{L}, where $\mathfrak{g}_{L}=\mathfrak{g}$ as vector spaces, whose bracket is given by $[x, y]=\alpha^{-1}\left([x, y]_{\mathfrak{g}}\right)$ for $x, y \in \mathfrak{g}_{L}$. Thus the category of Lie algebras is equivalent to the category of regular Hom-Lie algebras.

Example 2.5. Suppose that $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, \alpha\right)$ is a multiplicative Lie algebra. For arbitrary $s \in \mathbb{Z}^{+}, \alpha^{s}([x, y])=\left[\alpha^{s}(x), \alpha^{s}(y)\right]=0$ for $x \in \operatorname{ker} \alpha^{s}$ and $y \in \mathfrak{g}$. Thus $\operatorname{ker} \alpha^{s}$ is a Hom-ideal of \mathfrak{g}.

Next, we recall representations of Hom-Lie algebras. A representation of a Hom-Lie algebra $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, \alpha\right)$ is also called a module over it or a \mathfrak{g}-module.

Definition 2.6. Suppose that $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, \alpha\right)$ is a Hom-Lie algebra and M is a vector space with an endomorphism α_{M}. Let ρ_{M} be a k-linear map from \mathfrak{g} to $\mathfrak{g l}(M)$. Then the triple $\left(M, \rho_{M}, \alpha_{M}\right)$ is called a $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, \alpha\right)$-module if the following compatible conditions hold:

$$
\begin{gather*}
\rho_{M}\left([x, y]_{\mathfrak{g}}\right) \alpha_{M}(m)=\rho_{M}(\alpha(x)) \rho_{M}(y) m-\rho_{M}(\alpha(y)) \rho_{M}(x) m, \tag{2}\\
\alpha_{M}(\rho(x) m)=\rho_{M}(\alpha(x)) \alpha_{M}(m) \tag{3}
\end{gather*}
$$

for any $x, y \in \mathfrak{g}, m \in \mathfrak{g}$.
In the sequel, to simplify notations, we will use the pair $\left(M, \alpha_{M}\right)$ to substitute the triple $\left(M, \rho_{M}, \alpha_{M}\right)$ and $\rho_{M}(x)(m)$ is abbreviated as $x \cdot m$, or $x m$, if there is no ambiguous of the action of \mathfrak{g} on M. Sometimes, we simply
call M a \mathfrak{g}-module. We use $(\mathbf{k}, i d)$ to denote the trivial module of a Hom-Lie algebra ($\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, \alpha$).

If I is a Hom-ideal of a multiplicative Hom-Lie algebra $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, \alpha\right)$, then $\left(I,\left.\alpha\right|_{I}\right)$ is a \mathfrak{g}-module with the action: $x \cdot y=[x, y]_{\mathfrak{g}}$ for $x \in \mathfrak{g}$ and $y \in I$. In particular, $I=\mathfrak{g}$ is a \mathfrak{g}-module. This module is called a adjoint module. A representation of a multiplicative Hom-Lie algebra can be characterized by another multiplicative Hom-Lie algebra. To describe this, let M be a vector space, $\rho_{M} \in \operatorname{Hom}_{\mathbf{k}}(\mathfrak{g}, \mathfrak{g l}(M)), \alpha_{M} \in \mathfrak{g l}(M)$. Define a bracket on $\mathfrak{g} \oplus M$ by

$$
\begin{equation*}
\left.\left[\left(x, m_{1}\right),\left(y, m_{2}\right)\right]_{(\mathfrak{g}, M)}=\left([x, y]_{\mathfrak{g}}, \rho_{M}(x) m_{2}-\rho_{M}(y) m_{1}\right]\right) \tag{4}
\end{equation*}
$$

and a \mathbf{k}-linear map by

$$
\alpha_{\ltimes}\left(x, m_{1}\right)=\left(\alpha(x), \alpha_{M}\left(m_{1}\right)\right),
$$

where $x, y \in \mathfrak{g}$ and $m_{1}, m_{2} \in M$. Then we have the following proposition.
Proposition 2.1. Suppose that $\left(\mathfrak{g},[\cdot, \cdot \cdot]_{\mathfrak{g}}, \alpha\right)$ is a multiplicative Hom-Lie algebra. Then $\left(\mathfrak{g} \oplus M,[\cdot, \cdot]_{(\mathfrak{g}, M)}, \alpha_{\ltimes}\right)$ is a multiplicative Hom-Lie algebra if and only if $\left(M, \alpha_{M}\right)$ is a \mathfrak{g}-module with the action ρ_{M}.

Proof. If $\left(M, \alpha_{M}\right)$ is a \mathfrak{g}-module, $\left(\mathfrak{g} \oplus M,[\cdot, \cdot]_{(\mathfrak{g}, M)}, \alpha_{\ltimes}\right)$ is a multiplicative Hom-Lie algebra by [12, Proposition 4.5]. On the other hand, if $(\mathfrak{g} \oplus$ $\left.M,[\cdot, \cdot]_{(\mathfrak{g}, M)}, \alpha_{\ltimes}\right)$ is a multiplicative Hom-Lie algebra, then M is a Hom-ideal of $\mathfrak{g} \oplus M$. Thus $\left(M, \alpha_{M}\right)$ is a \mathfrak{g}-module with the action ρ_{M}.

The multiplicative Hom-Lie algebra $\left(\mathfrak{g} \oplus M,[\cdot, \cdot]_{(\mathfrak{g}, M)}, \alpha_{\ltimes}\right)$ in Proposition 2.1 is called a semi-direct product of \mathfrak{g} and its representation M. Every finitedimensional multiplicative Hom-Lie algebra is a semi-direct product of a regular Hom-Lie algebra and its representation. To prove this claim, let us fix some terms. Suppose that α is an endomorphism of a vector space V and

$$
0 \subset \operatorname{ker} \alpha \subset \operatorname{ker} \alpha^{2} \subset \cdots \subset \operatorname{ker} \alpha^{s} \subset \cdots
$$

is an ascending chain of subspaces of V. If there is k such that $\operatorname{ker}\left(\alpha^{k}\right)=\operatorname{ker}\left(\alpha^{l}\right)$ for any $l \geq k$, then there is a minimal integer s such that $\operatorname{ker} \alpha^{s}=\operatorname{ker} \alpha^{t}$ for any $t \geq s$. We call this s a null degree of α. The null degree of α is denoted by $n(\alpha)$.

With this notion, we can prove the following key lemma for Section 4.
Lemma 2.1. Suppose that $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, \alpha\right)$ is a finite dimensional multiplicative Hom-Lie algebra with null degree $n(\alpha)=s$. Then $\mathfrak{g}=R \ltimes \operatorname{ker} \alpha^{s}$, where $R \simeq \mathfrak{g} / \operatorname{ker}\left(\alpha^{s}\right)$ is a regular Hom-subalgebra of \mathfrak{g}.

Proof. Let $\mathfrak{g}=R \oplus \operatorname{ker} \alpha^{s}$ be the Jordan decomposition of α. It is obvious that $\left.\alpha\right|_{R}$ is invertible. We claim that R is closed under the bracket of \mathfrak{g}. Indeed,
for $a, b \in R$, write $[a, b]_{\mathfrak{g}}=c+x$, where $c \in R$ and $x \in \operatorname{ker} \alpha^{s}$. Since the restriction of α on R is an isomorphism, there exists $a^{\prime}, b^{\prime}, c^{\prime} \in R$ such that

$$
\alpha^{s}\left(a^{\prime}\right)=a, \alpha^{s}\left(b^{\prime}\right)=b, \alpha^{s}\left(c^{\prime}\right)=c
$$

Thus, $\alpha^{s}\left([a, b]_{\mathfrak{g}}-c\right)=\alpha^{2 s}\left(\left[a^{\prime}, b^{\prime}\right]_{\mathfrak{g}}-c^{\prime}\right)=0$. Therefore, $\left[a^{\prime}, b^{\prime}\right]_{\mathfrak{g}}-c^{\prime} \in \operatorname{ker} \alpha^{2 s}=$ $\operatorname{ker} \alpha^{s}$. This implies that $x=[a, b]_{\mathfrak{g}}-c=\alpha^{s}\left(\left[a^{\prime}, b^{\prime}\right]_{\mathfrak{g}}-c^{\prime}\right)=0$. Hence, R is a Hom-subalgebra of \mathfrak{g}. Since $\operatorname{ker} \alpha^{s}$ is a Hom-ideal of $\mathfrak{g}, \mathfrak{g}=R \ltimes \operatorname{ker} \alpha^{s}$.

Finally, we recall the tensor product of $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, \alpha\right)$-modules. Suppose $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, \alpha\right)$ is a regular Hom-Lie algebra and $\left(M_{1}, \alpha_{M_{1}}\right), \cdots,\left(M_{n}, \alpha_{M_{n}}\right)$ are \mathfrak{g}-modules. Let $M=M_{1} \otimes M_{2} \otimes \cdots \otimes M_{n}$ be the tensor product of M_{1}, \cdots, M_{n} over \mathbf{k}. Define a linear map $\alpha_{M}: M \rightarrow M$ and an action of \mathfrak{g} on M via

$$
\begin{equation*}
\alpha_{M}\left(x_{1} \otimes x_{2} \otimes \cdots \otimes x_{n}\right)=\alpha_{M_{1}}\left(x_{1}\right) \otimes \alpha_{M_{2}}\left(x_{2}\right) \otimes \cdots \otimes \alpha_{M_{n}}\left(x_{n}\right) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
h \cdot\left(x_{1} \otimes x_{2} \otimes \cdots \otimes x_{n}\right)=\sum_{i=1}^{n} \alpha_{M_{1}}\left(x_{1}\right) \otimes \cdots \otimes h \cdot x_{i} \otimes \cdots \otimes \alpha_{M_{n}}\left(x_{n}\right) \tag{6}
\end{equation*}
$$

for $h \in \mathfrak{g}$ and $x_{1} \otimes x_{2} \otimes \cdots \otimes x_{n} \in M$, respectively. Then $\left(M, \alpha_{M}\right)$ is a \mathfrak{g}-module by [11, proposition 1.1].

Remark 2.7. Suppose \mathfrak{g} is a Hom-Lie algebra. Then the category of all \mathfrak{g}-modules is a symmetric monoidal category with the action given by (6).

3. HOMOLOGY OF MULTIPLICATIVE HOM-LIE ALGEBRAS

In this section, all Hom-Lie algebras are always multiplicative unless otherwise specified. First, let us recall the Chevalley-Elienberg type homology of multiplicative Hom-Lie algebras from [13].

Suppose that $\left(M, \alpha_{M}\right)$ be a module over a multiplicative Hom-Lie algebra $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, \alpha\right)$. Recall that, for $n \in \mathbb{Z}_{+}$, a Hom- n-chain of the Hom-Lie algebra \mathfrak{g} with coefficients in M is an element in the vector space $C_{n}\left(\mathfrak{g},\left(M, \alpha_{M}\right)\right)=$ $\wedge^{n} \mathfrak{g} \otimes M$, where $\wedge^{n} \mathfrak{g}$ is the nth exterior power of \mathfrak{g}. If $n=0$, then $\wedge^{0} \mathfrak{g}=\mathbf{k}$ is a \mathfrak{g}-module with a trivial action. The differential d from $C_{n}\left(\mathfrak{g},\left(M, \alpha_{M}\right)\right)$ to $C_{n-1}\left(\mathfrak{g},\left(M, \alpha_{M}\right)\right)$ is a \mathbf{k}-linear map given by

$$
\begin{align*}
& d\left(x_{1} \wedge x_{2} \wedge \cdots \wedge x_{n} \otimes m\right)=\sum_{i=1}^{n}(-1)^{i} \alpha\left(x_{1}\right) \wedge \alpha\left(x_{2}\right) \wedge \cdots \widehat{x_{i}} \cdots \wedge \alpha\left(x_{n}\right) \otimes x_{i} . m \tag{7}\\
& \quad+\sum_{1 \leq i<j \leq n}(-1)^{i+j}\left[x_{i}, x_{j}\right]_{\mathfrak{g}} \wedge \alpha\left(x_{1}\right) \wedge \cdots \widehat{x_{i}} \cdots \widehat{x_{j}} \cdots \wedge \alpha\left(x_{n}\right) \otimes \alpha_{M}(m)
\end{align*}
$$

for $x_{1}, x_{2}, \cdots, x_{n} \in \mathfrak{g}$ and $m \in M$. Since $d^{2}=0$ by [13, Theorem 3.4], $(C \bullet(\mathfrak{g}, M), d)$ forms a complex. This complex is called Chevalley-Eilenberg complex of the Hom-Lie algebra ($\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, \alpha$) with coefficient in M. We use $H_{n}\left(\mathfrak{g},\left(M, \alpha_{M}\right)\right)$ to denote the nth homology group of this Chevalley-Eilenberg complex of the Hom-Lie algebra ($\left.\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, \alpha\right)$ with coefficient in M.

Suppose that a Hom-Lie algebra $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, \alpha\right)$ is regular. Then it is a Hom-Lie algebra of Lie type of a Lie algebra \mathfrak{g}_{L}. Furthermore, if α_{M} of the representation $\left(M, \alpha_{M}\right)$ is also invertible, then $H_{n}\left(\mathfrak{g},\left(M, \alpha_{M}\right)\right)$ is the same as the n-th Chevalley-Eilenberg homological group $H_{n}^{L i e}\left(\mathfrak{g}_{L}, M\right)$ of the Lie algebra with the coefficient in M, where M is a \mathfrak{g}_{L} module via

$$
\begin{equation*}
x \cdot m=\alpha_{M}^{-1}\left(\rho_{M}(x) \cdot m\right) \tag{8}
\end{equation*}
$$

for $x \in \mathfrak{g}_{L}, m \in M$. In fact, we can construct a morphism from the ChevalleyEilenberg complex of the Lie algebra \mathfrak{g}_{L} with coefficients in M to the ChevalleyEilenberg complex $\left(C_{\bullet}(\mathfrak{g}, M), d\right)$ of Hom-Lie algebra $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, \alpha\right)$ with coefficients in M as follow.

For $x_{1}, \cdots, x_{n} \in \mathfrak{g}, m \in M$, define a mapping φ via

$$
x_{1} \wedge x_{2} \wedge \cdots \wedge x_{n} \otimes m \mapsto \alpha\left(x_{1}\right) \wedge \alpha\left(x_{2}\right) \wedge \cdots \wedge \alpha\left(x_{n}\right) \otimes \alpha_{M}(m)
$$

It is easy to check that φ is an isomorphism of complexes. Then it induces an isomorphism

$$
\begin{equation*}
H_{n}\left(\mathfrak{g},\left(M, \alpha_{M}\right)\right) \cong H_{n}^{L i e}\left(\mathfrak{g}_{L}, M\right) \tag{9}
\end{equation*}
$$

where \mathfrak{g}_{L} acts on M by (8). If a Hom-Lie algebra ($\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, \alpha$) is not regular, there are no such isomorphisms as the following example to explain.

Example 3.1. Let $n \geq 2$ and $\mathfrak{g l}(n, \mathbf{k})$ be the general linear Lie algebra of all $n \times n$ matrices over the field \mathbf{k}. Define $\alpha(x)=\operatorname{trace}(x) I_{n}$, where I_{n} is the identity matrix. Since the image of α is in the center of $\mathfrak{g l}(n, \mathbf{k})$, the Hom-Jacobi identity holds. Thus ($\mathfrak{g l}(n, \mathbf{k}),[\cdot, \cdot], \alpha)$ is a multiplicative Hom-Lie algebra.

It is well known that

$$
H_{\bullet}^{L i e}(\mathfrak{g l}(n, \mathbf{k}), \mathbf{k}) \cong \wedge\left[\theta_{1}, \theta_{2}, \cdots, \theta_{n}\right]
$$

where $\wedge\left[\theta_{1}, \theta_{2}, \cdots, \theta_{n}\right]$ is the exterior algebra with generator θ_{i} of degree $2 i-1$. However, from the definition of differential given by (8), the differential of the complex $C_{\bullet}(\mathfrak{g l}(n, \mathbf{k}),(\mathbf{k}, i d))$ is zero. Thus $H_{\bullet}^{L i e}(\mathfrak{g l}(n, \mathbf{k}), \mathbf{k})$ is not isomorphic to $H_{n}(\mathfrak{g l}(n, \mathbf{k}),(\mathbf{k}, i d))$.

Notice that the action (6) is invariant under the permuting factors in the tensor products. Thus $\left(C_{n}(\mathfrak{g}, M), \alpha_{n, M}\right)$ is also a \mathfrak{g}-module with the action induced by (6). Explicitly, for $x_{1}, x_{2}, \cdots x_{n} \in \mathfrak{g}$ and $m \in M$,

$$
\alpha_{n, M}\left(x_{1} \wedge x_{2} \wedge \cdots \wedge x_{n} \otimes m\right)=\alpha\left(x_{1}\right) \wedge \alpha\left(x_{2}\right) \wedge \cdots \wedge \alpha\left(x_{n}\right) \otimes \alpha_{M}(M)
$$

In the following, we use the same notation for an endomorphism of a vector space V, its restriction to a subspace $W \subseteq V$ and the induced endomorphism of the quotient space V / U by its invariant subspace U.

Next, we recall the relative homology theory of Hom-Lie algebras which is called Relative Hom-homology. Suppose ($\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, \alpha$) is a multiplicative HomLie algebra and $\left(M, \alpha_{M}\right)$ is a \mathfrak{g}-module. Let \mathfrak{h} be a regular Hom-subalgebra of \mathfrak{g}. Then the group of relative Hom- n-chains is defined via

$$
C_{n}\left(\mathfrak{g}, \mathfrak{h},\left(M, \alpha_{M}\right)\right)=\frac{\wedge^{n}(\mathfrak{g} / \mathfrak{h}) \otimes M}{\mathfrak{h} \cdot\left(\wedge^{n}(\mathfrak{g} / \mathfrak{h}) \otimes M\right)},
$$

where the dot action of \mathfrak{h} on $\wedge^{n} \mathfrak{g} / \mathfrak{h} \otimes M$ is defined via (6).
Lemma 3.1. Suppose that \mathfrak{h} is a Hom-ideal of a multiplicative Hom-Lie algebra $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, \alpha\right)$ and $\left(M, \alpha_{M}\right)$ is a \mathfrak{g}-module. Then $\alpha(h) \cdot d \phi=d(h \cdot \phi)$ for any $\phi \in C_{n}\left(\mathfrak{h},\left(M, \alpha_{M}\right)\right)$ and $h \in \mathfrak{g}$.

Proof. Since all the maps are k-linear, we may assume that ϕ is a monomial, i.e, $\phi=x_{1} \wedge x_{2} \wedge \cdots \wedge x_{n} \otimes m$, where $x_{1}, x_{2}, \cdots, x_{n} \in \mathfrak{h}$ and $m \in M$. For any $h \in \mathfrak{g}$, we have

$$
\begin{aligned}
& d(h \cdot \phi) \\
= & d\left(\sum_{i=1}^{n} \alpha\left(x_{1}\right) \wedge \cdots \wedge\left[h, x_{i}\right]_{\mathfrak{g}} \wedge \cdots \wedge \alpha\left(x_{n}\right) \otimes \alpha_{M}(m)\right. \\
& \left.+\alpha\left(x_{1}\right) \wedge \cdots \wedge \alpha\left(x_{n}\right) \otimes h \cdot m\right) \\
= & \sum_{i=1}^{n}\left((-1)^{i} \alpha^{2}\left(x_{1}\right) \wedge \cdots \widehat{\left.h \cdot x_{i}\right]_{\mathfrak{g}}} \cdots \wedge \alpha^{2}\left(x_{n}\right) \otimes\left[h, x_{i}\right]_{\mathfrak{g}} \cdot \alpha_{M}(m)\right. \\
& +\sum_{j=1}^{i-1}(-1)^{i+j+1}\left[\left[h, x_{i}\right]_{\mathfrak{g}}, \alpha\left(x_{j}\right)\right]_{\mathfrak{g}} \wedge \alpha^{2}\left(x_{1}\right) \cdots \widehat{\alpha\left(x_{j}\right)} \cdots \widehat{\left.h, x_{i}\right]_{\mathfrak{g}}} \cdots \wedge \\
& \alpha^{2}\left(x_{n}\right) \otimes \alpha_{M}^{2}(m)+\sum_{j=i+1}^{n}(-1)^{i+j}\left[\left[h, x_{i}\right]_{\mathfrak{g}}, \alpha\left(x_{j}\right)\right]_{\mathfrak{g}} \wedge \alpha^{2}\left(x_{1}\right) \wedge \cdots \\
& \widehat{\left[h, x_{i}\right]_{\mathfrak{g}}} \cdots \widehat{\alpha\left(x_{j}\right)} \cdots \wedge \alpha^{2}\left(x_{n}\right) \otimes \alpha_{M}^{2}(m)+\sum_{j=1, j \neq i}^{n}(-1)^{j} \alpha^{2}\left(x_{1}\right) \wedge \cdots \\
& \widehat{\alpha\left(x_{j}\right)} \cdots \wedge \alpha\left(\left[h, x_{i}\right]_{\mathfrak{g}}\right) \wedge \cdots \wedge \alpha^{2}\left(x_{n}\right) \otimes \alpha\left(x_{j}\right) \cdot \alpha_{M}(m) \\
& \left.+\quad \sum_{1 \leq s<t \leq n, s, t \neq i}(-1)^{s+t}\left[\alpha\left(x_{s}\right), \alpha\left(x_{t}\right)\right]_{\mathfrak{g}} \wedge \alpha^{2}\left(x_{1}\right) \wedge \cdots \widehat{\alpha\left(x_{s}\right)} \cdots \widehat{\alpha\left(x_{t}\right.}\right) \cdots \wedge \\
& \left.\alpha^{2}\left(x_{n}\right) \otimes \alpha_{M}^{2}(m)\right)+d\left(\alpha\left(x_{1}\right) \wedge \cdots \wedge \alpha\left(x_{n}\right) \otimes h . m\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \sum_{1=i<j \leq n}(-1)^{i+j}\left(\left[\left[h, x_{i}\right]_{\mathfrak{g}}, \alpha\left(x_{j}\right)\right]_{\mathfrak{g}}-\left[\left[h, x_{j}\right]_{\mathfrak{g}}, \alpha\left(x_{i}\right)\right]_{\mathfrak{g}}-\left[\alpha(h),\left[x_{i}, x_{j}\right]_{\mathfrak{g}}\right]_{\mathfrak{g}}\right) \wedge \\
& \left.\alpha^{2}\left(x_{1}\right) \wedge \alpha^{2}\left(x_{2}\right) \wedge \cdots \widehat{\alpha\left(x_{i}\right)} \cdots \widehat{\alpha\left(x_{j}\right)} \cdots \wedge \alpha^{2}\left(x_{n}\right) \otimes \alpha_{M}^{2}(m)\right)+\alpha(h) \cdot(d \phi) .
\end{aligned}
$$

Thus $\alpha(h) \cdot d \phi=d(h \cdot \phi)$ by Hom-Jacobi identity.
Let \mathfrak{h} be a Hom-ideal of a multiplicative Hom-Lie algebra $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, \alpha\right)$. By Lemma 3.1,

$$
d\left(\mathfrak{h} \cdot\left(\wedge^{n}(\mathfrak{g} / \mathfrak{h}) \otimes M\right)\right) \subset \alpha(\mathfrak{h}) \cdot\left(\wedge^{n}(\mathfrak{g} / \mathfrak{h}) \otimes M\right)=\mathfrak{h} \cdot d\left(\wedge^{n}(\mathfrak{g} / \mathfrak{h}) \otimes M\right) .
$$

Hence $\left(C_{\bullet}\left(\mathfrak{g}, \mathfrak{h},\left(M, \alpha_{M}\right)\right), \bar{d}\right)$ is a quotient complex of $\left(C_{\bullet}\left(\mathfrak{g},\left(M, \alpha_{M}\right)\right), d\right)$, where the differential \bar{d} is induced by d. This quotient complex is called the relative Hom-complex of $\mathfrak{h} \subset \mathfrak{g}$. In addition, we use $H_{n}\left(\mathfrak{g}, \mathfrak{h},\left(M, \alpha_{M}\right)\right)$ to denote the nth homology group of relative Hom-complex of $\mathfrak{h} \subset \mathfrak{g}$. Moreover, we can see that $H_{n}\left(\mathfrak{g}, \mathfrak{h},\left(M, \alpha_{M}\right)\right)$ is a $\alpha(\mathfrak{h})$-module from the following proposition.

Proposition 3.1. With the assumption as Lemma 3.1, we have that $H_{n}\left(\mathfrak{h},\left(M, \alpha_{M}\right)\right)$ is an $\alpha(\mathfrak{g})$-module for any $n \in \mathbb{Z}_{+}$via the action (6). Further, $\alpha(\mathfrak{h})$ acts trivially on $H_{n}\left(\mathfrak{h},\left(M, \alpha_{M}\right)\right)$.

Proof. For any $h \in \mathfrak{g}$, if ϕ is a Hom- n-cycle, then $d(\alpha(h) \cdot \phi)=\alpha^{2}(h) \cdot d \phi=$ 0 by Lemma 3.1. Thus $H_{n}\left(\mathfrak{h},\left(M, \alpha_{M}\right)\right)$ is a well-defined $\alpha(\mathfrak{g})$-module via the action (6). Furthermore, one can straightly check that $h \cdot \phi=-d(h \wedge \phi)$ for any $h \in \alpha(\mathfrak{h})$ and $\phi \in H_{n}\left(\mathfrak{h},\left(M, \alpha_{M}\right)\right)$.

4. SPECTRAL SEQUENCE OF A HOM-LIE ALGEBRA

In this section, $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, \alpha\right)$ always denotes a multiplicative Hom-Lie algebra. Let \mathfrak{h} be a Hom-subalgebra of \mathfrak{g} and $\left(M, \alpha_{M}\right)$ be a \mathfrak{g}-module. Suppose that d is always the differential of the complex $C \bullet\left(\mathfrak{g},\left(M, \alpha_{M}\right)\right)$.

For each $n, p \in \mathbb{Z}_{+}$, let

$$
F_{p} C_{n}\left(\mathfrak{g},\left(M, \alpha_{M}\right)\right)=\operatorname{span}_{\mathbf{k}}\left\{x_{1} \wedge x_{2} \wedge \cdots \wedge x_{n} \otimes m \mid x_{1}, x_{2}, \cdots, x_{n-p} \in \mathfrak{h}\right\}
$$

It is easy to see that

$$
d\left(F_{p} C_{n}\left(\mathfrak{g},\left(M, \alpha_{M}\right)\right)\right) \subset F_{p} C_{n+1}\left(\mathfrak{g},\left(M, \alpha_{M}\right)\right)
$$

for any $p, n \in \mathbb{Z}_{+}$. Thus, we obtain the following filtration:

$$
(10) F_{0} C_{n}\left(\mathfrak{g},\left(M, \alpha_{M}\right)\right) \subset \cdots \subset F_{n-1} C_{n}\left(\mathfrak{g},\left(M, \alpha_{M}\right)\right) \subset C_{n}\left(\mathfrak{g},\left(M, \alpha_{M}\right)\right) .
$$

This is a bounded filtration of complexes. Thus, there is a spectral sequence

$$
\left(E_{p q}^{r}, d_{p q}^{r}: E_{p q}^{r} \rightarrow E_{p-r, q+r-1}^{r}\right)
$$

such that $E_{p q}^{0}=F_{p} C_{p+q}\left(\mathfrak{g},\left(M, \alpha_{M}\right)\right) / F_{p-1} C_{p+q}\left(\mathfrak{g},\left(M, \alpha_{M}\right)\right)$, where $d_{p q}^{r}$ is induced by the differential of $C_{\bullet}\left(\mathfrak{g},\left(M, \alpha_{M}\right)\right)$. This type of spectral sequence is called the Serre-Hochschild spectral sequence of $\mathfrak{h} \subset \mathfrak{g}$.

Lemma 4.1. Let $\left(E_{p q}^{r}, d_{p q}^{r}: E_{p q}^{r} \rightarrow E_{p-r, q+r-1}^{r}\right)$ be the Serre-Hochschild spectral sequence of $\mathfrak{h} \subset \mathfrak{g}$. Then
(i) $E_{p q}^{1}=H_{q}\left(\mathfrak{h},\left(\wedge^{p} \mathfrak{g} / \mathfrak{h} \otimes M, \alpha_{p, M}\right)\right)$.
(ii) If \mathfrak{h} is a Hom-ideal of \mathfrak{g}, then

$$
H_{q}\left(\mathfrak{h},\left(\wedge^{p} \mathfrak{g} / \mathfrak{h} \otimes M, \alpha_{p, M}\right)\right) \cong \frac{\operatorname{ker} \alpha_{p} \otimes \wedge^{q} \mathfrak{h} \otimes M+\wedge^{p} \mathfrak{g} / \mathfrak{h} \otimes \operatorname{ker} d_{q}}{\operatorname{Im} \alpha_{p} \otimes \operatorname{Im} d_{q+1}}
$$

where $\alpha_{p}: \wedge^{p} \mathfrak{g} / \mathfrak{h} \rightarrow \wedge^{p} \mathfrak{g} / \mathfrak{h}$ is defined via (6) and $d_{i}(i=q, q+1)$ is the differential of the Hom-i-chain $C_{i}\left(\mathfrak{h},\left(M, \alpha_{M}\right)\right)$.
(iii) If \mathfrak{h} is a regular Hom-subalgebra of \mathfrak{g}, then $E_{p 0}^{2}=H_{p}\left(\mathfrak{g}, \mathfrak{h},\left(M, \alpha_{M}\right)\right)$.

Proof. Define a linear map

$$
\psi: F_{p} C_{p+q}\left(\mathfrak{g},\left(M, \alpha_{M}\right)\right) \rightarrow C_{q}\left(\mathfrak{h},\left(\wedge^{p} \mathfrak{g} / \mathfrak{h} \otimes M, \alpha_{p, M}\right)\right)=\wedge^{q} h \otimes \wedge^{p} \mathfrak{g} / \mathfrak{h} \otimes M
$$

via
$x_{1} \wedge x_{2} \wedge \cdots \wedge x_{p+q} \otimes m \mapsto x_{1} \wedge x_{2} \wedge \cdots \wedge x_{q} \otimes \overline{x_{q+1}} \wedge \overline{x_{q+2}} \wedge \cdots \wedge \overline{x_{p+q}} \otimes m$,
for $x_{1}, x_{2}, \cdots, x_{q} \in \mathfrak{h}, x_{q+1}, x_{q+2}, \cdots, x_{p+q} \in \mathfrak{g}, m \in M$, where \bar{x} means the image of x in the quotient space $\mathfrak{g} / \mathfrak{h}$.

From the definition of the filtration (10), one knows that ψ is well-defined. In addition, ψ is surjective with the kernel $F_{p-1} C_{p+q}\left(\mathfrak{g},\left(M, \alpha_{M}\right)\right)$. Thus, we get an isomorphism

$$
\bar{\psi}: \quad F_{p} C_{p+q}\left(\mathfrak{g},\left(M, \alpha_{M}\right)\right) / F_{p-1} C_{p+q}\left(\mathfrak{g},\left(M, \alpha_{M}\right)\right) \longrightarrow \wedge^{q} h \otimes \wedge^{p} \mathfrak{g} / \mathfrak{h} \otimes M
$$

We claim that the following diagram commutes

$$
\begin{array}{cc}
\frac{F_{p} C_{p+q}\left(\mathfrak{g},\left(M, \alpha_{M}\right)\right)}{F_{p-1} C_{p+q}\left(\mathfrak{g},\left(M, \alpha_{M}\right)\right)} \xrightarrow{d_{p q}^{0}} & \begin{array}{c}
{ }^{2} C_{p+q-1}\left(\mathfrak{g},\left(M, \alpha_{M}\right)\right) \\
F_{p-1} C_{p+q-1}\left(\mathfrak{g},\left(M, \alpha_{M}\right)\right)
\end{array} \\
\downarrow \bar{\psi} & \\
\wedge^{q} h \otimes \wedge^{p} \mathfrak{g} / \mathfrak{h} \otimes M \xrightarrow{d^{\prime}} & \wedge^{q-1} h \otimes \wedge^{p} \mathfrak{g} / \mathfrak{h} \otimes M
\end{array}
$$

where d^{\prime} is the differential of the complex $C_{\bullet}\left(\mathfrak{h},\left(\wedge^{p} \mathfrak{g} / \mathfrak{h} \otimes M, \alpha_{p, M}\right)\right)$. Indeed,
for $x_{1}, x_{2}, \cdots, x_{q} \in \mathfrak{h}$ and $x_{q+1}, x_{q+2}, \cdots, x_{q+p} \in \mathfrak{g}$, we have

$$
\begin{aligned}
& d_{p q}^{0}\left(x_{1} \wedge x_{2} \wedge \cdots \wedge x_{p+q} \otimes m\right) \\
= & \sum_{1 \leq i<j \leq q}(-1)^{i+j}\left[x_{i}, x_{j}\right]_{\mathfrak{g}} \wedge \alpha\left(x_{1}\right) \wedge \cdots \widehat{x_{i}} \cdots \widehat{x_{j}} \cdots \wedge \alpha\left(x_{p+q}\right) \otimes \alpha_{M}(m)+\mu \\
& +\sum_{i=1}^{q} \sum_{j=q+1}^{p+q}(-1)^{i+j}\left[x_{i}, x_{j}\right]_{\mathfrak{g}} \wedge \alpha\left(x_{1}\right) \wedge \cdots \widehat{x_{i}} \cdots \widehat{x_{j}} \cdots \wedge \alpha\left(x_{p+q}\right) \otimes \alpha_{M}(m) \\
& +\sum_{i=1}^{q}(-1)^{i} \alpha\left(x_{1}\right) \wedge \alpha\left(x_{2}\right) \wedge \cdots \widehat{x_{i}} \cdots \wedge \alpha\left(x_{p+q}\right) \otimes x_{i} . m \\
= & \sum_{1 \leq i<j \leq q}(-1)^{i+j}\left[x_{i}, x_{j}\right]_{\mathfrak{g}} \wedge \alpha\left(x_{1}\right) \wedge \cdots \widehat{x_{i}} \cdots \widehat{x_{j}} \cdots \wedge \alpha\left(x_{q}\right) \otimes \alpha_{p, M}\left(\overline{x_{q+1}}\right. \\
& \left.\wedge \overline{x_{q+2}} \wedge \cdots \wedge \overline{x_{p+q}} \otimes m\right)+\sum_{i=1}^{q}(-1)^{i} \alpha\left(x_{1}\right) \wedge \cdots \widehat{\alpha\left(x_{i}\right)} \cdots \wedge \alpha\left(x_{q}\right) \otimes x_{i} \cdot\left(\overline{x_{q+1}}\right. \\
& \left.\wedge \cdots \wedge \overline{x_{p+q}} \otimes m\right)+\mu \\
= & d^{\prime}\left(x_{1} \wedge \cdots \wedge x_{q} \otimes \overline{x_{q+1}} \wedge \overline{x_{q+2}} \wedge \cdots \wedge \overline{x_{q+p}} \otimes m\right)+\mu,
\end{aligned}
$$

where

$$
\begin{aligned}
\mu= & \sum_{1+q \leq i<j \leq p+q}(-1)^{i+j} \alpha\left(x_{1}\right) \wedge \cdots \wedge \widehat{x}_{i} \wedge \cdots \wedge \widehat{x}_{j} \wedge \cdots \wedge \alpha\left(x_{p+q}\right) \otimes \alpha_{M}(m) \\
& +\sum_{i=1+q}^{p+q}(-1)^{i} \alpha\left(x_{1}\right) \wedge \cdots \widehat{x}_{i} \cdots \wedge \alpha\left(x_{p+q}\right) \otimes x_{i} . m
\end{aligned}
$$

It is clear that $\mu \in F_{p-1} C_{p+q-1}\left(\mathfrak{g},\left(M, \alpha_{M}\right)\right)$. Thus $\bar{\psi} d_{0}^{p q}=d^{\prime} \bar{\psi}$ and the first claim of proposition holds. For the second one, if \mathfrak{h} is a Hom-ideal of $\mathfrak{g}, \mathfrak{h}$ acts trivially on $\wedge^{p} \mathfrak{g} / \mathfrak{h}$. Thus, it is not hard to check that we have the following commutative diagram.

$$
\wedge^{p} \mathfrak{g} / \mathfrak{h} \otimes \wedge^{q} \mathfrak{h} \otimes M \xrightarrow{\alpha_{p} \otimes d_{q}} \wedge^{p} \mathfrak{g} / \mathfrak{h} \otimes \wedge^{q-1} \mathfrak{h} \otimes M
$$

where $\alpha_{p}: \wedge^{p} \mathfrak{g} / \mathfrak{h} \rightarrow \wedge^{p} \mathfrak{g} / \mathfrak{h}$ is defined via (6) and d_{q} is the differential of Hom-q-chain $C_{q}\left(\mathfrak{h},\left(M, \alpha_{M}\right)\right)$. Furthermore, we have $\operatorname{ker}\left(\alpha_{p} \otimes d_{q}\right)=\operatorname{ker} \alpha_{p} \otimes \wedge^{q} \mathfrak{h} \otimes$ $M+\wedge^{p} \mathfrak{g} / \mathfrak{h} \otimes \operatorname{ker} d_{q}, \operatorname{Im}\left(\alpha_{p} \otimes d_{q}\right)=\operatorname{Im}\left(\alpha_{p}\right) \otimes \operatorname{Im}\left(d_{q}\right)$. This finishes the proof of the second claim.

For $(i i i)$, by (i) and Proposition 3.1, $E_{p 0}^{1}=\frac{\Lambda^{p} \mathfrak{g} / \mathfrak{h} \otimes M}{\mathfrak{h} \cdot \wedge^{p} \mathfrak{g} / \mathfrak{h} \otimes M}=C_{p}\left(\mathfrak{g}, \mathfrak{h},\left(M, \alpha_{M}\right)\right)$. Since both $d_{p 0}^{1}$ and \bar{d} are induced by the initial differential of $C_{\bullet}\left(\mathfrak{g},\left(M, \alpha_{M}\right)\right)$, we have $d_{p 0}^{1}=\bar{d}$. As a consequence, $E_{p 0}^{2}=H_{p}\left(\mathfrak{g}, \mathfrak{h},\left(M, \alpha_{M}\right)\right)$.

Suppose that \mathfrak{h} is a Hom-ideal of a regular Hom-Lie algebra. Then we can obtain the following proposition from Lemma 4.1

Proposition 4.1. Suppose $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, \alpha\right)$ is a regular Hom-Lie algebra and $\left(M, \alpha_{M}\right)$ is a \mathfrak{g}-module. Let \mathfrak{h} be a Hom-ideal of \mathfrak{g}. Then

$$
E_{p q}^{2} \cong H_{p}\left(\mathfrak{g} / \mathfrak{h},\left(H_{q}\left(\mathfrak{h},\left(M, \alpha_{M}\right)\right), \alpha_{q, M}\right)\right)
$$

Proof. From Lemma4.1, we obtain that

$$
E_{p q}^{1} \cong \frac{\wedge^{p}(\mathfrak{g} / \mathfrak{h}) \otimes \operatorname{ker} d_{q}}{\operatorname{Im} \alpha_{p} \otimes \operatorname{Im} d_{q+1}} \cong \wedge^{p}(\mathfrak{g} / \mathfrak{h}) \otimes H_{q}\left(\mathfrak{h},\left(M, \alpha_{M}\right)\right) .
$$

Since \mathfrak{h} is a Hom-ideal of $\mathfrak{g}, H_{q}\left(\mathfrak{h},\left(M, \alpha_{M}\right)\right)$ is a \mathfrak{g}-module for any $q \geq 0$ by Proposition 3.1. Thus, to complete our proof, it suffices to check that the following diagram is commutative

$$
\begin{align*}
& \begin{array}{cc}
E_{p q}^{1} & \xrightarrow{d_{p q}^{1}} \\
\downarrow \cong & \\
& \\
& E_{p-1, q}^{1} \\
\end{array} \tag{11}\\
& \wedge^{p}(\mathfrak{g} / \mathfrak{h}) \otimes H_{q}\left(\mathfrak{h},\left(M, \alpha_{M}\right)\right) \xrightarrow{d_{1}} \wedge^{p-1}(\mathfrak{g} / \mathfrak{h}) \otimes H_{q}\left(\mathfrak{h},\left(M, \alpha_{M}\right)\right)
\end{align*}
$$

where d_{1} is the differential of complex $C \bullet\left(\mathfrak{g} / \mathfrak{h},\left(H_{q}\left(\mathfrak{h},\left(M, \alpha_{M}\right)\right), \alpha_{q, M}\right)\right)$. Recall that $d_{p q}^{1}$ is induced by the differential d of the complex $C \cdot\left(\mathfrak{g},\left(M, \alpha_{M}\right)\right)$.

Suppose $x_{1}, x_{2}, \cdots, x_{q} \in \mathfrak{h}, x_{q+1}, x_{q+2}, \cdots, x_{p+q} \in \mathfrak{g}$ and $m \in M$. Let $d=\mu_{1}+\mu_{2}$, where

$$
\begin{aligned}
& \mu_{1}\left(x_{1} \wedge \cdots \wedge x_{p+q} \otimes m\right) \\
= & \sum_{1 \leq i<j \leq q}(-1)^{i+j}\left[x_{i}, x_{j}\right] \wedge \alpha\left(x_{1}\right) \wedge \alpha\left(x_{2}\right) \wedge \cdots \widehat{x_{i}} \cdots \widehat{x_{j}} \cdots \wedge \alpha\left(x_{p+q}\right) \otimes \alpha_{M}(m) \\
& +\sum_{i=1}^{q}(-1)^{i} \alpha\left(x_{1}\right) \wedge \alpha\left(x_{2}\right) \wedge \cdots \widehat{x}_{i} \cdots \wedge \alpha\left(x_{p+q}\right) \otimes x_{i} . m,
\end{aligned}
$$

and

$$
\begin{aligned}
& \mu_{2}\left(x_{1} \wedge \cdots \wedge x_{p+q} \otimes m\right) \\
& =\sum_{1+q \leq i<j \leq p+q}(-1)^{i+j}\left[x_{i}, x_{j}\right] \wedge \alpha\left(x_{1}\right) \wedge \cdots \widehat{x_{i}} \cdots \widehat{x_{j}} \cdots \wedge \alpha\left(x_{p+q}\right) \otimes \alpha_{M}(m) \\
& \quad+\sum_{i=1}^{q} \sum_{j=q+1}^{p+q}(-1)^{i+j}\left[x_{i}, x_{j}\right] \wedge \alpha\left(x_{1}\right) \wedge \cdots \widehat{x_{i}} \cdots \widehat{x_{j}} \cdots \wedge \alpha\left(x_{p+q}\right) \otimes \alpha_{M}(m) \\
& \quad+\sum_{i=1+q}^{q+p}(-1)^{i} \alpha\left(x_{1}\right) \wedge \cdots \widehat{x_{i}} \cdots \wedge \alpha\left(x_{p+q}\right) \otimes x_{i} . m
\end{aligned}
$$

Let $\xi^{\prime} \in C_{p+q}\left(\mathfrak{g},\left(M, \alpha_{M}\right)\right)$ be a preimage of

$$
\xi \in E_{p q}^{1}=\wedge^{p}(\mathfrak{g} / \mathfrak{h}) \otimes H_{q}\left(\mathfrak{h},\left(M, \alpha_{M}\right)\right)
$$

Then the image of $d\left(\xi^{\prime}\right)$ in the quotient $E_{p q}^{1}$ does not depend on the choice of ξ^{\prime}, which is denoted by $\overline{d\left(\xi^{\prime}\right)}$. At this point, one can see that $\overline{\mu_{1}\left(\xi^{\prime}\right)}=d_{0}(\xi)=0$, where d_{0} is the differential of complex $C_{\bullet}\left(\mathfrak{h},\left(\wedge^{p}(\mathfrak{g} / \mathfrak{h}) \otimes M, \alpha_{p, M}\right)\right)$. Similarly, we have $\overline{\mu_{2}\left(\xi^{\prime}\right)}=d_{1}(\xi)$. This implies that the diagram 11 is commutative.

Suppose $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, \alpha\right)$ is a multiplicative Hom-Lie algebra and \mathfrak{g}_{A} is its abelian Hom-Lie algebra. Then \mathfrak{g}_{A} is also a Hom-Lie algebra which shares the same linear map α with \mathfrak{g}. Let $(M, 0)$ be a \mathfrak{g}-module. Then $(M, 0)$ is also a \mathfrak{g}_{A}-module with the same action as \mathfrak{g}. Furthermore, $d C_{n}(\mathfrak{g},(M, 0))=$ $d C_{n}\left(\mathfrak{g}_{A},(M, 0)\right)$ for any $n \geq 0$. This implies that

$$
\begin{equation*}
H_{n}(\mathfrak{g},(M, 0)) \cong H_{n}\left(\mathfrak{g}_{A},(M, 0)\right) \tag{12}
\end{equation*}
$$

If $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, \alpha\right)$ is a regular abelian Hom-Lie algebra, then every α-invariant subspace is a Hom-Lie ideal. Then we can compute the homological groups of a finite dimensional regular abelian Hom-Lie algebra by using Proposition 4.1 . Explicitly, we have the following corollary.

Corollary 4.1. Let $\left(L_{n},[\cdot, \cdot]_{n}, \alpha\right)$ be a regular abelian Hom-Lie algebra with a basis $\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$. Suppose that L_{n-1} is the Hom-ideal generated by $\left\{e_{1}, e_{2}, \cdots, e_{n-1}\right\}$ and $\alpha\left(e_{i}\right)=\sum_{1 \leq k \leq i} a_{i k} e_{k}$, where $a_{i k} \in \mathbf{k}$ and $a_{i i} \neq 0$. Then, for any $p \in \mathbb{Z}_{+}$,

$$
H_{p}\left(\mathfrak{g},\left(M, \alpha_{M}\right)\right) \cong H_{p}\left(L_{n-1},\left(M, \alpha_{M}\right)\right)^{e_{n}} \oplus H_{p-1}\left(L_{n-1},\left(M, \alpha_{M}\right)\right)^{e_{n}}
$$

where $H_{s}\left(L_{n-1},\left(M, \alpha_{M}\right)\right)^{e_{n}}=\left\{v \in H_{s}\left(L_{n-1},\left(M, \alpha_{M}\right)\right) \mid e_{n} \cdot v=0\right\}$, for any $s \geq 0$. In particular,

$$
\operatorname{dim} H_{p}\left(\mathfrak{g},\left(M, \alpha_{M}\right)\right) \leq \operatorname{dim} H_{p}\left(L_{n-1},\left(M, \alpha_{M}\right)\right)+\operatorname{dim}_{p-1}\left(L_{n-1},\left(M, \alpha_{M}\right)\right)
$$

Proof. From the Serre-Hochschild spectral sequence of $L_{n-1} \subset L_{n}$, we get

$$
E_{p q}^{2}=H_{p}\left(e_{n},\left(H_{q}\left(L_{n-1},\left(M, \alpha_{M}\right)\right), \alpha_{q, M}\right)\right)
$$

by Proposition 4.1. Thus $E_{p q}^{2}=0$ unless $p=0$ or $p=1$. Since the differential $d_{p q}^{r}$ of spectral sequence has degree $(-r,-1+r)$. It implies that $d_{p q}^{r}=0$ for $r \geq 2$. So $E_{p q}^{\infty}=E_{p q}^{2}$. By now, using $E_{1 q}^{2}=E_{0 q}^{2}=H_{q}\left(L_{n-1},\left(M, \alpha_{M}\right)\right)^{e_{n}}$, one can easily complete the proof.

As an application of Proposition 4.1, we obtain the homological groups of a finite-dimensional multiplicative Hom-Lie algebra with coefficient in M as follow.

THEOREM 4.1. Suppose $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, \alpha\right)$ is a finite dimensional multiplicative Hom-Lie algebra with $n(\alpha)=s$ and $\left(M, \alpha_{M}\right)$ is a \mathfrak{g}-module. Then for any $n \geq 0$,

$$
\begin{equation*}
H_{n}\left(\mathfrak{g},\left(M, \alpha_{M}\right)\right) \cong \bigoplus_{p+q=n} H_{p}\left(\mathfrak{g} / \operatorname{ker} \alpha^{s},\left(H_{q}\left(\operatorname{ker} \alpha^{s},\left(M, \alpha_{M}\right)\right), \alpha_{q, M}\right)\right) \tag{13}
\end{equation*}
$$

Proof. Since $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, \alpha\right)$ is a finite dimensional multiplicative Lie algebra with $n(\alpha)=s, \mathfrak{g}=R \ltimes \operatorname{ker} \alpha^{s}$ by Lemma 2.1, where $R \simeq \mathfrak{g} / \operatorname{ker}\left(\alpha^{s}\right)$ is a regular Hom-subalgebra of \mathfrak{g}. Using the Serre-Hochschild spectral sequence of $\operatorname{ker} \alpha^{s} \subset \mathfrak{g}$, one can obtain that

$$
E_{p q}^{1}=\wedge^{p} R \otimes H_{q}\left(\operatorname{ker} \alpha^{s},\left(M, \alpha_{M}\right)\right)
$$

by Proposition 4.1. As $H_{q}\left(\operatorname{ker} \alpha^{s},\left(M, \alpha_{M}\right)\right)$ is a well-defined R-module with action (6), $E_{p q}^{2}=H_{p}\left(R,\left(H_{q}\left(\operatorname{ker} \alpha^{s},\left(M, \alpha_{M}\right)\right), \alpha_{q, M}\right)\right)$ by Proposition 4.1. It is easy to see that $d_{p q}^{r}=0$ for $r \geq 2$. Thus $E_{p q}^{\infty}=E_{p q}^{2}$.

To compute homological groups of a finite dimensional multiplicative Hom-Lie algebra, one need only to compute that of some regular Hom-Lie algebras by Theorem 4.1. About the homological groups of a regular finite dimensional Hom-Lie algebra, we have the following.

Proposition 4.2. Suppose $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, \alpha\right)$ is a regular Hom-Lie algebra of Lie type of \mathfrak{g}_{L} and $\left(M, \alpha_{M}\right)$ is a finite dimensional \mathfrak{g}-module with $n\left(\alpha_{M}\right)=t$, then

$$
\begin{equation*}
H_{n}\left(\mathfrak{g},\left(M, \alpha_{M}\right)\right) \cong H_{n}\left(\mathfrak{g},\left(\operatorname{ker} \alpha_{M}^{t}, \alpha_{M}\right)\right) \oplus H_{n}^{L i e}\left(\mathfrak{g}_{L}, M / \operatorname{ker} \alpha_{M}^{t}\right) \tag{14}
\end{equation*}
$$

Proof. Since $\alpha_{M}^{t}(x \cdot m)=\alpha^{t}(x) \cdot \alpha_{M}^{t}(m)=0$ for any $x \in \mathfrak{g}$ and $m \in$ $\operatorname{ker} \alpha_{M}^{t}, \operatorname{ker} \alpha_{M}^{t}$ is a \mathfrak{g}-submodule of M. With similar analysis of Lemma 2.1. one get the following short splitting exact sequence of \mathfrak{g}-modules

$$
0 \rightarrow \operatorname{ker} \alpha_{M}^{t} \rightarrow M \rightarrow M / \operatorname{ker} \alpha_{M}^{t} \rightarrow 0
$$

Thus, for any $n \geq 0$,

$$
\begin{aligned}
H_{n}\left(\mathfrak{g},\left(M, \alpha_{M}\right)\right) & \cong H_{n}\left(\mathfrak{g},\left(\operatorname{ker} \alpha_{M}^{t} \oplus M / \operatorname{ker} \alpha_{M}^{t}, \alpha_{M}\right)\right) \\
& \cong H_{n}\left(\mathfrak{g},\left(\operatorname{ker} \alpha_{M}^{t}, \alpha_{M}\right)\right) \oplus H_{n}\left(\mathfrak{g},\left(M / \operatorname{ker} \alpha_{M}^{t}, \alpha_{M}\right)\right) \\
& \cong H_{n}\left(\mathfrak{g},\left(\operatorname{ker} \alpha_{M}^{t}, \alpha_{M}\right)\right) \oplus H_{n}^{L i e}\left(\mathfrak{g}_{L}, M / \operatorname{ker} \alpha_{M}^{t}\right)
\end{aligned}
$$

by (9).

In addition, about the homological group $H_{n}\left(\mathfrak{g},\left(\operatorname{ker} \alpha_{M}^{t}, \alpha_{M}\right)\right)$, we have the following result.

Corollary 4.2. Suppose $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, \alpha\right)$ is a regular Lie algebra and $\left(M, \alpha_{M}\right)$ is a \mathfrak{g}-module with $n\left(\alpha_{M}\right)=t$. Then

$$
\begin{equation*}
\operatorname{dim} H_{n}\left(\mathfrak{g},\left(\operatorname{ker} \alpha_{M}^{t}, \alpha_{M}\right)\right) \leq \sum_{i=1}^{t} \operatorname{dim} H_{n}\left(\mathfrak{g}_{A},\left(\operatorname{ker} \alpha_{M}^{i} / \operatorname{ker} \alpha_{M}^{i-1}, 0\right)\right) \tag{15}
\end{equation*}
$$

Proof. Consider the bounded filtration of \mathfrak{g}-modules,

$$
0 \subset\left(\operatorname{ker} \alpha_{M}, \alpha_{M}\right) \subset\left(\operatorname{ker} \alpha_{M}^{2}, \alpha_{M}\right) \subset \cdots \subset\left(\operatorname{ker} \alpha_{M}^{t}, \alpha_{M}\right)
$$

For any $s, n \in \mathbb{Z}_{+}$, define a subcomplex by

$$
F_{s} C_{n}\left(\mathfrak{g},\left(\operatorname{ker} \alpha_{M}^{t}, \alpha_{M}\right)\right)=C_{n}\left(\mathfrak{g},\left(\operatorname{ker} \alpha_{M}^{s}, \alpha_{M}\right)\right)
$$

Then we have a spectral sequence with

$$
E_{p q}^{1} \cong H_{p+q}\left(\mathfrak{g},\left(\operatorname{ker} \alpha_{M}^{p} / \operatorname{ker} \alpha_{M}^{p-1}, \alpha_{M}\right)\right) .
$$

Since α_{M} acts trivially on $\operatorname{ker} \alpha_{M}^{p} / \operatorname{ker} \alpha_{M}^{p-1}$,

$$
E_{p q}^{1} \cong H_{p+q}\left(\mathfrak{g}_{A},\left(\operatorname{ker} \alpha_{M}^{p} / \operatorname{ker} \alpha_{M}^{p-1}, 0\right)\right)
$$

by (12). Hence (15) is established.

Finally, let us assume that $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, \alpha\right)$ is a finite dimensional non-regular multiplicative Hom-Lie algebra and $\left(M, \alpha_{M}\right)$ is a finite dimensional \mathfrak{g}-module, where $s=n(\alpha), t=n\left(\alpha_{M}\right)$. Let $k=\max (s, t)$. Then $\mathfrak{g}=R \ltimes \operatorname{ker} \alpha^{s}$ according to Lemma 2.1, where R is a regular Hom-subalgebra of Lie type of R_{L}. Consequently, by (13), (14), and (15), we have

$$
\begin{aligned}
& \operatorname{dim}_{n}\left(\mathfrak{g},\left(M, \alpha_{M}\right)\right) \\
& =\sum_{p+q=n} \operatorname{dim} H_{p}\left(R,\left(H_{q}\left(\operatorname{ker} \alpha^{s},\left(M, \alpha_{M}\right)\right), \alpha_{q, M}\right)\right) \\
& =\sum_{p+q=n} \operatorname{dim}\left(H_{p}^{L i e}\left(R_{L}, \frac{H_{q}\left(\operatorname{ker} \alpha^{s},\left(M, \alpha_{M}\right)\right)}{\operatorname{ker} \alpha_{q, M}^{k}}\right)\right. \\
& \left.\quad+H_{p}\left(R,\left(\operatorname{ker} \alpha_{q, M}^{k}, \alpha_{q, M}\right)\right)\right) \\
& \leq
\end{aligned} \quad \begin{aligned}
& \sum_{p+q=n} \operatorname{dim}\left(H_{p}^{L i e}\left(R_{L}, \frac{H_{q}\left(\operatorname{ker} \alpha^{s},\left(M, \alpha_{M}\right)\right)}{\operatorname{ker} \alpha_{q, M}^{k}}\right)\right. \\
& \left.\quad+\sum_{j=1}^{k} H_{p}\left(R_{A},\left(\frac{\operatorname{ker} \alpha_{q, M}^{j}}{\operatorname{ker} \alpha_{q, M}^{j-1}}, 0\right)\right)\right)
\end{aligned}
$$

As a consequence, we believe that the abelian Hom-Lie algebras are very important in the homology theory of multiplicative Hom-Lie algebras.

Corollary 4.3. Keep the notations as above. If $\max \left(n(\alpha), n\left(\alpha_{M}\right)\right) \leq 1$, then

$$
H_{n}\left(\mathfrak{g},\left(M, \alpha_{M}\right)\right) \cong \bigoplus_{p+q=n} H_{p}^{L i e}\left(R_{L}, \frac{H_{q}\left(\operatorname{ker} \alpha,\left(M, \alpha_{M}\right)\right)}{\operatorname{ker} \alpha_{q, M}}\right) \oplus H_{p}\left(R_{A},\left(\operatorname{ker} \alpha_{q, M}, 0\right)\right)
$$

Example 4.2. Suppose \mathcal{H} is vector space with basis $\left\{x_{1}, x_{2}, x_{3}\right\}$. The operation of \mathcal{H} is determined by the following brackets:

$$
\left[x_{1}, x_{2}\right]_{\mathcal{H}}=x_{3},\left[x_{1}, x_{3}\right]_{\mathcal{H}}=0,\left[x_{2}, x_{3}\right]_{\mathcal{H}}=0
$$

Define an endomorphism α of the vector space \mathcal{H} by

$$
\alpha\left(x_{1}\right)=x_{1}, \alpha\left(x_{2}\right)=x_{3}, \alpha\left(x_{3}\right)=0 .
$$

Then $\left(\mathcal{H},[\cdot, \cdot]_{\mathcal{H}}, \alpha\right)$ is a multiplicative Hom-Lie algebra with ker $\alpha^{2}=\mathbf{k} x_{3} \oplus \mathbf{k} x_{2}$. Suppose ($\mathbf{k}, i d$) is the trivial \mathfrak{g}-module. Consider the Serre-Hochschild spectral sequence of $\operatorname{ker} \alpha^{2} \subset \mathcal{H}$. By straight computation, we can obtain that $E_{00}^{2}=\mathbf{k}$, $E_{01}^{2}=\mathbf{k} x_{2}, E_{11}^{2}=\mathbf{k}\left(x_{1} \otimes x_{3}\right), E_{12}^{2}=\mathbf{k}\left(x_{1} \otimes x_{2} \wedge x_{3}\right), E_{02}^{2}=\mathbf{k}\left(x_{2} \wedge x_{3}\right)$, $E_{10}^{2}=\mathbf{k} x_{1}$. Thus

$$
\operatorname{dim} H_{n}(\mathcal{H},(\mathbf{k}, i d)) \equiv \begin{cases}1, & \text { for } n=0 \\ 2, & \text { for } n=1 \\ 2, & \text { for } n=2 \\ 1, & \text { for } n=3 \\ 0, & \text { otherwise }\end{cases}
$$

Proposition 4.3. Suppose $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, \alpha\right.$) is a multiplicative Hom-Lie algebra of Lie type of a Lie algebra \mathfrak{g}_{L}. Assume that $\left(M, \alpha_{M}\right)$ is a \mathfrak{g}-module.

Consider the Serre-Hochschild spectral sequence of $\operatorname{ker} \alpha \subset \mathfrak{g}$. Then $d_{p q}^{r}=0$ for $r>2$ and $d_{p q}^{2}=0$ for $q \neq 0$.

Proof. We abbreviate $F_{p} C_{n}\left(\mathfrak{g},\left(M, \alpha_{M}\right)\right)$ as $F_{p} C_{n}$ for any $n, p \in \mathbb{Z}_{+}$. Notice that $[\operatorname{ker} \alpha, \mathfrak{g}]_{\mathfrak{g}}=0$. Thus the differential d acts trivially on the subspace $F_{p} C_{p+q}$ for $q>1$. Since $d_{p q}^{r}$ is induced by the differential $d, d_{p q}^{r}=0$ for $q>1$ and $r \geq 0$. By definition, one can see that the differential vanishes on the set

$$
\left\{\phi \in F_{p-1} C_{p} \backslash F_{p-2} C_{p} \mid d(c) \in F_{p-r} C_{p-1} \text { for } r \geq 2\right\} .
$$

It implies that $d_{p 1}^{r}=0$ for $r \geq 2$. Similarly, we have $d_{p 0}^{r}=0$ for $r>2$.
In general, $d_{p 0}^{2}$ in Proposition 4.3 may be non-trivial.
Example 4.3. Let \mathfrak{g}_{L} be a four dimensional Lie algebra. Suppose that $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ is a basis of \mathfrak{g}_{L}. The non-trivial brackets of \mathfrak{g}_{L} given by

$$
\left[x_{1}, x_{2}\right]=x_{3},\left[x_{2}, x_{3}\right]=x_{4} .
$$

and define $\alpha\left(x_{1}\right)=x_{2}, \alpha\left(x_{2}\right)=x_{3}, \alpha\left(x_{3}\right)=x_{4}, \alpha\left(x_{4}\right)=0$. Thus $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, \alpha\right)$ is a multiplicative Hom-Lie algebra with $\operatorname{ker} \alpha=\mathbf{k} x_{4}$ and non-trivial bracket: $\left[x_{1}, x_{2}\right]_{\mathfrak{g}}=\left[\alpha\left(x_{1}\right), \alpha\left(x_{2}\right)\right]=x_{4}$. Let $(\mathbf{k}, i d)$ be the trivial module. Now consider the Serre-Hochschild spectral sequence of $\operatorname{ker} \alpha \subset \mathfrak{g}$. It is easy to see that $x_{1} \wedge x_{2} \in E_{2,0}^{2}=H_{2}(\mathfrak{g} / \operatorname{ker} \alpha,(\mathbf{k}, i d))$ and $x_{4} \in E_{01}^{2}=H_{0}(\mathfrak{g} / \operatorname{ker} \alpha,(\operatorname{ker} \alpha, 0))$. Furthermore, we have $d_{20}^{2}\left(x_{1} \wedge x_{2}\right)=-x_{4}$.

REFERENCES

[1] F. Ammar, Z. Ejbehi, and A. Makhlouf, Cohomology and deformations of Hom-algebras. J. Lie Theory 21 (2011), 813-836.
[2] B. Agrebaoui, K. Benali, and A. Makhlouf, Representations of simple Hom-Lie algebras. J. Lie Theory 29 (2019), 1119-1135.
[3] B. Guan, L. Chen, and B. Sun, On Hom-Lie superalgebras. Adv. Appl. Clifford Algebr. 29 (2019), 1, Paper No. 16.
[4] N. Hu, q-Witt algebras, q-Lie algebras, q-holomorph structure and representations. Algebra Colloq. 6 (1999), 51-70.
[5] J.I. Hartwig, D. Larsson, and S. Silvestrov, Deformations of Lie algebras using σ derivations. J. Algebra 295 (2006), 314-361.
[6] G. Hochschild and J. Serre, Cohomology of Lie algebras. Ann. of Math. 57 (1953), 591-603.
[7] M. Hassanzadeh, I. Shapiro, and S. Serkan, Cyclic homology for Hom-associative algebras. J. Geom. Phys 98 (2015), 40-56.
[8] Q. Jin and X. Li, Hom-Lie algebra structures on semi-simple Lie algebras. J. Algebra 319 (2008), 1398-1408.
[9] A. Makhlouf and S. Silvestrov, Hom-algebra structures. J. Gen. Lie Theory Appl. 2 (2008), 51-64.
[10] A. Makhlouf and S. Silvestrov, Hom-Lie admissible Hom-coalgebras and Hom-Hopf algebras. In: S. Silvestrov et al. (Eds.), Generalized Lie Theory in Mathematics, Physics and Beyond. Springer, Berlin, Heidelberg, 2009, pp. 189-206.
[11] A. Makhlouf and P. Zusmanovich, Ado theorem for nilpotent Hom-Lie algebras. Internat. J. Algebra Comput. 29 (2019), 7, 1343-1365.
[12] Y. Sheng, Representations of Hom-Lie algebras. Algebr. Represent. Theory 15 (2012), 1081-1098.
[13] D. Yau, Hom-algebras and homology. J. Lie Theory 19 (2009), 409-421.
[14] D. Yau, Enveloping algebras of Hom-Lie algebras. J. Gen. Lie Theory Appl. 2 (2008), 2, 95-108.
[15] D. Yau, The Hom-Yang-Baxter equation, Hom-Lie algebras, and quasi-triangular bialgebras. J. Phys. A 42 (2009), 16, Article ID 165202.
[16] D. Yau, Hom-bialgebras and comodule Hom-algebras. Int. Electron. J. Algebra 8 (2010), 45-64.
[17] D. Yau, Hom-quantum groups: I. Quasi-triangular Hom-bialgebras. J. Phys. A 45 (2012), 6 , Article ID 065203.

Received January 27, 2020
Shaoxing University
School of Mathematical Information
Shaoxing, 312000, P. R. China
390596169@qq.com
Zhejiang University
School of Mathematics Sciences
Hangzhou, 310027, P. R. China
wzx@zju.edu.cn

