HOMOLOGY THEORY OF MULTIPLICATIVE HOM-LIE ALGEBRAS

MAOSEN XU and ZHIXIANG WU

Communicated by Sorin Dăscălescu

In this article, we establish Serre-Hochschild spectral sequences of Hom-Lie algebras. By using these spectral sequences, we describe homology groups of finite dimensional multiplicative Hom-Lie algebras in terms of homology groups of Lie algebras and abelian Hom-Lie algebras.

AMS 2020 Subject Classification: 17D30,16E40.

Key words: homology group, Hom-Lie algebra, spectral sequence.

1. INTRODUCTION

In recent years, many mathematicians and physicists studied various Hom-type algebras. M. Hassanzadeh, I. Shapiro and S. Sütlü studied the cyclic homology of Hom-associative algebras in [7]. B. Guan, L. Chen and B. Sun introduced Hom-Lie superalgebras in [3]. A. Makhlouf and S. Silvestrov studied Hom-associative, Hom-Leibniz and Hom-Lie admissible algebraic structures in [9] and Hom-Lie admissible Hom-coalgebras and Hom-Hopf algebras in [10]. The theory of quantum Hom-algebra was established in [15], [16], [17]. The notion of Hom-Lie algebras originated from the q-deformation of Witt algebras and Virasoro Lie algebras (see [5]). Hom-Lie algebras are studied extensively. Especially, the representation theory of Hom-Lie algebras was well-developed. For example, the irreducible representations of simple Hom-Lie algebras were obtained in [2]. The Ado theorem for a nilpotent Hom-Lie algebra was proved in [11]. D. Yau constructed the universal enveloping algebra of a Hom-Lie algebra in [14]. In addition, the cohomology of Hom-Lie algebras was studied in [1] and [12]. From these articles, we know that the low dimension cohomology groups can be interpreted as the central extensions and derivations of Hom-Lie algebras. Dually, there is a homology theory of Hom-Lie algebras, which was developed by many researchers. Especially, D. Yau defined the Chevalley-Eilenberg type complex of a Hom-Lie algebra in [13], which is the main object we focus on in this paper. Since Serre-Hochschild spectral sequence of Lie algebras plays a very important role in the homology theory of Lie algebras (see MATH. REPORTS 25(75) (2023), 2, 331-347 doi: 10.59277/mrar.2023.25.75.2.331

[6]), we construct a counterpart Serre-Hochschild spectral sequence of Hom-Lie algebras. Using this spectral sequence, we establish the bridge between the homology groups of Hom-Lie algebras and that of Lie algebras.

This paper is arranged as follows: in Section 2, we recall some basic definitions of Hom-Lie algebras and provide some examples of different type of Hom-Lie algebras. We prove that every multiplicative Hom-Lie algebra is a semi-direct product of a regular Hom-Lie algebra and a module over this regular Hom-Lie algebra.

In Section 3, the definition of homology groups of a multiplicative Hom-Lie algebra are given. In addition, we investigate the module structures on the Hom-chains.

In Section 4, we establish the Serre-Hochschild spectral sequence of Hom-Lie algebras. By using this method, we describe the homology groups of finite dimensional multiplicative Hom-Lie algebras in terms of homology groups of Lie algebras and abelian Hom-Lie algebras, see the formula (16).

In this article, \mathbf{k} is an algebraically closed field of characteristic zero. In addition, all the vectors and algebras are over the field \mathbf{k} . \mathbb{Z} is the ring of integers and \mathbb{Z}_+ is the set of non-negative integers.

2. PRELIMINARY

In this section, we recall some basic concept and prove some elementary results related to Hom-Lie algebras. First, let us recall the definitions of various Hom-Lie algebras.

Definition 2.1. Suppose that \mathfrak{g} is a vector space with an endomorphism α and $[\cdot, \cdot]_{\mathfrak{g}} : \wedge^2 \mathfrak{g} \to \mathfrak{g}$ is a skew-symmetric map. Then the triple $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}}, \alpha)$ is called a Hom-Lie algebra if it satisfies the *Hom-Jacobi Identity*:

(1)
$$[\alpha(x), [y, z]_{\mathfrak{g}}]_{\mathfrak{g}} + [\alpha(y), [z, x]_{\mathfrak{g}}]_{\mathfrak{g}} + [\alpha(z), [x, y]_{\mathfrak{g}}]_{\mathfrak{g}} = 0$$

for $x, y, z \in \mathfrak{g}$.

1. A Hom-subalgebra \mathfrak{h} of a Hom-Lie $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}}, \alpha)$ is a α -invariant subspace \mathfrak{h} of \mathfrak{g} such that $[\mathfrak{h}, \mathfrak{h}]_{\mathfrak{g}} \subset \mathfrak{h}$.

2. A Hom-subalgebra \mathfrak{h} is called a *Hom-ideal* of \mathfrak{g} if $[\mathfrak{h}, \mathfrak{g}]_{\mathfrak{g}} \subset \mathfrak{h}$.

3. A Hom Lie algebra $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}}, \alpha)$ is said to be *multiplicative* if $\alpha([a, b]_{\mathfrak{g}}) = [\alpha(a), \alpha(b)]_{\mathfrak{g}}$.

4. A regular Hom-Lie algebra $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}}, \alpha)$ is a multiplicative Hom-Lie algebra with an invertible α .

It is obvious that a Hom-subalgebra \mathfrak{h} of a Hom-Lie $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}}, \alpha)$ is itself a Hom-Lie algebra with the restriction map $\alpha_{\mathfrak{h}}$ and restriction bracket. In the sequel of this paper, to simplify notations, we usually abbreviate the Hom-Lie triple $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}}, \alpha)$ to \mathfrak{g} .

Example 2.2. Let W_1 be the Lie algebra generated by the set $\{e_i\}_{i\geq -1}$ together with the brackets: $[e_i, e_j] = (j - i)e_{i+j}$. For any $k \in \mathbb{Z}_+$, we define $\alpha_k(e_i) = e_{i+k}$. Then $(W_1, [\cdot, \cdot], \alpha_k)$ is a Hom-Lie algebra, but it is not multiplicative for positive k.

Example 2.3. (Yau twist) Let \mathfrak{g} be a Lie algebra with bracket $[\cdot, \cdot]$. Suppose α is an endomorphism of \mathfrak{g} . Define $[x, y]_{\mathfrak{g}} := \alpha([x, y]) = [\alpha(x), \alpha(y)]$. Then $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}}, \alpha)$ is a multiplicative Hom-Lie algebra. In particular, any Lie algebra is a Hom-Lie algebra with $\alpha = id$.

Definition 2.4. Suppose that $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}}, \alpha)$ is a Yau twist of a Lie \mathfrak{g}_L by its endomorphism α , then we call it a Hom-Lie algebra of Lie type of the Lie algebra \mathfrak{g}_L .

Every regular Hom-Lie algebra is a Hom-Lie algebra of Lie type. In fact, if $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}}, \alpha)$ is a regular Hom-Lie algebra, then it is a Hom-Lie algebra of Lie type of \mathfrak{g}_L , where $\mathfrak{g}_L = \mathfrak{g}$ as vector spaces, whose bracket is given by $[x, y] = \alpha^{-1}([x, y]_{\mathfrak{g}})$ for $x, y \in \mathfrak{g}_L$. Thus the category of Lie algebras is equivalent to the category of regular Hom-Lie algebras.

Example 2.5. Suppose that $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}}, \alpha)$ is a multiplicative Lie algebra. For arbitrary $s \in \mathbb{Z}^+$, $\alpha^s([x, y]) = [\alpha^s(x), \alpha^s(y)] = 0$ for $x \in \ker \alpha^s$ and $y \in \mathfrak{g}$. Thus ker α^s is a Hom-ideal of \mathfrak{g} .

Next, we recall representations of Hom-Lie algebras. A representation of a Hom-Lie algebra $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}}, \alpha)$ is also called a module over it or a \mathfrak{g} -module.

Definition 2.6. Suppose that $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}}, \alpha)$ is a Hom-Lie algebra and M is a vector space with an endomorphism α_M . Let ρ_M be a k-linear map from \mathfrak{g} to $\mathfrak{gl}(M)$. Then the triple (M, ρ_M, α_M) is called a $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}}, \alpha)$ -module if the following compatible conditions hold:

(2)
$$\rho_M([x,y]_{\mathfrak{g}})\alpha_M(m) = \rho_M(\alpha(x))\rho_M(y)m - \rho_M(\alpha(y))\rho_M(x)m,$$

(3)
$$\alpha_M(\rho(x)m) = \rho_M(\alpha(x))\alpha_M(m)$$

for any $x, y \in \mathfrak{g}$, $m \in \mathfrak{g}$.

In the sequel, to simplify notations, we will use the pair (M, α_M) to substitute the triple (M, ρ_M, α_M) and $\rho_M(x)(m)$ is abbreviated as $x \cdot m$, or xm, if there is no ambiguous of the action of \mathfrak{g} on M. Sometimes, we simply call M a \mathfrak{g} -module. We use (\mathbf{k}, id) to denote the *trivial module* of a Hom-Lie algebra $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}}, \alpha)$.

If I is a Hom-ideal of a multiplicative Hom-Lie algebra $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}}, \alpha)$, then $(I, \alpha|_I)$ is a \mathfrak{g} -module with the action: $x \cdot y = [x, y]_{\mathfrak{g}}$ for $x \in \mathfrak{g}$ and $y \in I$. In particular, $I = \mathfrak{g}$ is a \mathfrak{g} -module. This module is called a *adjoint module*. A representation of a multiplicative Hom-Lie algebra can be characterized by another multiplicative Hom-Lie algebra. To describe this, let M be a vector space, $\rho_M \in \operatorname{Hom}_{\mathbf{k}}(\mathfrak{g}, \mathfrak{gl}(M)), \alpha_M \in \mathfrak{gl}(M)$. Define a bracket on $\mathfrak{g} \oplus M$ by

(4)
$$[(x,m_1),(y,m_2)]_{(\mathfrak{g},M)} = ([x,y]_{\mathfrak{g}},\rho_M(x)m_2 - \rho_M(y)m_1]).$$

and a **k**-linear map by

$$\alpha_{\ltimes}(x, m_1) = (\alpha(x), \alpha_M(m_1)),$$

where $x, y \in \mathfrak{g}$ and $m_1, m_2 \in M$. Then we have the following proposition.

PROPOSITION 2.1. Suppose that $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}}, \alpha)$ is a multiplicative Hom-Lie algebra. Then $(\mathfrak{g} \oplus M, [\cdot, \cdot]_{(\mathfrak{g},M)}, \alpha_{\ltimes})$ is a multiplicative Hom-Lie algebra if and only if (M, α_M) is a \mathfrak{g} -module with the action ρ_M .

Proof. If (M, α_M) is a \mathfrak{g} -module, $(\mathfrak{g} \oplus M, [\cdot, \cdot]_{(\mathfrak{g},M)}, \alpha_{\ltimes})$ is a multiplicative Hom-Lie algebra by [12, Proposition 4.5]. On the other hand, if $(\mathfrak{g} \oplus M, [\cdot, \cdot]_{(\mathfrak{g},M)}, \alpha_{\ltimes})$ is a multiplicative Hom-Lie algebra, then M is a Hom-ideal of $\mathfrak{g} \oplus M$. Thus (M, α_M) is a \mathfrak{g} -module with the action ρ_M . \Box

The multiplicative Hom-Lie algebra $(\mathfrak{g} \oplus M, [\cdot, \cdot]_{(\mathfrak{g},M)}, \alpha_{\ltimes})$ in Proposition 2.1 is called a semi-direct product of \mathfrak{g} and its representation M. Every finitedimensional multiplicative Hom-Lie algebra is a semi-direct product of a regular Hom-Lie algebra and its representation. To prove this claim, let us fix some terms. Suppose that α is an endomorphism of a vector space V and

$$0 \subset \ker \alpha \subset \ker \alpha^2 \subset \cdots \subset \ker \alpha^s \subset \cdots$$

is an ascending chain of subspaces of V. If there is k such that $\ker(\alpha^k) = \ker(\alpha^l)$ for any $l \ge k$, then there is a minimal integer s such that $\ker \alpha^s = \ker \alpha^t$ for any $t \ge s$. We call this s a null degree of α . The null degree of α is denoted by $n(\alpha)$.

With this notion, we can prove the following key lemma for Section 4.

LEMMA 2.1. Suppose that $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}}, \alpha)$ is a finite dimensional multiplicative Hom-Lie algebra with null degree $n(\alpha) = s$. Then $\mathfrak{g} = R \ltimes \ker \alpha^s$, where $R \simeq \mathfrak{g} / \ker(\alpha^s)$ is a regular Hom-subalgebra of \mathfrak{g} .

Proof. Let $\mathfrak{g} = R \oplus \ker \alpha^s$ be the Jordan decomposition of α . It is obvious that $\alpha|_R$ is invertible. We claim that R is closed under the bracket of \mathfrak{g} . Indeed,

for $a, b \in R$, write $[a, b]_{\mathfrak{g}} = c + x$, where $c \in R$ and $x \in \ker \alpha^s$. Since the restriction of α on R is an isomorphism, there exists $a', b', c' \in R$ such that

$$\alpha^{s}(a') = a, \ \alpha^{s}(b') = b, \ \alpha^{s}(c') = c.$$

Thus, $\alpha^s([a,b]_{\mathfrak{g}}-c) = \alpha^{2s}([a',b']_{\mathfrak{g}}-c') = 0$. Therefore, $[a',b']_{\mathfrak{g}}-c' \in \ker \alpha^{2s} = \ker \alpha^s$. This implies that $x = [a,b]_{\mathfrak{g}} - c = \alpha^s([a',b']_{\mathfrak{g}}-c') = 0$. Hence, R is a Hom-subalgebra of \mathfrak{g} . Since $\ker \alpha^s$ is a Hom-ideal of $\mathfrak{g}, \mathfrak{g} = R \ltimes \ker \alpha^s$. \Box

Finally, we recall the tensor product of $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}}, \alpha)$ -modules. Suppose $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}}, \alpha)$ is a regular Hom-Lie algebra and $(M_1, \alpha_{M_1}), \cdots, (M_n, \alpha_{M_n})$ are \mathfrak{g} -modules. Let $M = M_1 \otimes M_2 \otimes \cdots \otimes M_n$ be the tensor product of M_1, \cdots, M_n over \mathbf{k} . Define a linear map $\alpha_M : M \to M$ and an action of \mathfrak{g} on M via

(5)
$$\alpha_M(x_1 \otimes x_2 \otimes \cdots \otimes x_n) = \alpha_{M_1}(x_1) \otimes \alpha_{M_2}(x_2) \otimes \cdots \otimes \alpha_{M_n}(x_n),$$

and

(6)
$$h \cdot (x_1 \otimes x_2 \otimes \cdots \otimes x_n) = \sum_{i=1}^n \alpha_{M_1}(x_1) \otimes \cdots \otimes h \cdot x_i \otimes \cdots \otimes \alpha_{M_n}(x_n),$$

for $h \in \mathfrak{g}$ and $x_1 \otimes x_2 \otimes \cdots \otimes x_n \in M$, respectively. Then (M, α_M) is a \mathfrak{g} -module by [11, proposition 1.1].

Remark 2.7. Suppose \mathfrak{g} is a Hom-Lie algebra. Then the category of all \mathfrak{g} -modules is a symmetric monoidal category with the action given by (6).

3. HOMOLOGY OF MULTIPLICATIVE HOM-LIE ALGEBRAS

In this section, all Hom-Lie algebras are always multiplicative unless otherwise specified. First, let us recall the Chevalley-Elienberg type homology of multiplicative Hom-Lie algebras from [13].

Suppose that (M, α_M) be a module over a multiplicative Hom-Lie algebra $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}}, \alpha)$. Recall that, for $n \in \mathbb{Z}_+$, a Hom-*n*-chain of the Hom-Lie algebra \mathfrak{g} with coefficients in M is an element in the vector space $C_n(\mathfrak{g}, (M, \alpha_M)) = \wedge^n \mathfrak{g} \otimes M$, where $\wedge^n \mathfrak{g}$ is the *n*th exterior power of \mathfrak{g} . If n = 0, then $\wedge^0 \mathfrak{g} = \mathbf{k}$ is a \mathfrak{g} -module with a trivial action. The differential d from $C_n(\mathfrak{g}, (M, \alpha_M))$ to $C_{n-1}(\mathfrak{g}, (M, \alpha_M))$ is a \mathbf{k} -linear map given by (7)

$$d(x_1 \wedge x_2 \wedge \dots \wedge x_n \otimes m) = \sum_{i=1}^n (-1)^i \alpha(x_1) \wedge \alpha(x_2) \wedge \dots \widehat{x_i} \dots \wedge \alpha(x_n) \otimes x_i \dots m$$
$$+ \sum_{1 \le i < j \le n} (-1)^{i+j} [x_i, x_j]_{\mathfrak{g}} \wedge \alpha(x_1) \wedge \dots \widehat{x_i} \dots \widehat{x_j} \dots \wedge \alpha(x_n) \otimes \alpha_M(m),$$

for $x_1, x_2, \dots, x_n \in \mathfrak{g}$ and $m \in M$. Since $d^2 = 0$ by [13, Theorem 3.4], $(C_{\bullet}(\mathfrak{g}, M), d)$ forms a complex. This complex is called *Chevalley-Eilenberg* complex of the Hom-Lie algebra $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}}, \alpha)$ with coefficient in M. We use $H_n(\mathfrak{g}, (M, \alpha_M))$ to denote the *n*th homology group of this Chevalley-Eilenberg complex of the Hom-Lie algebra $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}}, \alpha)$ with coefficient in M.

Suppose that a Hom-Lie algebra $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}}, \alpha)$ is regular. Then it is a Hom-Lie algebra of Lie type of a Lie algebra \mathfrak{g}_L . Furthermore, if α_M of the representation (M, α_M) is also invertible, then $H_n(\mathfrak{g}, (M, \alpha_M))$ is the same as the *n*-th Chevalley-Eilenberg homological group $H_n^{Lie}(\mathfrak{g}_L, M)$ of the Lie algebra with the coefficient in M, where M is a \mathfrak{g}_L module via

(8)
$$x \cdot m = \alpha_M^{-1}(\rho_M(x).m),$$

for $x \in \mathfrak{g}_L, m \in M$. In fact, we can construct a morphism from the Chevalley-Eilenberg complex of the Lie algebra \mathfrak{g}_L with coefficients in M to the Chevalley-Eilenberg complex $(C_{\bullet}(\mathfrak{g}, M), d)$ of Hom-Lie algebra $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}}, \alpha)$ with coefficients in M as follow.

For $x_1, \dots, x_n \in \mathfrak{g}, m \in M$, define a mapping φ via

 $x_1 \wedge x_2 \wedge \cdots \wedge x_n \otimes m \mapsto \alpha(x_1) \wedge \alpha(x_2) \wedge \cdots \wedge \alpha(x_n) \otimes \alpha_M(m).$

It is easy to check that φ is an isomorphism of complexes. Then it induces an isomorphism

(9)
$$H_n(\mathfrak{g}, (M, \alpha_M)) \cong H_n^{Lie}(\mathfrak{g}_L, M),$$

where \mathfrak{g}_L acts on M by (8). If a Hom-Lie algebra $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}}, \alpha)$ is not regular, there are no such isomorphisms as the following example to explain.

Example 3.1. Let $n \geq 2$ and $\mathfrak{gl}(n, \mathbf{k})$ be the general linear Lie algebra of all $n \times n$ matrices over the field \mathbf{k} . Define $\alpha(x) = trace(x)I_n$, where I_n is the identity matrix. Since the image of α is in the center of $\mathfrak{gl}(n, \mathbf{k})$, the Hom-Jacobi identity holds. Thus $(\mathfrak{gl}(n, \mathbf{k}), [\cdot, \cdot], \alpha)$ is a multiplicative Hom-Lie algebra.

It is well known that

$$H^{Lie}_{\bullet}(\mathfrak{gl}(n,\mathbf{k}),\mathbf{k})\cong \wedge [\theta_1,\theta_2,\cdots,\theta_n],$$

where $\wedge [\theta_1, \theta_2, \dots, \theta_n]$ is the exterior algebra with generator θ_i of degree 2i-1. However, from the definition of differential given by (8), the differential of the complex $C_{\bullet}(\mathfrak{gl}(n, \mathbf{k}), (\mathbf{k}, id))$ is zero. Thus $H^{Lie}_{\bullet}(\mathfrak{gl}(n, \mathbf{k}), \mathbf{k})$ is not isomorphic to $H_n(\mathfrak{gl}(n, \mathbf{k}), (\mathbf{k}, id))$.

Notice that the action (6) is invariant under the permuting factors in the tensor products. Thus $(C_n(\mathfrak{g}, M), \alpha_{n,M})$ is also a \mathfrak{g} -module with the action induced by (6). Explicitly, for $x_1, x_2, \cdots x_n \in \mathfrak{g}$ and $m \in M$,

$$\alpha_{n,M}(x_1 \wedge x_2 \wedge \cdots \wedge x_n \otimes m) = \alpha(x_1) \wedge \alpha(x_2) \wedge \cdots \wedge \alpha(x_n) \otimes \alpha_M(M).$$

In the following, we use the same notation for an endomorphism of a vector space V, its restriction to a subspace $W \subseteq V$ and the induced endomorphism of the quotient space V/U by its invariant subspace U.

Next, we recall the relative homology theory of Hom-Lie algebras which is called *Relative Hom-homology*. Suppose $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}}, \alpha)$ is a multiplicative Hom-Lie algebra and (M, α_M) is a \mathfrak{g} -module. Let \mathfrak{h} be a regular Hom-subalgebra of \mathfrak{g} . Then the group of relative Hom-*n*-chains is defined via

$$C_n(\mathfrak{g},\mathfrak{h},(M,\alpha_M)) = \frac{\wedge^n(\mathfrak{g}/\mathfrak{h}) \otimes M}{\mathfrak{h}.(\wedge^n(\mathfrak{g}/\mathfrak{h}) \otimes M)},$$

where the dot action of \mathfrak{h} on $\wedge^n \mathfrak{g}/\mathfrak{h} \otimes M$ is defined via (6).

LEMMA 3.1. Suppose that \mathfrak{h} is a Hom-ideal of a multiplicative Hom-Lie algebra $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}}, \alpha)$ and (M, α_M) is a \mathfrak{g} -module. Then $\alpha(h) \cdot d\phi = d(h \cdot \phi)$ for any $\phi \in C_n(\mathfrak{h}, (M, \alpha_M))$ and $h \in \mathfrak{g}$.

Proof. Since all the maps are **k**-linear, we may assume that ϕ is a monomial, i.e. $\phi = x_1 \wedge x_2 \wedge \cdots \wedge x_n \otimes m$, where $x_1, x_2, \cdots, x_n \in \mathfrak{h}$ and $m \in M$. For any $h \in \mathfrak{g}$, we have

$$\begin{split} &d(h \cdot \phi) \\ =&d(\sum_{i=1}^{n} \alpha(x_{1}) \wedge \dots \wedge [h, x_{i}]_{\mathfrak{g}} \wedge \dots \wedge \alpha(x_{n}) \otimes \alpha_{M}(m) \\ &+ \alpha(x_{1}) \wedge \dots \wedge \alpha(x_{n}) \otimes h.m) \\ =&\sum_{i=1}^{n} ((-1)^{i} \alpha^{2}(x_{1}) \wedge \dots \widehat{[h.x_{i}]_{\mathfrak{g}}} \dots \wedge \alpha^{2}(x_{n}) \otimes [h, x_{i}]_{\mathfrak{g}} \cdot \alpha_{M}(m) \\ &+ \sum_{j=1}^{i-1} (-1)^{i+j+1} [[h, x_{i}]_{\mathfrak{g}}, \alpha(x_{j})]_{\mathfrak{g}} \wedge \alpha^{2}(x_{1}) \cdots \widehat{\alpha(x_{j})} \cdots \widehat{[h, x_{i}]_{\mathfrak{g}}} \dots \wedge \alpha^{2}(x_{n}) \otimes \alpha_{M}^{2}(m) + \sum_{j=i+1}^{n} (-1)^{i+j} [[h, x_{i}]_{\mathfrak{g}}, \alpha(x_{j})]_{\mathfrak{g}} \wedge \alpha^{2}(x_{1}) \wedge \dots \\ &\widehat{\alpha^{2}(x_{n})} \otimes \alpha_{M}^{2}(m) + \sum_{j=i+1}^{n} (-1)^{i+j} [[h, x_{i}]_{\mathfrak{g}}, \alpha(x_{j})]_{\mathfrak{g}} \wedge \alpha^{2}(x_{1}) \wedge \dots \\ &\widehat{\alpha(x_{j})} \cdots \wedge \alpha([h, x_{i}]_{\mathfrak{g}}) \wedge \dots \wedge \alpha^{2}(x_{n}) \otimes \alpha(x_{j}) .\alpha_{M}(m) \\ &+ \sum_{1 \leq s < t \leq n, s, t \neq i} (-1)^{s+t} [\alpha(x_{s}), \alpha(x_{t})]_{\mathfrak{g}} \wedge \alpha^{2}(x_{1}) \wedge \dots \widehat{\alpha(x_{s})} \cdots \widehat{\alpha(x_{t})} \dots \wedge \alpha^{2}(x_{n}) \otimes \alpha^{2}(x_{n}) \otimes \alpha^{2}_{M}(m)) + d(\alpha(x_{1}) \wedge \dots \wedge \alpha(x_{n}) \otimes h.m) \end{split}$$

$$= \sum_{\substack{1=i < j \le n}} (-1)^{i+j} ([[h, x_i]_{\mathfrak{g}}, \alpha(x_j)]_{\mathfrak{g}} - [[h, x_j]_{\mathfrak{g}}, \alpha(x_i)]_{\mathfrak{g}} - [\alpha(h), [x_i, x_j]_{\mathfrak{g}}]_{\mathfrak{g}}) \wedge \alpha^2(x_1) \wedge \alpha^2(x_2) \wedge \cdots \widehat{\alpha(x_i)} \cdots \widehat{\alpha(x_j)} \cdots \wedge \alpha^2(x_n) \otimes \alpha^2_M(m)) + \alpha(h) \cdot (d\phi).$$

Thus $\alpha(h) \cdot d\phi = d(h \cdot \phi)$ by Hom-Jacobi identity. \Box

Let \mathfrak{h} be a Hom-ideal of a multiplicative Hom-Lie algebra $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}}, \alpha)$. By Lemma 3.1,

$$d(\mathfrak{h} \cdot (\wedge^n(\mathfrak{g}/\mathfrak{h}) \otimes M)) \subset \alpha(\mathfrak{h}) \cdot (\wedge^n(\mathfrak{g}/\mathfrak{h}) \otimes M) = \mathfrak{h} \cdot d(\wedge^n(\mathfrak{g}/\mathfrak{h}) \otimes M).$$

Hence $(C_{\bullet}(\mathfrak{g}, \mathfrak{h}, (M, \alpha_M)), \overline{d})$ is a quotient complex of $(C_{\bullet}(\mathfrak{g}, (M, \alpha_M)), d)$, where the differential \overline{d} is induced by d. This quotient complex is called the relative Hom-complex of $\mathfrak{h} \subset \mathfrak{g}$. In addition, we use $H_n(\mathfrak{g}, \mathfrak{h}, (M, \alpha_M))$ to denote the *n*th homology group of relative Hom-complex of $\mathfrak{h} \subset \mathfrak{g}$. Moreover, we can see that $H_n(\mathfrak{g}, \mathfrak{h}, (M, \alpha_M))$ is a $\alpha(\mathfrak{h})$ -module from the following proposition.

PROPOSITION 3.1. With the assumption as Lemma 3.1, we have that $H_n(\mathfrak{h}, (M, \alpha_M))$ is an $\alpha(\mathfrak{g})$ -module for any $n \in \mathbb{Z}_+$ via the action (6). Further, $\alpha(\mathfrak{h})$ acts trivially on $H_n(\mathfrak{h}, (M, \alpha_M))$.

Proof. For any $h \in \mathfrak{g}$, if ϕ is a Hom-*n*-cycle, then $d(\alpha(h) \cdot \phi) = \alpha^2(h) \cdot d\phi = 0$ by Lemma 3.1. Thus $H_n(\mathfrak{h}, (M, \alpha_M))$ is a well-defined $\alpha(\mathfrak{g})$ -module via the action (6). Furthermore, one can straightly check that $h \cdot \phi = -d(h \wedge \phi)$ for any $h \in \alpha(\mathfrak{h})$ and $\phi \in H_n(\mathfrak{h}, (M, \alpha_M))$. \Box

4. SPECTRAL SEQUENCE OF A HOM-LIE ALGEBRA

In this section, $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}}, \alpha)$ always denotes a multiplicative Hom-Lie algebra. Let \mathfrak{h} be a Hom-subalgebra of \mathfrak{g} and (M, α_M) be a \mathfrak{g} -module. Suppose that d is always the differential of the complex $C_{\bullet}(\mathfrak{g}, (M, \alpha_M))$.

For each $n, p \in \mathbb{Z}_+$, let

$$F_pC_n(\mathfrak{g},(M,\alpha_M)) = span_{\mathbf{k}}\{x_1 \wedge x_2 \wedge \dots \wedge x_n \otimes m | x_1, x_2, \dots, x_{n-p} \in \mathfrak{h}\}.$$

It is easy to see that

$$d(F_pC_n(\mathfrak{g},(M,\alpha_M))) \subset F_pC_{n+1}(\mathfrak{g},(M,\alpha_M))$$

for any $p, n \in \mathbb{Z}_+$. Thus, we obtain the following filtration:

$$(10)F_0C_n(\mathfrak{g},(M,\alpha_M))\subset\cdots\subset F_{n-1}C_n(\mathfrak{g},(M,\alpha_M))\subset C_n(\mathfrak{g},(M,\alpha_M)).$$

This is a bounded filtration of complexes. Thus, there is a spectral sequence

$$(E_{pq}^r, d_{pq}^r: E_{pq}^r \to E_{p-r,q+r-1}^r)$$

338

such that $E_{pq}^0 = F_p C_{p+q}(\mathfrak{g}, (M, \alpha_M))/F_{p-1}C_{p+q}(\mathfrak{g}, (M, \alpha_M))$, where d_{pq}^r is induced by the differential of $C_{\bullet}(\mathfrak{g}, (M, \alpha_M))$. This type of spectral sequence is called the Serre-Hochschild spectral sequence of $\mathfrak{h} \subset \mathfrak{g}$.

LEMMA 4.1. Let $(E_{pq}^r, d_{pq}^r : E_{pq}^r \to E_{p-r,q+r-1}^r)$ be the Serre-Hochschild spectral sequence of $\mathfrak{h} \subset \mathfrak{g}$. Then

(i)
$$E_{pq}^1 = H_q(\mathfrak{h}, (\wedge^p \mathfrak{g}/\mathfrak{h} \otimes M, \alpha_{p,M}))$$

(ii) If \mathfrak{h} is a Hom-ideal of \mathfrak{g} , then

$$H_q(\mathfrak{h},(\wedge^p\mathfrak{g}/\mathfrak{h}\otimes M,\alpha_{p,M}))\cong\frac{\ker\alpha_p\otimes\wedge^q\mathfrak{h}\otimes M+\wedge^p\mathfrak{g}/\mathfrak{h}\otimes\ker d_q}{\mathrm{Im}\alpha_p\otimes\mathrm{Im}d_{q+1}},$$

where $\alpha_p : \wedge^p \mathfrak{g}/\mathfrak{h} \to \wedge^p \mathfrak{g}/\mathfrak{h}$ is defined via (6) and d_i (i = q, q + 1) is the differential of the Hom-i-chain $C_i(\mathfrak{h}, (M, \alpha_M))$.

(iii) If \mathfrak{h} is a regular Hom-subalgebra of \mathfrak{g} , then $E_{p0}^2 = H_p(\mathfrak{g}, \mathfrak{h}, (M, \alpha_M))$.

Proof. Define a linear map

$$\psi: \ F_pC_{p+q}(\mathfrak{g}, (M, \alpha_M)) \to C_q(\mathfrak{h}, (\wedge^p \mathfrak{g}/\mathfrak{h} \otimes M, \alpha_{p,M})) = \wedge^q h \otimes \wedge^p \mathfrak{g}/\mathfrak{h} \otimes M$$

via

$$x_1 \wedge x_2 \wedge \dots \wedge x_{p+q} \otimes m \mapsto x_1 \wedge x_2 \wedge \dots \wedge x_q \otimes \overline{x_{q+1}} \wedge \overline{x_{q+2}} \wedge \dots \wedge \overline{x_{p+q}} \otimes m,$$

for $x_1, x_2, \dots, x_q \in \mathfrak{h}$, $x_{q+1}, x_{q+2}, \dots, x_{p+q} \in \mathfrak{g}$, $m \in M$, where \overline{x} means the image of x in the quotient space $\mathfrak{g}/\mathfrak{h}$.

From the definition of the filtration (10), one knows that ψ is well-defined. In addition, ψ is surjective with the kernel $F_{p-1}C_{p+q}(\mathfrak{g}, (M, \alpha_M))$. Thus, we get an isomorphism

$$\bar{\psi}: \quad F_p C_{p+q}(\mathfrak{g}, (M, \alpha_M))/F_{p-1} C_{p+q}(\mathfrak{g}, (M, \alpha_M)) \longrightarrow \wedge^q h \otimes \wedge^p \mathfrak{g}/\mathfrak{h} \otimes M.$$

We claim that the following diagram commutes

where d' is the differential of the complex $C_{\bullet}(\mathfrak{h}, (\wedge^{p}\mathfrak{g}/\mathfrak{h} \otimes M, \alpha_{p,M}))$. Indeed,

for $x_1, x_2, \dots, x_q \in \mathfrak{h}$ and $x_{q+1}, x_{q+2}, \dots, x_{q+p} \in \mathfrak{g}$, we have

$$\begin{aligned} &d_{pq}^{0}(x_{1} \wedge x_{2} \wedge \dots \wedge x_{p+q} \otimes m) \\ &= \sum_{1 \leq i < j \leq q} (-1)^{i+j} [x_{i}, x_{j}]_{\mathfrak{g}} \wedge \alpha(x_{1}) \wedge \dots \widehat{x_{i}} \cdots \widehat{x_{j}} \cdots \wedge \alpha(x_{p+q}) \otimes \alpha_{M}(m) + \mu \\ &+ \sum_{i=1}^{q} \sum_{j=q+1}^{p+q} (-1)^{i+j} [x_{i}, x_{j}]_{\mathfrak{g}} \wedge \alpha(x_{1}) \wedge \dots \widehat{x_{i}} \cdots \widehat{x_{j}} \cdots \wedge \alpha(x_{p+q}) \otimes \alpha_{M}(m) \\ &+ \sum_{i=1}^{q} (-1)^{i} \alpha(x_{1}) \wedge \alpha(x_{2}) \wedge \dots \widehat{x_{i}} \cdots \wedge \alpha(x_{p+q}) \otimes x_{i}.m \\ &= \sum_{1 \leq i < j \leq q} (-1)^{i+j} [x_{i}, x_{j}]_{\mathfrak{g}} \wedge \alpha(x_{1}) \wedge \dots \widehat{x_{i}} \cdots \widehat{x_{j}} \cdots \wedge \alpha(x_{q}) \otimes \alpha_{p,M}(\overline{x_{q+1}}) \\ &\wedge \overline{x_{q+2}} \wedge \dots \wedge \overline{x_{p+q}} \otimes m) + \sum_{i=1}^{q} (-1)^{i} \alpha(x_{1}) \wedge \dots \widehat{\alpha(x_{i})} \cdots \wedge \alpha(x_{q}) \otimes x_{i}.(\overline{x_{q+1}}) \\ &\wedge \dots \wedge \overline{x_{p+q}} \otimes m) + \mu \\ &= d'(x_{1} \wedge \dots \wedge x_{q} \otimes \overline{x_{q+1}} \wedge \overline{x_{q+2}} \wedge \dots \wedge \overline{x_{q+p}} \otimes m) + \mu, \end{aligned}$$

where

$$\mu = \sum_{\substack{1+q \le i < j \le p+q \\ + \sum_{i=1+q}^{p+q} (-1)^i \alpha(x_1) \land \dots \land \widehat{x_i} \land \dots \land \widehat{x_j} \land \dots \land \alpha(x_{p+q}) \otimes \alpha_M(m)}$$

It is clear that $\mu \in F_{p-1}C_{p+q-1}(\mathfrak{g},(M,\alpha_M))$. Thus $\overline{\psi}d_0^{pq} = d'\overline{\psi}$ and the first claim of proposition holds. For the second one, if \mathfrak{h} is a Hom-ideal of \mathfrak{g} , \mathfrak{h} acts trivially on $\wedge^p \mathfrak{g}/\mathfrak{h}$. Thus, it is not hard to check that we have the following commutative diagram.

$$\begin{array}{ccc} E^0_{pq} & \xrightarrow{d^0_{pq}} & E^0_{p,q-1} \\ & & & & \downarrow \bar{\psi} \end{array} \\ \wedge^p \mathfrak{g}/\mathfrak{h} \otimes \wedge^q \mathfrak{h} \otimes M \xrightarrow{\alpha_p \otimes d_q} & \wedge^p \mathfrak{g}/\mathfrak{h} \otimes \wedge^{q-1} \mathfrak{h} \otimes M, \end{array}$$

where $\alpha_p : \wedge^p \mathfrak{g}/\mathfrak{h} \to \wedge^p \mathfrak{g}/\mathfrak{h}$ is defined via (6) and d_q is the differential of Hom*q*-chain $C_q(\mathfrak{h}, (M, \alpha_M))$. Furthermore, we have $\ker(\alpha_p \otimes d_q) = \ker \alpha_p \otimes \wedge^q \mathfrak{h} \otimes M + \wedge^p \mathfrak{g}/\mathfrak{h} \otimes \ker d_q$, $\operatorname{Im}(\alpha_p \otimes d_q) = \operatorname{Im}(\alpha_p) \otimes Im(d_q)$. This finishes the proof of the second claim. For (*iii*), by (*i*) and Proposition 3.1, $E_{p0}^1 = \frac{\wedge^p \mathfrak{g}/\mathfrak{h} \otimes M}{\mathfrak{h} \wedge^p \mathfrak{g}/\mathfrak{h} \otimes M} = C_p(\mathfrak{g}, \mathfrak{h}, (M, \alpha_M)).$ Since both d_{p0}^1 and \overline{d} are induced by the initial differential of $C_{\bullet}(\mathfrak{g}, (M, \alpha_M))$, we have $d_{p0}^1 = \overline{d}$. As a consequence, $E_{p0}^2 = H_p(\mathfrak{g}, \mathfrak{h}, (M, \alpha_M))$. \Box

Suppose that \mathfrak{h} is a Hom-ideal of a regular Hom-Lie algebra. Then we can obtain the following proposition from Lemma 4.1

PROPOSITION 4.1. Suppose $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}}, \alpha)$ is a regular Hom-Lie algebra and (M, α_M) is a \mathfrak{g} -module. Let \mathfrak{h} be a Hom-ideal of \mathfrak{g} . Then

$$E_{pq}^2 \cong H_p(\mathfrak{g}/\mathfrak{h}, (H_q(\mathfrak{h}, (M, \alpha_M)), \alpha_{q,M})).$$

Proof. From Lemma 4.1, we obtain that

$$E_{pq}^{1} \cong \frac{\wedge^{p}(\mathfrak{g}/\mathfrak{h}) \otimes \ker d_{q}}{\operatorname{Im} \alpha_{p} \otimes \operatorname{Im} d_{q+1}} \cong \wedge^{p}(\mathfrak{g}/\mathfrak{h}) \otimes H_{q}(\mathfrak{h}, (M, \alpha_{M})).$$

Since \mathfrak{h} is a Hom-ideal of \mathfrak{g} , $H_q(\mathfrak{h}, (M, \alpha_M))$ is a \mathfrak{g} -module for any $q \geq 0$ by Proposition 3.1. Thus, to complete our proof, it suffices to check that the following diagram is commutative

where d_1 is the differential of complex $C_{\bullet}(\mathfrak{g}/\mathfrak{h}, (H_q(\mathfrak{h}, (M, \alpha_M)), \alpha_{q,M}))$. Recall that d_{pq}^1 is induced by the differential d of the complex $C_{\bullet}(\mathfrak{g}, (M, \alpha_M))$.

Suppose $x_1, x_2, \dots, x_q \in \mathfrak{h}, x_{q+1}, x_{q+2}, \dots, x_{p+q} \in \mathfrak{g}$ and $m \in M$. Let $d = \mu_1 + \mu_2$, where

$$\mu_1(x_1 \wedge \dots \wedge x_{p+q} \otimes m)$$

$$= \sum_{1 \leq i < j \leq q} (-1)^{i+j} [x_i, x_j] \wedge \alpha(x_1) \wedge \alpha(x_2) \wedge \dots \widehat{x_i} \dots \widehat{x_j} \dots \wedge \alpha(x_{p+q}) \otimes \alpha_M(m)$$

$$+ \sum_{i=1}^q (-1)^i \alpha(x_1) \wedge \alpha(x_2) \wedge \dots \widehat{x_i} \dots \wedge \alpha(x_{p+q}) \otimes x_i.m,$$

and

$$\mu_{2}(x_{1} \wedge \dots \wedge x_{p+q} \otimes m)$$

$$= \sum_{\substack{1+q \leq i < j \leq p+q}} (-1)^{i+j} [x_{i}, x_{j}] \wedge \alpha(x_{1}) \wedge \dots \widehat{x_{i}} \cdots \widehat{x_{j}} \cdots \wedge \alpha(x_{p+q}) \otimes \alpha_{M}(m)$$

$$+ \sum_{i=1}^{q} \sum_{\substack{j=q+1 \\ j=q+1}}^{p+q} (-1)^{i+j} [x_{i}, x_{j}] \wedge \alpha(x_{1}) \wedge \dots \widehat{x_{i}} \cdots \widehat{x_{j}} \cdots \wedge \alpha(x_{p+q}) \otimes \alpha_{M}(m)$$

$$+ \sum_{i=1+q}^{q+p} (-1)^{i} \alpha(x_{1}) \wedge \dots \widehat{x_{i}} \cdots \wedge \alpha(x_{p+q}) \otimes x_{i}.m.$$

Let $\xi' \in C_{p+q}(\mathfrak{g}, (M, \alpha_M))$ be a preimage of

$$\xi \in E_{pq}^1 = \wedge^p(\mathfrak{g}/\mathfrak{h}) \otimes H_q(\mathfrak{h}, (M, \alpha_M)).$$

Then the image of $d(\xi')$ in the quotient E_{pq}^1 does not depend on the choice of ξ' , which is denoted by $\overline{d(\xi')}$. At this point, one can see that $\overline{\mu_1(\xi')} = d_0(\xi) = 0$, where d_0 is the differential of complex $C_{\bullet}(\mathfrak{h}, (\wedge^p(\mathfrak{g}/\mathfrak{h}) \otimes M, \alpha_{p,M}))$. Similarly, we have $\overline{\mu_2(\xi')} = d_1(\xi)$. This implies that the diagram 11 is commutative. \Box

Suppose $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}}, \alpha)$ is a multiplicative Hom-Lie algebra and \mathfrak{g}_A is its abelian Hom-Lie algebra. Then \mathfrak{g}_A is also a Hom-Lie algebra which shares the same linear map α with \mathfrak{g} . Let (M, 0) be a \mathfrak{g} -module. Then (M, 0) is also a \mathfrak{g}_A -module with the same action as \mathfrak{g} . Furthermore, $dC_n(\mathfrak{g}, (M, 0)) =$ $dC_n(\mathfrak{g}_A, (M, 0))$ for any $n \geq 0$. This implies that

(12)
$$H_n(\mathfrak{g},(M,0)) \cong H_n(\mathfrak{g}_A,(M,0)).$$

If $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}}, \alpha)$ is a regular abelian Hom-Lie algebra, then every α -invariant subspace is a Hom-Lie ideal. Then we can compute the homological groups of a finite dimensional regular abelian Hom-Lie algebra by using Proposition 4.1. Explicitly, we have the following corollary.

COROLLARY 4.1. Let $(L_n, [\cdot, \cdot]_n, \alpha)$ be a regular abelian Hom-Lie algebra with a basis $\{e_1, e_2, \cdots, e_n\}$. Suppose that L_{n-1} is the Hom-ideal generated by $\{e_1, e_2, \cdots, e_{n-1}\}$ and $\alpha(e_i) = \sum_{1 \le k \le i} a_{ik}e_k$, where $a_{ik} \in \mathbf{k}$ and $a_{ii} \ne 0$. Then, for any $p \in \mathbb{Z}_+$,

$$H_p(\mathfrak{g}, (M, \alpha_M)) \cong H_p(L_{n-1}, (M, \alpha_M))^{e_n} \oplus H_{p-1}(L_{n-1}, (M, \alpha_M))^{e_n},$$

where $H_s(L_{n-1}, (M, \alpha_M))^{e_n} = \{v \in H_s(L_{n-1}, (M, \alpha_M)) | e_n \cdot v = 0\}$, for any $s \ge 0$. In particular,

$$dimH_p(\mathfrak{g}, (M, \alpha_M)) \leq dimH_p(L_{n-1}, (M, \alpha_M)) + dimH_{p-1}(L_{n-1}, (M, \alpha_M)).$$

Proof. From the Serre-Hochschild spectral sequence of $L_{n-1} \subset L_n$, we get

$$E_{pq}^{2} = H_{p}(e_{n}, (H_{q}(L_{n-1}, (M, \alpha_{M})), \alpha_{q,M}))$$

by Proposition 4.1. Thus $E_{pq}^2 = 0$ unless p = 0 or p = 1. Since the differential d_{pq}^r of spectral sequence has degree (-r, -1 + r). It implies that $d_{pq}^r = 0$ for $r \ge 2$. So $E_{pq}^{\infty} = E_{pq}^2$. By now, using $E_{1q}^2 = E_{0q}^2 = H_q(L_{n-1}, (M, \alpha_M))^{e_n}$, one can easily complete the proof. \Box

As an application of Proposition 4.1, we obtain the homological groups of a finite-dimensional multiplicative Hom-Lie algebra with coefficient in M as follow.

THEOREM 4.1. Suppose $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}}, \alpha)$ is a finite dimensional multiplicative Hom-Lie algebra with $n(\alpha) = s$ and (M, α_M) is a \mathfrak{g} -module. Then for any $n \geq 0$,

(13)
$$H_n(\mathfrak{g}, (M, \alpha_M)) \cong \bigoplus_{p+q=n} H_p(\mathfrak{g}/\ker\alpha^s, (H_q(\ker\alpha^s, (M, \alpha_M)), \alpha_{q,M})).$$

Proof. Since $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}}, \alpha)$ is a finite dimensional multiplicative Lie algebra with $n(\alpha) = s$, $\mathfrak{g} = R \ltimes \ker \alpha^s$ by Lemma 2.1, where $R \simeq \mathfrak{g}/\ker(\alpha^s)$ is a regular Hom-subalgebra of \mathfrak{g} . Using the Serre-Hochschild spectral sequence of $\ker \alpha^s \subset \mathfrak{g}$, one can obtain that

$$E_{pq}^{1} = \wedge^{p} R \otimes H_{q}(\ker \alpha^{s}, (M, \alpha_{M}))$$

by Proposition 4.1. As $H_q(\ker \alpha^s, (M, \alpha_M))$ is a well-defined *R*-module with action (6), $E_{pq}^2 = H_p(R, (H_q(\ker \alpha^s, (M, \alpha_M)), \alpha_{q,M}))$ by Proposition 4.1. It is easy to see that $d_{pq}^r = 0$ for $r \ge 2$. Thus $E_{pq}^{\infty} = E_{pq}^2$. \Box

To compute homological groups of a finite dimensional multiplicative Hom-Lie algebra, one need only to compute that of some regular Hom-Lie algebras by Theorem 4.1. About the homological groups of a regular finite dimensional Hom-Lie algebra, we have the following.

PROPOSITION 4.2. Suppose $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}}, \alpha)$ is a regular Hom-Lie algebra of Lie type of \mathfrak{g}_L and (M, α_M) is a finite dimensional \mathfrak{g} -module with $n(\alpha_M) = t$, then

(14)
$$H_n(\mathfrak{g}, (M, \alpha_M)) \cong H_n(\mathfrak{g}, (\ker \alpha_M^t, \alpha_M)) \oplus H_n^{Lie}(\mathfrak{g}_L, M/\ker \alpha_M^t).$$

Proof. Since $\alpha_M^t(x \cdot m) = \alpha^t(x) \cdot \alpha_M^t(m) = 0$ for any $x \in \mathfrak{g}$ and $m \in \ker \alpha_M^t$, $\ker \alpha_M^t$ is a \mathfrak{g} -submodule of M. With similar analysis of Lemma 2.1, one get the following short splitting exact sequence of \mathfrak{g} -modules

$$0 \to \ker \alpha_M^t \to M \to M / \ker \alpha_M^t \to 0.$$

Thus, for any $n \ge 0$,

$$H_{n}(\mathfrak{g}, (M, \alpha_{M})) \cong H_{n}(\mathfrak{g}, (\ker \alpha_{M}^{t} \oplus M / \ker \alpha_{M}^{t}, \alpha_{M}))$$

$$\cong H_{n}(\mathfrak{g}, (\ker \alpha_{M}^{t}, \alpha_{M})) \oplus H_{n}(\mathfrak{g}, (M / \ker \alpha_{M}^{t}, \alpha_{M}))$$

$$\cong H_{n}(\mathfrak{g}, (\ker \alpha_{M}^{t}, \alpha_{M})) \oplus H_{n}^{Lie}(\mathfrak{g}_{L}, M / \ker \alpha_{M}^{t}).$$

by (9). \Box

In addition, about the homological group $H_n(\mathfrak{g}, (\ker \alpha_M^t, \alpha_M))$, we have the following result.

COROLLARY 4.2. Suppose $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}}, \alpha)$ is a regular Lie algebra and (M, α_M) is a \mathfrak{g} -module with $n(\alpha_M) = t$. Then

(15)
$$dimH_n(\mathfrak{g}, (\ker \alpha_M^t, \alpha_M)) \le \sum_{i=1}^t dimH_n(\mathfrak{g}_A, (\ker \alpha_M^i / \ker \alpha_M^{i-1}, 0)).$$

Proof. Consider the bounded filtration of \mathfrak{g} -modules,

$$0 \subset (\ker \alpha_M, \alpha_M) \subset (\ker \alpha_M^2, \alpha_M) \subset \cdots \subset (\ker \alpha_M^t, \alpha_M).$$

For any $s, n \in \mathbb{Z}_+$, define a subcomplex by

$$F_s C_n(\mathfrak{g}, (\ker \alpha_M^t, \alpha_M)) = C_n(\mathfrak{g}, (\ker \alpha_M^s, \alpha_M)).$$

Then we have a spectral sequence with

$$E_{pq}^1 \cong H_{p+q}(\mathfrak{g}, (\ker \alpha_M^p / \ker \alpha_M^{p-1}, \alpha_M)).$$

Since α_M acts trivially on $\ker \alpha_M^p / \ker \alpha_M^{p-1}$,

$$E_{pq}^{1} \cong H_{p+q}(\mathfrak{g}_{A}, (\ker \alpha_{M}^{p} / \ker \alpha_{M}^{p-1}, 0))$$

by (12). Hence (15) is established. \Box

Finally, let us assume that $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}}, \alpha)$ is a finite dimensional non-regular multiplicative Hom-Lie algebra and (M, α_M) is a finite dimensional \mathfrak{g} -module, where $s = n(\alpha)$, $t = n(\alpha_M)$. Let $k = \max(s, t)$. Then $\mathfrak{g} = R \ltimes \ker \alpha^s$ according to Lemma 2.1, where R is a regular Hom-subalgebra of Lie type of R_L . Consequently, by (13), (14), and (15), we have

$$dim H_{n}(\mathfrak{g}, (M, \alpha_{M}))$$

$$= \sum_{p+q=n} \dim H_{p}(R, (H_{q}(\ker \alpha^{s}, (M, \alpha_{M})), \alpha_{q,M}))$$

$$= \sum_{p+q=n} \dim (H_{p}^{Lie}(R_{L}, \frac{H_{q}(\ker \alpha^{s}, (M, \alpha_{M}))}{\ker \alpha_{q,M}^{k}}))$$

$$+ H_{p}(R, (\ker \alpha_{q,M}^{k}, \alpha_{q,M})))$$

$$\leq \sum_{p+q=n} \dim (H_{p}^{Lie}(R_{L}, \frac{H_{q}(\ker \alpha^{s}, (M, \alpha_{M}))}{\ker \alpha_{q,M}^{k}}))$$

$$+ \sum_{j=1}^{k} H_{p}(R_{A}, (\frac{\ker \alpha_{q,M}^{j}}{\ker \alpha_{q,M}^{j-1}}, 0))).$$

As a consequence, we believe that the abelian Hom-Lie algebras are very important in the homology theory of multiplicative Hom-Lie algebras.

COROLLARY 4.3. Keep the notations as above. If $\max(n(\alpha), n(\alpha_M)) \leq 1$, then

$$H_n(\mathfrak{g}, (M, \alpha_M)) \cong \bigoplus_{p+q=n} H_p^{Lie}(R_L, \frac{H_q(\ker \alpha, (M, \alpha_M))}{\ker \alpha_{q,M}}) \oplus H_p(R_A, (\ker \alpha_{q,M}, 0)).$$

Example 4.2. Suppose \mathcal{H} is vector space with basis $\{x_1, x_2, x_3\}$. The operation of \mathcal{H} is determined by the following brackets:

$$[x_1, x_2]_{\mathcal{H}} = x_3, \ [x_1, x_3]_{\mathcal{H}} = 0, \ [x_2, x_3]_{\mathcal{H}} = 0.$$

Define an endomorphism α of the vector space \mathcal{H} by

$$\alpha(x_1) = x_1, \ \alpha(x_2) = x_3, \ \alpha(x_3) = 0.$$

Then $(\mathcal{H}, [\cdot, \cdot]_{\mathcal{H}}, \alpha)$ is a multiplicative Hom-Lie algebra with ker $\alpha^2 = \mathbf{k}x_3 \oplus \mathbf{k}x_2$. Suppose (\mathbf{k}, id) is the trivial \mathfrak{g} -module. Consider the Serre-Hochschild spectral sequence of ker $\alpha^2 \subset \mathcal{H}$. By straight computation, we can obtain that $E_{00}^2 = \mathbf{k}$, $E_{01}^2 = \mathbf{k}x_2, E_{11}^2 = \mathbf{k}(x_1 \otimes x_3), E_{12}^2 = \mathbf{k}(x_1 \otimes x_2 \wedge x_3), E_{02}^2 = \mathbf{k}(x_2 \wedge x_3), E_{10}^2 = \mathbf{k}x_1$. Thus

$$\dim H_n(\mathcal{H}, (\mathbf{k}, id)) \equiv \begin{cases} 1, & \text{for } n = 0\\ 2, & \text{for } n = 1.\\ 2, & \text{for } n = 2.\\ 1, & \text{for } n = 3.\\ 0, & \text{otherwise.} \end{cases}$$

PROPOSITION 4.3. Suppose $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}}, \alpha)$ is a multiplicative Hom-Lie algebra of Lie type of a Lie algebra \mathfrak{g}_L . Assume that (M, α_M) is a \mathfrak{g} -module.

Consider the Serre-Hochschild spectral sequence of ker $\alpha \subset \mathfrak{g}$. Then $d_{pq}^r = 0$ for r > 2 and $d_{pq}^2 = 0$ for $q \neq 0$.

Proof. We abbreviate $F_pC_n(\mathfrak{g}, (M, \alpha_M))$ as F_pC_n for any $n, p \in \mathbb{Z}_+$. Notice that $[\ker \alpha, \mathfrak{g}]_{\mathfrak{g}} = 0$. Thus the differential d acts trivially on the subspace F_pC_{p+q} for q > 1. Since d_{pq}^r is induced by the differential $d, d_{pq}^r = 0$ for q > 1 and $r \ge 0$. By definition, one can see that the differential vanishes on the set

$$\{\phi \in F_{p-1}C_p \setminus F_{p-2}C_p | d(c) \in F_{p-r}C_{p-1} \text{ for } r \ge 2\}.$$

It implies that $d_{p1}^r = 0$ for $r \ge 2$. Similarly, we have $d_{p0}^r = 0$ for r > 2.

In general, d_{p0}^2 in Proposition 4.3 may be non-trivial.

Example 4.3. Let \mathfrak{g}_L be a four dimensional Lie algebra. Suppose that $\{x_1, x_2, x_3, x_4\}$ is a basis of \mathfrak{g}_L . The non-trivial brackets of \mathfrak{g}_L given by

$$[x_1, x_2] = x_3, \ [x_2, x_3] = x_4.$$

and define $\alpha(x_1) = x_2$, $\alpha(x_2) = x_3$, $\alpha(x_3) = x_4$, $\alpha(x_4) = 0$. Thus $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}}, \alpha)$ is a multiplicative Hom-Lie algebra with ker $\alpha = \mathbf{k}x_4$ and non-trivial bracket: $[x_1, x_2]_{\mathfrak{g}} = [\alpha(x_1), \alpha(x_2)] = x_4$. Let (\mathbf{k}, id) be the trivial module. Now consider the Serre-Hochschild spectral sequence of ker $\alpha \subset \mathfrak{g}$. It is easy to see that $x_1 \wedge x_2 \in E_{2,0}^2 = H_2(\mathfrak{g}/\ker\alpha, (\mathbf{k}, id))$ and $x_4 \in E_{01}^2 = H_0(\mathfrak{g}/\ker\alpha, (\ker\alpha, 0))$. Furthermore, we have $d_{20}^2(x_1 \wedge x_2) = -x_4$.

REFERENCES

- F. Ammar, Z. Ejbehi, and A. Makhlouf, Cohomology and deformations of Hom-algebras. J. Lie Theory 21 (2011), 813-836.
- B. Agrebaoui, K. Benali, and A. Makhlouf, *Representations of simple Hom-Lie algebras*. J. Lie Theory 29 (2019), 1119-1135.
- [3] B. Guan, L. Chen, and B. Sun, On Hom-Lie superalgebras. Adv. Appl. Clifford Algebr. 29 (2019), 1, Paper No. 16.
- [4] N. Hu, q-Witt algebras, q-Lie algebras, q-holomorph structure and representations. Algebra Colloq. 6 (1999), 51-70.
- [5] J.I. Hartwig, D. Larsson, and S. Silvestrov, Deformations of Lie algebras using σ -derivations. J. Algebra **295** (2006), 314-361.
- [6] G. Hochschild and J. Serre, Cohomology of Lie algebras. Ann. of Math. 57 (1953), 591-603.
- M. Hassanzadeh, I. Shapiro, and S. Serkan, Cyclic homology for Hom-associative algebras. J. Geom. Phys 98 (2015), 40-56.
- [8] Q. Jin and X. Li, Hom-Lie algebra structures on semi-simple Lie algebras. J. Algebra 319 (2008), 1398-1408.
- [9] A. Makhlouf and S. Silvestrov, Hom-algebra structures. J. Gen. Lie Theory Appl. 2 (2008), 51-64.

- [10] A. Makhlouf and S. Silvestrov, Hom-Lie admissible Hom-coalgebras and Hom-Hopf algebras. In: S. Silvestrov et al. (Eds.), Generalized Lie Theory in Mathematics, Physics and Beyond. Springer, Berlin, Heidelberg, 2009, pp. 189-206.
- [11] A. Makhlouf and P. Zusmanovich, Ado theorem for nilpotent Hom-Lie algebras. Internat. J. Algebra Comput. 29 (2019), 7, 1343-1365.
- [12] Y. Sheng, Representations of Hom-Lie algebras. Algebr. Represent. Theory 15 (2012), 1081-1098.
- [13] D. Yau, Hom-algebras and homology. J. Lie Theory **19** (2009), 409-421.
- [14] D. Yau, Enveloping algebras of Hom-Lie algebras. J. Gen. Lie Theory Appl. 2 (2008), 2, 95-108.
- [15] D. Yau, The Hom-Yang-Baxter equation, Hom-Lie algebras, and quasi-triangular bialgebras. J. Phys. A 42 (2009), 16, Article ID 165202.
- [16] D. Yau, Hom-bialgebras and comodule Hom-algebras. Int. Electron. J. Algebra 8 (2010), 45-64.
- [17] D. Yau, Hom-quantum groups: I. Quasi-triangular Hom-bialgebras. J. Phys. A 45 (2012), 6, Article ID 065203.

Received January 27, 2020

Shaoxing University School of Mathematical Information Shaoxing, 312000, P. R. China 390596169@qq.com

Zhejiang University School of Mathematics Sciences Hangzhou, 310027, P. R. China wzx@zju.edu.cn