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1. INTRODUCTION

In recent years, many mathematicians and physicists studied various
Hom-type algebras. M. Hassanzadeh, I. Shapiro and S. Sütlü studied the cyclic
homology of Hom-associative algebras in [7]. B. Guan, L. Chen and B. Sun in-
troduced Hom-Lie superalgebras in [3]. A. Makhlouf and S. Silvestrov studied
Hom-associative, Hom-Leibniz and Hom-Lie admissible algebraic structures in
[9] and Hom-Lie admissible Hom-coalgebras and Hom-Hopf algebras in [10].
The theory of quantum Hom-algebra was established in [15],[16],[17]. The no-
tion of Hom-Lie algebras originated from the q-deformation of Witt algebras
and Virasoro Lie algebras (see [5]). Hom-Lie algebras are studied extensively.
Especially, the representation theory of Hom-Lie algebras was well-developed.
For example, the irreducible representations of simple Hom-Lie algebras were
obtained in [2]. The Ado theorem for a nilpotent Hom-Lie algebra was proved
in [11]. D. Yau constructed the universal enveloping algebra of a Hom-Lie al-
gebra in [14]. In addition, the cohomology of Hom-Lie algebras was studied in
[1] and [12]. From these articles, we know that the low dimension cohomology
groups can be interpreted as the central extensions and derivations of Hom-
Lie algebras. Dually, there is a homology theory of Hom-Lie algebras, which
was developed by many researchers. Especially, D. Yau defined the Chevalley-
Eilenberg type complex of a Hom-Lie algebra in [13], which is the main object
we focus on in this paper. Since Serre-Hochschild spectral sequence of Lie al-
gebras plays a very important role in the homology theory of Lie algebras (see
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[6]), we construct a counterpart Serre-Hochschild spectral sequence of Hom-
Lie algebras. Using this spectral sequence, we establish the bridge between the
homology groups of Hom-Lie algebras and that of Lie algebras.

This paper is arranged as follows: in Section 2, we recall some basic
definitions of Hom-Lie algebras and provide some examples of different type
of Hom-Lie algebras. We prove that every multiplicative Hom-Lie algebra is
a semi-direct product of a regular Hom-Lie algebra and a module over this
regular Hom-Lie algebra.

In Section 3, the definition of homology groups of a multiplicative Hom-
Lie algebra are given. In addition, we investigate the module structures on the
Hom-chains.

In Section 4, we establish the Serre-Hochschild spectral sequence of Hom-
Lie algebras. By using this method, we describe the homology groups of finite
dimensional multiplicative Hom-Lie algebras in terms of homology groups of
Lie algebras and abelian Hom-Lie algebras, see the formula (16).

In this article, k is an algebraically closed field of characteristic zero. In
addition, all the vectors and algebras are over the field k. Z is the ring of
integers and Z+ is the set of non-negative integers.

2. PRELIMINARY

In this section, we recall some basic concept and prove some elementary
results related to Hom-Lie algebras. First, let us recall the definitions of various
Hom-Lie algebras.

Definition 2.1. Suppose that g is a vector space with an endomorphism
α and [·, ·]g : ∧2g → g is a skew-symmetric map. Then the triple (g, [·, ·]g, α)
is called a Hom-Lie algebra if it satisfies the Hom-Jacobi Identity :

(1) [α(x), [y, z]g]g + [α(y), [z, x]g]g + [α(z), [x, y]g]g = 0

for x, y, z ∈ g.

1. A Hom-subalgebra h of a Hom-Lie (g, [·, ·]g, α) is a α-invariant subspace
h of g such that [h, h]g ⊂ h.

2. A Hom-subalgebra h is called a Hom-ideal of g if [h, g]g ⊂ h.

3. A Hom Lie algebra (g, [·, ·]g, α) is said to bemultiplicative if α([a, b]g) =
[α(a), α(b)]g.

4. A regular Hom-Lie algebra (g, [·, ·]g, α) is a multiplicative Hom-Lie
algebra with an invertible α.
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It is obvious that a Hom-subalgebra h of a Hom-Lie (g, [·, ·]g, α) is itself
a Hom-Lie algebra with the restriction map αh and restriction bracket. In the
sequel of this paper, to simplify notations, we usually abbreviate the Hom-Lie
triple (g, [·, ·]g, α) to g.

Example 2.2. Let W1 be the Lie algebra generated by the set {ei}i≥−1

together with the brackets: [ei, ej ] = (j − i)ei+j . For any k ∈ Z+, we de-
fine αk(ei) = ei+k. Then (W1, [·, ·], αk) is a Hom-Lie algebra, but it is not
multiplicative for positive k.

Example 2.3. (Yau twist) Let g be a Lie algebra with bracket [·, ·]. Sup-
pose α is an endomorphism of g. Define [x, y]g := α([x, y]) = [α(x), α(y)].
Then (g, [·, ·]g, α) is a multiplicative Hom-Lie algebra. In particular, any Lie
algebra is a Hom-Lie algebra with α = id.

Definition 2.4. Suppose that (g, [·, ·]g, α) is a Yau twist of a Lie gL by
its endomorphism α, then we call it a Hom-Lie algebra of Lie type of the Lie
algebra gL.

Every regular Hom-Lie algebra is a Hom-Lie algebra of Lie type. In
fact, if (g, [·, ·]g, α) is a regular Hom-Lie algebra, then it is a Hom-Lie algebra
of Lie type of gL, where gL = g as vector spaces, whose bracket is given
by [x, y] = α−1([x, y]g) for x, y ∈ gL. Thus the category of Lie algebras is
equivalent to the category of regular Hom-Lie algebras.

Example 2.5. Suppose that (g, [·, ·]g, α) is a multiplicative Lie algebra.
For arbitrary s ∈ Z+, αs([x, y]) = [αs(x), αs(y)] = 0 for x ∈ kerαs and y ∈ g.
Thus kerαs is a Hom-ideal of g.

Next, we recall representations of Hom-Lie algebras. A representation of
a Hom-Lie algebra (g, [·, ·]g, α) is also called a module over it or a g-module.

Definition 2.6. Suppose that (g, [·, ·]g, α) is a Hom-Lie algebra and M is
a vector space with an endomorphism αM . Let ρM be a k-linear map from g
to gl(M). Then the triple (M,ρM , αM ) is called a (g, [·, ·]g, α)-module if the
following compatible conditions hold:

(2) ρM ([x, y]g)αM (m) = ρM (α(x))ρM (y)m− ρM (α(y))ρM (x)m,

(3) αM (ρ(x)m) = ρM (α(x))αM (m)

for any x, y ∈ g , m ∈ g.

In the sequel, to simplify notations, we will use the pair (M,αM ) to
substitute the triple (M,ρM , αM ) and ρM (x)(m) is abbreviated as x · m, or
xm, if there is no ambiguous of the action of g on M . Sometimes, we simply
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call M a g-module. We use (k, id) to denote the trivial module of a Hom-Lie
algebra (g, [·, ·]g, α).

If I is a Hom-ideal of a multiplicative Hom-Lie algebra (g, [·, ·]g, α), then
(I, α|I) is a g-module with the action: x · y = [x, y]g for x ∈ g and y ∈ I.
In particular, I = g is a g-module. This module is called a adjoint module.
A representation of a multiplicative Hom-Lie algebra can be characterized by
another multiplicative Hom-Lie algebra. To describe this, let M be a vector
space, ρM ∈ Homk(g, gl(M)), αM ∈ gl(M). Define a bracket on g⊕M by

(4) [(x,m1), (y,m2)](g,M) = ([x, y]g, ρM (x)m2 − ρM (y)m1]).

and a k-linear map by

α⋉(x,m1) = (α(x), αM (m1)),

where x, y ∈ g and m1,m2 ∈M . Then we have the following proposition.

Proposition 2.1. Suppose that (g, [·, ·]g, α) is a multiplicative Hom-Lie
algebra. Then (g⊕M, [·, ·](g,M), α⋉) is a multiplicative Hom-Lie algebra if and
only if (M,αM ) is a g-module with the action ρM .

Proof. If (M,αM ) is a g-module, (g ⊕M, [·, ·](g,M), α⋉) is a multiplica-
tive Hom-Lie algebra by [12, Proposition 4.5]. On the other hand, if (g ⊕
M, [·, ·](g,M), α⋉) is a multiplicative Hom-Lie algebra, then M is a Hom-ideal
of g⊕M . Thus (M,αM ) is a g-module with the action ρM .

The multiplicative Hom-Lie algebra (g⊕M, [·, ·](g,M), α⋉) in Proposition
2.1 is called a semi-direct product of g and its representation M . Every finite-
dimensional multiplicative Hom-Lie algebra is a semi-direct product of a reg-
ular Hom-Lie algebra and its representation. To prove this claim, let us fix
some terms. Suppose that α is an endomorphism of a vector space V and

0 ⊂ kerα ⊂ kerα2 ⊂ · · · ⊂ kerαs ⊂ · · ·

is an ascending chain of subspaces of V . If there is k such that ker(αk) = ker(αl)
for any l ≥ k, then there is a minimal integer s such that kerαs = kerαt for
any t ≥ s. We call this s a null degree of α. The null degree of α is denoted
by n(α).

With this notion, we can prove the following key lemma for Section 4.

Lemma 2.1. Suppose that (g, [·, ·]g, α) is a finite dimensional multiplica-
tive Hom-Lie algebra with null degree n(α) = s. Then g = R ⋉ kerαs, where
R ≃ g/ ker(αs) is a regular Hom-subalgebra of g.

Proof. Let g = R⊕kerαs be the Jordan decomposition of α. It is obvious
that α|R is invertible. We claim that R is closed under the bracket of g. Indeed,
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for a, b ∈ R, write [a, b]g = c + x, where c ∈ R and x ∈ kerαs. Since the
restriction of α on R is an isomorphism, there exists a′, b′, c′ ∈ R such that

αs(a′) = a, αs(b′) = b, αs(c′) = c.

Thus, αs([a, b]g − c) = α2s([a′, b′]g − c′) = 0. Therefore, [a′, b′]g − c′ ∈ kerα2s =
kerαs. This implies that x = [a, b]g − c = αs([a′, b′]g − c′) = 0. Hence, R is a
Hom-subalgebra of g. Since kerαs is a Hom-ideal of g, g = R⋉ kerαs.

Finally, we recall the tensor product of (g, [·, ·]g, α)-modules. Suppose
(g, [·, ·]g, α) is a regular Hom-Lie algebra and (M1, αM1), · · · , (Mn, αMn) are
g-modules. LetM =M1⊗M2⊗· · ·⊗Mn be the tensor product ofM1, · · · ,Mn

over k. Define a linear map αM :M →M and an action of g on M via

αM (x1 ⊗ x2 ⊗ · · · ⊗ xn) = αM1(x1)⊗ αM2(x2)⊗ · · · ⊗ αMn(xn),(5)

and

(6) h · (x1 ⊗ x2 ⊗ · · · ⊗ xn) =
n∑
i=1

αM1(x1)⊗ · · · ⊗ h · xi ⊗ · · · ⊗ αMn(xn),

for h ∈ g and x1⊗x2⊗· · ·⊗xn ∈M , respectively. Then (M,αM ) is a g-module
by [11, proposition 1.1].

Remark 2.7. Suppose g is a Hom-Lie algebra. Then the category of all
g-modules is a symmetric monoidal category with the action given by (6).

3. HOMOLOGY OF MULTIPLICATIVE HOM-LIE ALGEBRAS

In this section, all Hom-Lie algebras are always multiplicative unless oth-
erwise specified. First, let us recall the Chevalley-Elienberg type homology of
multiplicative Hom-Lie algebras from [13].

Suppose that (M,αM ) be a module over a multiplicative Hom-Lie algebra
(g, [·, ·]g, α). Recall that, for n ∈ Z+, a Hom-n-chain of the Hom-Lie algebra
g with coefficients in M is an element in the vector space Cn(g, (M,αM )) =
∧ng ⊗M , where ∧ng is the nth exterior power of g. If n = 0, then ∧0g = k
is a g-module with a trivial action. The differential d from Cn(g, (M,αM )) to
Cn−1(g, (M,αM )) is a k-linear map given by
(7)

d(x1∧x2 ∧ · · · ∧ xn ⊗m) =

n∑
i=1

(−1)iα(x1) ∧ α(x2) ∧ · · · x̂i · · · ∧ α(xn)⊗ xi.m

+
∑

1≤i<j≤n
(−1)i+j [xi, xj ]g ∧ α(x1) ∧ · · · x̂i · · · x̂j · · · ∧ α(xn)⊗ αM (m),
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for x1, x2, · · · , xn ∈ g and m ∈ M . Since d2 = 0 by [13, Theorem 3.4],
(C•(g,M), d) forms a complex. This complex is called Chevalley-Eilenberg
complex of the Hom-Lie algebra (g, [·, ·]g, α) with coefficient in M . We use
Hn(g, (M,αM )) to denote the nth homology group of this Chevalley-Eilenberg
complex of the Hom-Lie algebra (g, [·, ·]g, α) with coefficient in M .

Suppose that a Hom-Lie algebra (g, [·, ·]g, α) is regular. Then it is a
Hom-Lie algebra of Lie type of a Lie algebra gL. Furthermore, if αM of the
representation (M,αM ) is also invertible, then Hn(g, (M,αM )) is the same as
the n-th Chevalley-Eilenberg homological groupHLie

n (gL,M) of the Lie algebra
with the coefficient in M , where M is a gL module via

(8) x ·m = α−1
M (ρM (x).m),

for x ∈ gL,m ∈M . In fact, we can construct a morphism from the Chevalley-
Eilenberg complex of the Lie algebra gL with coefficients inM to the Chevalley-
Eilenberg complex (C•(g,M), d) of Hom-Lie algebra (g, [·, ·]g, α) with coeffi-
cients in M as follow.

For x1, · · · , xn ∈ g, m ∈M , define a mapping φ via

x1 ∧ x2 ∧ · · · ∧ xn ⊗m 7→ α(x1) ∧ α(x2) ∧ · · · ∧ α(xn)⊗ αM (m).

It is easy to check that φ is an isomorphism of complexes. Then it induces an
isomorphism

(9) Hn(g, (M,αM )) ∼= HLie
n (gL,M),

where gL acts on M by (8). If a Hom-Lie algebra (g, [·, ·]g, α) is not regular,
there are no such isomorphisms as the following example to explain.

Example 3.1. Let n ≥ 2 and gl(n,k) be the general linear Lie algebra
of all n × n matrices over the field k. Define α(x) = trace(x)In, where In
is the identity matrix. Since the image of α is in the center of gl(n,k), the
Hom-Jacobi identity holds. Thus (gl(n,k), [·, ·], α) is a multiplicative Hom-Lie
algebra.

It is well known that

HLie
• (gl(n,k),k) ∼= ∧[θ1, θ2, · · · , θn],

where ∧[θ1, θ2, · · · , θn] is the exterior algebra with generator θi of degree 2i−1.
However, from the definition of differential given by (8), the differential of the
complex C•(gl(n,k), (k, id)) is zero. Thus HLie

• (gl(n,k),k) is not isomorphic
to Hn(gl(n,k), (k, id)).

Notice that the action (6) is invariant under the permuting factors in the
tensor products. Thus (Cn(g,M), αn,M ) is also a g-module with the action
induced by (6). Explicitly, for x1, x2, · · ·xn ∈ g and m ∈M ,

αn,M (x1 ∧ x2 ∧ · · · ∧ xn ⊗m) = α(x1) ∧ α(x2) ∧ · · · ∧ α(xn)⊗ αM (M).
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In the following, we use the same notation for an endomorphism of a vector
space V , its restriction to a subspace W ⊆ V and the induced endomorphism
of the quotient space V/U by its invariant subspace U .

Next, we recall the relative homology theory of Hom-Lie algebras which
is called Relative Hom-homology. Suppose (g, [·, ·]g, α) is a multiplicative Hom-
Lie algebra and (M,αM ) is a g-module. Let h be a regular Hom-subalgebra of
g. Then the group of relative Hom-n-chains is defined via

Cn(g, h, (M,αM )) =
∧n(g/h)⊗M

h.(∧n(g/h)⊗M)
,

where the dot action of h on ∧ng/h⊗M is defined via (6).

Lemma 3.1. Suppose that h is a Hom-ideal of a multiplicative Hom-Lie
algebra (g, [·, ·]g, α) and (M,αM ) is a g-module. Then α(h) · dϕ = d(h · ϕ) for
any ϕ ∈ Cn(h, (M,αM )) and h ∈ g.

Proof. Since all the maps are k-linear, we may assume that ϕ is a mono-
mial, i.e, ϕ = x1 ∧ x2 ∧ · · · ∧ xn⊗m, where x1, x2, · · · , xn ∈ h and m ∈M . For
any h ∈ g, we have

d(h · ϕ)

=d(
n∑
i=1

α(x1) ∧ · · · ∧ [h, xi]g ∧ · · · ∧ α(xn)⊗ αM (m)

+ α(x1) ∧ · · · ∧ α(xn)⊗ h.m)

=
n∑
i=1

((−1)iα2(x1) ∧ · · · [̂h.xi]g · · · ∧ α2(xn)⊗ [h, xi]g · αM (m)

+

i−1∑
j=1

(−1)i+j+1[[h, xi]g, α(xj)]g ∧ α2(x1) · · · α̂(xj) · · · ̂[h, xi]g · · · ∧

α2(xn)⊗ α2
M (m) +

n∑
j=i+1

(−1)i+j [[h, xi]g, α(xj)]g ∧ α2(x1) ∧ · · ·

̂[h, xi]g · · · α̂(xj) · · · ∧ α2(xn)⊗ α2
M (m) +

n∑
j=1,j ̸=i

(−1)jα2(x1) ∧ · · ·

α̂(xj) · · · ∧ α([h, xi]g) ∧ · · · ∧ α2(xn)⊗ α(xj).αM (m)

+
∑

1≤s<t≤n,s,t̸=i
(−1)s+t[α(xs), α(xt)]g ∧ α2(x1) ∧ · · · α̂(xs) · · · α̂(xt) · · · ∧

α2(xn)⊗ α2
M (m)) + d(α(x1) ∧ · · · ∧ α(xn)⊗ h.m)
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=
∑

1=i<j≤n
(−1)i+j([[h, xi]g, α(xj)]g − [[h, xj ]g, α(xi)]g − [α(h), [xi, xj ]g]g)∧

α2(x1) ∧ α2(x2) ∧ · · · α̂(xi) · · · α̂(xj) · · · ∧ α2(xn)⊗ α2
M (m)) + α(h) · (dϕ).

Thus α(h) · dϕ = d(h · ϕ) by Hom-Jacobi identity.

Let h be a Hom-ideal of a multiplicative Hom-Lie algebra (g, [·, ·]g, α). By
Lemma 3.1,

d(h · (∧n(g/h)⊗M)) ⊂ α(h) · (∧n(g/h)⊗M) = h · d(∧n(g/h)⊗M).

Hence (C•(g, h, (M,αM )), d) is a quotient complex of (C•(g, (M,αM )), d), where
the differential d is induced by d. This quotient complex is called the relative
Hom-complex of h ⊂ g. In addition, we use Hn(g, h, (M,αM )) to denote the
nth homology group of relative Hom-complex of h ⊂ g. Moreover, we can see
that Hn(g, h, (M,αM )) is a α(h)-module from the following proposition.

Proposition 3.1. With the assumption as Lemma 3.1, we have that
Hn(h, (M,αM )) is an α(g)-module for any n ∈ Z+ via the action (6). Further,
α(h) acts trivially on Hn(h, (M,αM )).

Proof. For any h ∈ g, if ϕ is a Hom-n-cycle, then d(α(h)·ϕ) = α2(h)·dϕ =
0 by Lemma 3.1. Thus Hn(h, (M,αM )) is a well-defined α(g)-module via the
action (6). Furthermore, one can straightly check that h · ϕ = −d(h ∧ ϕ) for
any h ∈ α(h) and ϕ ∈ Hn(h, (M,αM )).

4. SPECTRAL SEQUENCE OF A HOM-LIE ALGEBRA

In this section, (g, [·, ·]g, α) always denotes a multiplicative Hom-Lie al-
gebra. Let h be a Hom-subalgebra of g and (M,αM ) be a g-module. Suppose
that d is always the differential of the complex C•(g, (M,αM )).

For each n, p ∈ Z+, let

FpCn(g, (M,αM )) = spank{x1 ∧ x2 ∧ · · · ∧ xn ⊗m|x1, x2, · · · , xn−p ∈ h}.

It is easy to see that

d(FpCn(g, (M,αM ))) ⊂ FpCn+1(g, (M,αM ))

for any p, n ∈ Z+. Thus, we obtain the following filtration:

F0Cn(g, (M,αM )) ⊂ · · · ⊂ Fn−1Cn(g, (M,αM )) ⊂ Cn(g, (M,αM )).(10)

This is a bounded filtration of complexes. Thus, there is a spectral sequence

(Erpq, d
r
pq : E

r
pq → Erp−r,q+r−1)
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such that E0
pq = FpCp+q(g, (M,αM ))/Fp−1Cp+q(g, (M,αM )), where drpq is in-

duced by the differential of C•(g, (M,αM )). This type of spectral sequence is
called the Serre-Hochschild spectral sequence of h ⊂ g.

Lemma 4.1. Let (Erpq, d
r
pq : Erpq → Erp−r,q+r−1) be the Serre-Hochschild

spectral sequence of h ⊂ g. Then

(i) E1
pq = Hq(h, (∧pg/h⊗M,αp,M )).

(ii) If h is a Hom-ideal of g, then

Hq(h, (∧pg/h⊗M,αp,M )) ∼=
kerαp ⊗ ∧qh⊗M + ∧pg/h⊗ ker dq

Imαp ⊗ Imdq+1
,

where αp : ∧pg/h → ∧pg/h is defined via (6) and di (i = q, q + 1) is the
differential of the Hom-i-chain Ci(h, (M,αM )).

(iii) If h is a regular Hom-subalgebra of g, then E2
p0 = Hp(g, h, (M,αM )).

Proof. Define a linear map

ψ : FpCp+q(g, (M,αM )) → Cq(h, (∧pg/h⊗M,αp,M )) = ∧qh⊗ ∧pg/h⊗M

via

x1 ∧ x2 ∧ · · · ∧ xp+q ⊗m 7→ x1 ∧ x2 ∧ · · · ∧ xq ⊗ xq+1 ∧ xq+2 ∧ · · · ∧ xp+q ⊗m,

for x1, x2, · · · , xq ∈ h, xq+1, xq+2, · · · , xp+q ∈ g, m ∈ M , where x means the
image of x in the quotient space g/h.

From the definition of the filtration (10), one knows that ψ is well-defined.
In addition, ψ is surjective with the kernel Fp−1Cp+q(g, (M,αM )). Thus, we
get an isomorphism

ψ̄ : FpCp+q(g, (M,αM ))/Fp−1Cp+q(g, (M,αM )) −→ ∧qh⊗ ∧pg/h⊗M.

We claim that the following diagram commutes

FpCp+q(g,(M,αM ))
Fp−1Cp+q(g,(M,αM ))

d0pq−−−−→ FpCp+q−1(g,(M,αM ))
Fp−1Cp+q−1(g,(M,αM ))yψ̄ yψ̄

∧qh⊗ ∧pg/h⊗M
d′−−−−→ ∧q−1h⊗ ∧pg/h⊗M

where d′ is the differential of the complex C•(h, (∧pg/h ⊗M,αp,M )). Indeed,
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for x1, x2, · · · , xq ∈ h and xq+1, xq+2, · · · , xq+p ∈ g, we have

d0pq(x1 ∧ x2 ∧ · · · ∧ xp+q ⊗m)

=
∑

1≤i<j≤q
(−1)i+j [xi, xj ]g ∧ α(x1) ∧ · · · x̂i · · · x̂j · · · ∧ α(xp+q)⊗ αM (m) + µ

+

q∑
i=1

p+q∑
j=q+1

(−1)i+j [xi, xj ]g ∧ α(x1) ∧ · · · x̂i · · · x̂j · · · ∧ α(xp+q)⊗ αM (m)

+

q∑
i=1

(−1)iα(x1) ∧ α(x2) ∧ · · · x̂i · · · ∧ α(xp+q)⊗ xi.m

=
∑

1≤i<j≤q
(−1)i+j [xi, xj ]g ∧ α(x1) ∧ · · · x̂i · · · x̂j · · · ∧ α(xq)⊗ αp,M (xq+1

∧ xq+2 ∧ · · · ∧ xp+q ⊗m) +

q∑
i=1

(−1)iα(x1) ∧ · · · α̂(xi) · · · ∧ α(xq)⊗ xi.(xq+1

∧ · · · ∧ xp+q ⊗m) + µ

=d′(x1 ∧ · · · ∧ xq ⊗ xq+1 ∧ xq+2 ∧ · · · ∧ xq+p ⊗m) + µ,

where

µ =
∑

1+q≤i<j≤p+q
(−1)i+jα(x1) ∧ · · · ∧ x̂i ∧ · · · ∧ x̂j ∧ · · · ∧ α(xp+q)⊗ αM (m)

+

p+q∑
i=1+q

(−1)iα(x1) ∧ · · · x̂i · · · ∧ α(xp+q)⊗ xi.m.

It is clear that µ ∈ Fp−1Cp+q−1(g, (M,αM )). Thus ψdpq0 = d′ψ and the first
claim of proposition holds. For the second one, if h is a Hom-ideal of g, h acts
trivially on ∧pg/h. Thus, it is not hard to check that we have the following
commutative diagram.

E0
pq

d0pq−−−−→ E0
p,q−1yψ̄ yψ̄

∧pg/h⊗ ∧qh⊗M
αp⊗dq−−−−→ ∧pg/h⊗ ∧q−1h⊗M,

where αp : ∧pg/h → ∧pg/h is defined via (6) and dq is the differential of Hom-
q-chain Cq(h, (M,αM )). Furthermore, we have ker(αp ⊗ dq) = kerαp ⊗ ∧qh ⊗
M + ∧pg/h ⊗ ker dq, Im(αp ⊗ dq) = Im(αp) ⊗ Im(dq). This finishes the proof
of the second claim.
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For (iii), by (i) and Proposition 3.1, E1
p0 =

∧pg/h⊗M
h.∧pg/h⊗M = Cp(g, h, (M,αM )).

Since both d1p0 and d are induced by the initial differential of C•(g, (M,αM )),

we have d1p0 = d. As a consequence, E2
p0 = Hp(g, h, (M,αM )).

Suppose that h is a Hom-ideal of a regular Hom-Lie algebra. Then we
can obtain the following proposition from Lemma 4.1

Proposition 4.1. Suppose (g, [·, ·]g, α) is a regular Hom-Lie algebra and
(M,αM ) is a g-module. Let h be a Hom-ideal of g. Then

E2
pq

∼= Hp(g/h, (Hq(h, (M,αM )), αq,M )).

Proof. From Lemma 4.1, we obtain that

E1
pq

∼=
∧p(g/h)⊗ ker dq
Imαp ⊗ Imdq+1

∼= ∧p(g/h)⊗Hq(h, (M,αM )).

Since h is a Hom-ideal of g, Hq(h, (M,αM )) is a g-module for any q ≥ 0 by
Proposition 3.1. Thus, to complete our proof, it suffices to check that the
following diagram is commutative

E1
pq

d1pq−−−−→ E1
p−1,qy∼=
y∼=

∧p(g/h)⊗Hq(h, (M,αM ))
d1−−−−→ ∧p−1(g/h)⊗Hq(h, (M,αM ))

(11)

where d1 is the differential of complex C•(g/h, (Hq(h, (M,αM )), αq,M )). Recall
that d1pq is induced by the differential d of the complex C•(g, (M,αM )).

Suppose x1, x2, · · · , xq ∈ h, xq+1, xq+2, · · · , xp+q ∈ g and m ∈ M . Let
d = µ1 + µ2, where

µ1(x1 ∧ · · · ∧ xp+q ⊗m)

=
∑

1≤i<j≤q
(−1)i+j [xi, xj ] ∧ α(x1) ∧ α(x2) ∧ · · · x̂i · · · x̂j · · · ∧ α(xp+q)⊗ αM (m)

+

q∑
i=1

(−1)iα(x1) ∧ α(x2) ∧ · · · x̂i · · · ∧ α(xp+q)⊗ xi.m,

and
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µ2(x1 ∧ · · · ∧ xp+q ⊗m)

=
∑

1+q≤i<j≤p+q
(−1)i+j [xi, xj ] ∧ α(x1) ∧ · · · x̂i · · · x̂j · · · ∧ α(xp+q)⊗ αM (m)

+

q∑
i=1

p+q∑
j=q+1

(−1)i+j [xi, xj ] ∧ α(x1) ∧ · · · x̂i · · · x̂j · · · ∧ α(xp+q)⊗ αM (m)

+

q+p∑
i=1+q

(−1)iα(x1) ∧ · · · x̂i · · · ∧ α(xp+q)⊗ xi.m.

Let ξ′ ∈ Cp+q(g, (M,αM )) be a preimage of

ξ ∈ E1
pq = ∧p(g/h)⊗Hq(h, (M,αM )).

Then the image of d(ξ′) in the quotient E1
pq does not depend on the choice of ξ′,

which is denoted by d(ξ′). At this point, one can see that µ1(ξ′) = d0(ξ) = 0,
where d0 is the differential of complex C•(h, (∧p(g/h) ⊗M,αp,M )). Similarly,

we have µ2(ξ′) = d1(ξ). This implies that the diagram 11 is commutative.

Suppose (g, [·, ·]g, α) is a multiplicative Hom-Lie algebra and gA is its
abelian Hom-Lie algebra. Then gA is also a Hom-Lie algebra which shares
the same linear map α with g. Let (M, 0) be a g-module. Then (M, 0) is
also a gA-module with the same action as g. Furthermore, dCn(g, (M, 0)) =
dCn(gA, (M, 0)) for any n ≥ 0. This implies that

(12) Hn(g, (M, 0)) ∼= Hn(gA, (M, 0)).

If (g, [·, ·]g, α) is a regular abelian Hom-Lie algebra, then every α-invariant
subspace is a Hom-Lie ideal. Then we can compute the homological groups of
a finite dimensional regular abelian Hom-Lie algebra by using Proposition 4.1.
Explicitly, we have the following corollary.

Corollary 4.1. Let (Ln, [·, ·]n, α) be a regular abelian Hom-Lie algebra
with a basis {e1, e2, · · · , en}. Suppose that Ln−1 is the Hom-ideal generated by
{e1, e2, · · · , en−1} and α(ei) =

∑
1≤k≤i

aikek, where aik ∈ k and aii ̸= 0. Then,

for any p ∈ Z+,

Hp(g, (M,αM )) ∼= Hp(Ln−1, (M,αM ))en ⊕Hp−1(Ln−1, (M,αM ))en ,

where Hs(Ln−1, (M,αM ))en = {v ∈ Hs(Ln−1, (M,αM ))|en · v = 0}, for any
s ≥ 0. In particular,

dimHp(g, (M,αM )) ≤ dimHp(Ln−1, (M,αM )) + dimHp−1(Ln−1, (M,αM )).
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Proof. From the Serre-Hochschild spectral sequence of Ln−1 ⊂ Ln, we
get

E2
pq = Hp(en, (Hq(Ln−1, (M,αM )), αq,M ))

by Proposition 4.1. Thus E2
pq = 0 unless p = 0 or p = 1. Since the differential

drpq of spectral sequence has degree (−r,−1 + r). It implies that drpq = 0 for
r ≥ 2. So E∞

pq = E2
pq. By now, using E2

1q = E2
0q = Hq(Ln−1, (M,αM ))en , one

can easily complete the proof.

As an application of Proposition 4.1, we obtain the homological groups
of a finite-dimensional multiplicative Hom-Lie algebra with coefficient in M as
follow.

Theorem 4.1. Suppose (g, [·, ·]g, α) is a finite dimensional multiplicative
Hom-Lie algebra with n(α) = s and (M,αM ) is a g-module. Then for any
n ≥ 0,

(13) Hn(g, (M,αM )) ∼=
⊕
p+q=n

Hp(g/ kerα
s, (Hq(kerα

s, (M,αM )), αq,M )).

Proof. Since (g, [·, ·]g, α) is a finite dimensional multiplicative Lie algebra
with n(α) = s, g = R ⋉ kerαs by Lemma 2.1, where R ≃ g/ ker(αs) is a
regular Hom-subalgebra of g. Using the Serre-Hochschild spectral sequence of
kerαs ⊂ g, one can obtain that

E1
pq = ∧pR⊗Hq(kerα

s, (M,αM ))

by Proposition 4.1. As Hq(kerα
s, (M,αM )) is a well-defined R-module with

action (6), E2
pq = Hp(R, (Hq(kerα

s, (M,αM )), αq,M )) by Proposition 4.1. It is
easy to see that drpq = 0 for r ≥ 2. Thus E∞

pq = E2
pq.

To compute homological groups of a finite dimensional multiplicative
Hom-Lie algebra, one need only to compute that of some regular Hom-Lie
algebras by Theorem 4.1. About the homological groups of a regular finite
dimensional Hom-Lie algebra, we have the following.

Proposition 4.2. Suppose (g, [·, ·]g, α) is a regular Hom-Lie algebra of
Lie type of gL and (M,αM ) is a finite dimensional g-module with n(αM ) = t,
then

(14) Hn(g, (M,αM )) ∼= Hn(g, (kerα
t
M , αM ))⊕HLie

n (gL,M/ kerαtM ).

Proof. Since αtM (x · m) = αt(x) · αtM (m) = 0 for any x ∈ g and m ∈
kerαtM , kerαtM is a g-submodule of M . With similar analysis of Lemma 2.1,
one get the following short splitting exact sequence of g-modules

0 → kerαtM →M →M/ kerαtM → 0.
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Thus, for any n ≥ 0,

Hn(g, (M,αM )) ∼=Hn(g, (kerα
t
M ⊕M/ kerαtM , αM ))

∼=Hn(g, (kerα
t
M , αM ))⊕Hn(g, (M/ kerαtM , αM ))

∼=Hn(g, (kerα
t
M , αM ))⊕HLie

n (gL,M/ kerαtM ).

by (9).

In addition, about the homological group Hn(g, (kerα
t
M , αM )), we have

the following result.

Corollary 4.2. Suppose (g, [·, ·]g, α) is a regular Lie algebra and (M,αM )
is a g-module with n(αM ) = t. Then

(15) dimHn(g, (kerα
t
M , αM )) ≤

t∑
i=1

dimHn(gA, (kerα
i
M/ kerα

i−1
M , 0)).

Proof. Consider the bounded filtration of g-modules,

0 ⊂ (kerαM , αM ) ⊂ (kerα2
M , αM ) ⊂ · · · ⊂ (kerαtM , αM ).

For any s, n ∈ Z+, define a subcomplex by

FsCn(g, (kerα
t
M , αM )) = Cn(g, (kerα

s
M , αM )).

Then we have a spectral sequence with

E1
pq

∼= Hp+q(g, (kerα
p
M/ kerα

p−1
M , αM )).

Since αM acts trivially on kerαpM/ kerα
p−1
M ,

E1
pq

∼= Hp+q(gA, (kerα
p
M/ kerα

p−1
M , 0))

by (12). Hence (15) is established.

Finally, let us assume that (g, [·, ·]g, α) is a finite dimensional non-regular
multiplicative Hom-Lie algebra and (M,αM ) is a finite dimensional g-module,
where s = n(α), t = n(αM ). Let k = max(s, t). Then g = R ⋉ kerαs

according to Lemma 2.1, where R is a regular Hom-subalgebra of Lie type of
RL. Consequently, by (13), (14), and (15), we have
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dimHn(g, (M,αM ))

=
∑
p+q=n

dimHp(R, (Hq(kerα
s, (M,αM )), αq,M ))

=
∑
p+q=n

dim(HLie
p (RL,

Hq(kerα
s, (M,αM ))

kerαkq,M
)

+Hp(R, (kerα
k
q,M , αq,M )))

≤
∑
p+q=n

dim(HLie
p (RL,

Hq(kerα
s, (M,αM ))

kerαkq,M
)

+
k∑
j=1

Hp(RA, (
kerαjq,M

kerαj−1
q,M

, 0))).

(16)

As a consequence, we believe that the abelian Hom-Lie algebras are very im-
portant in the homology theory of multiplicative Hom-Lie algebras.

Corollary 4.3. Keep the notations as above. If max(n(α), n(αM )) ≤ 1,
then

Hn(g, (M,αM )) ∼=
⊕
p+q=n

HLie
p (RL,

Hq(kerα, (M,αM ))

kerαq,M
)⊕Hp(RA, (kerαq,M , 0)).

Example 4.2. Suppose H is vector space with basis {x1, x2, x3}. The
operation of H is determined by the following brackets:

[x1, x2]H = x3, [x1, x3]H = 0, [x2, x3]H = 0.

Define an endomorphism α of the vector space H by

α(x1) = x1, α(x2) = x3, α(x3) = 0.

Then (H, [·, ·]H, α) is a multiplicative Hom-Lie algebra with kerα2 = kx3⊕kx2.
Suppose (k, id) is the trivial g-module. Consider the Serre-Hochschild spectral
sequence of kerα2 ⊂ H. By straight computation, we can obtain that E2

00 = k,
E2

01 = kx2, E
2
11 = k(x1 ⊗ x3), E

2
12 = k(x1 ⊗ x2 ∧ x3), E

2
02 = k(x2 ∧ x3),

E2
10 = kx1. Thus

dimHn(H, (k, id)) ≡


1, for n = 0
2, for n = 1.
2, for n = 2.
1, for n = 3.
0, otherwise.

Proposition 4.3. Suppose (g, [·, ·]g, α) is a multiplicative Hom-Lie al-
gebra of Lie type of a Lie algebra gL. Assume that (M,αM ) is a g-module.
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Consider the Serre-Hochschild spectral sequence of kerα ⊂ g. Then drpq = 0
for r > 2 and d2pq = 0 for q ̸= 0.

Proof. We abbreviate FpCn(g, (M,αM )) as FpCn for any n, p ∈ Z+. No-
tice that [kerα, g]g = 0. Thus the differential d acts trivially on the subspace
FpCp+q for q > 1. Since drpq is induced by the differential d, drpq = 0 for q > 1
and r ≥ 0. By definition, one can see that the differential vanishes on the set

{ϕ ∈ Fp−1Cp \ Fp−2Cp|d(c) ∈ Fp−rCp−1 for r ≥ 2}.

It implies that drp1 = 0 for r ≥ 2. Similarly, we have drp0 = 0 for r > 2.

In general, d2p0 in Proposition 4.3 may be non-trivial.

Example 4.3. Let gL be a four dimensional Lie algebra. Suppose that
{x1, x2, x3, x4} is a basis of gL. The non-trivial brackets of gL given by

[x1, x2] = x3, [x2, x3] = x4.

and define α(x1) = x2, α(x2) = x3, α(x3) = x4, α(x4) = 0. Thus (g, [·, ·]g, α)
is a multiplicative Hom-Lie algebra with kerα = kx4 and non-trivial bracket:
[x1, x2]g = [α(x1), α(x2)] = x4. Let (k, id) be the trivial module. Now consider
the Serre-Hochschild spectral sequence of kerα ⊂ g. It is easy to see that
x1 ∧ x2 ∈ E2

2,0 = H2(g/ kerα, (k, id)) and x4 ∈ E2
01 = H0(g/ kerα, (kerα, 0)).

Furthermore, we have d220(x1 ∧ x2) = −x4.
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