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Let R be a commutative Noetherian ring with non-zero identity, a an ideal of
R, M a finite R-module, and n a non-negative integer. In this paper, for an
arbitrary R-module X which is not necessarily finite, we prove the following
results: (i) fn

a (M,X) = inf{i ∈ N0 : Hi
a(M,X) is not an FD<n R-module} if

ExtiR(M/aM,X) is an FD<n R-module for all i; (ii) f1
a (M,X) = inf{i ∈ N0 :

Hi
a(M,X) is not a minimax R-module} if ExtiR(M/aM,X) is finite for all i;

(iii) f2
a (M,X) = inf{i ∈ N0 : Hi

a(M,X) is not a weakly Laskerian R-module} if
R is semi-local and ExtiR(M/aM,X) is finite for all i; (iv) Hi

a(M,X) is a-cofinite

for all i < f2
a (M,X) and AssR(H

f2
a(M,X)

a (M,X)) is finite if ExtiR(M/aM,X) is
finite for all i ≤ f2

a (M,X). Here, fn
a (M,X) = inf{faRp(Mp, Xp) : p ∈ Spec(R)

and dimR(R/p) ≥ n} is the nth finiteness dimension of M and X with respect
to a and fa(M,X) = inf{i ∈ N0 : Hi

a(M,X) is not a finite R-module} is the
finiteness dimension of M and X with respect to a.

AMS 2020 Subject Classification: 13D05, 13D45.

Key words: cofinite modules, finiteness dimensions, generalized local cohomology
modules, minimax modules, weakly Laskerian modules.

1. INTRODUCTION

Throughout, R is a commutative Noetherian ring with non-zero identity,
a is an ideal of R, M is a finite (i.e., finitely generated) R-module, and n is a
non-negative integer. For basic results, notations, and terminology not given
in this paper, readers are referred to [10, 11].

An important problem in local cohomology is to investigate finiteness of
local cohomology modules (see [22, Problem 2]). Let N be a finite R-module.
The following theorem is an important result in local cohomology and known as
Faltings’ Local-global Principle for the finiteness of local cohomology modules
(see [17, Satz 1] or [10, Theorem 9.6.1]).
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Theorem 1.1. Let t be a non-negative integer. Then the following state-
ments are equivalent:

(i) Hi
a(N) is a finite R-module for all i ≤ t;

(ii) Hi
aRp

(Np) is a finite Rp-module for all p ∈ Spec(R) and all i ≤ t.

Another formulation of Faltings’ Local-global Principle is in terms of the
finiteness dimension fa(N) = inf{i ∈ N0 : Hi

a(N) is not a finite R-module} of
N with respect to a with the usual convention that the infimum of the empty
set is interpreted as ∞. In this formulation, Faltings’ Local-global Principle
says that fa(N) = inf{faRp(Np) : p ∈ Spec(R)}. Bahmanpour et al., in [7],
introduced the notion of the nth finiteness dimension of N with respect to a
by fn

a (N) = inf{faRp(Np) : p ∈ Spec(R) and dimR(R/p) ≥ n}. Thus Faltings’
Local-global Principle states that fa(N) = f0

a (N), that is

(1) f0
a (N) = inf{i ∈ N0 : H

i
a(N) is not a finite R-module}.

In [7, Corollary 2.4 and Proposition 3.7], the authors obtained that

(2) f1
a (N) = inf{i ∈ N0 : H

i
a(N) is not a minimax R-module}

and if R is a semi-local ring, then

(3) f2
a (N) = inf{i ∈ N0 : H

i
a(N) is not a weakly Laskerian R-module}.

Recall that an arbitrary R-module X is said to be minimax (resp. weakly
Laskerian) if there exists a finite submoduleX ′ ofX such thatX/X ′ is Artinian
[33] (resp. the set of associated prime ideals of any quotient module of X is
finite [16]). Mehrvarz et al., in [24, Theorem 2.10], generalized Faltings’ Local-
global Principle (1) and showed that

(4) fn
a (N) = inf{i ∈ N0 : H

i
a(N) is not an FD<n R-module}

(see also [3, Theorem 2.5]). Recall that an arbitrary R-module X is said to
be an FD<n R-module if there exists a finite submodule X ′ of X such that
dimR(X/X ′) < n [2, 3]. Note that X is an FD<n R-module if X is a finite
R-module or dimR(X) < n, X is a finite R-module if and only if X is an FD<0

R-module, and X is an FD<1 (resp. FD<2) R-module if X is a minimax (resp.
weakly Laskerian) R-module (see [2, Lemma 2.3]). The nth generalized local
cohomology module

Hn
a (X,Y ) ∼= lim−→

i∈N
ExtnR(X/aiX,Y )

of arbitrary R-modules X and Y with respect to a was introduced by Herzog in
[20]. It is clear that Hn

a (R, Y ) is just the nth ordinary local cohomology module
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Hn
a (Y ) of arbitrary R-module Y with respect to a. In [21, Definition 2.3 and

Theorem 2.4], Hoang introduced the notion of the nth finiteness dimension
fn
a (M,N) of M and N with respect to a by fn

a (M,N) = inf{faRp(Mp, Np) :
p ∈ Spec(R) and dimR(R/p) ≥ n}, where fa(M,N) = inf{i ∈ N0 : Hi

a(M,N)
is not a finite R-module}, and generalized (4) by showing that

(5) fn
a (M,N) = inf{i ∈ N0 : H

i
a(M,N) is not an FD<n R-module}.

Let X be an arbitrary R-module which is not necessarily finite. Recently,
in [1, Theorem 2.3], the authors generalized Faltings’ Local-global Principle (1)
and proved that if ExtiR(R/a, X) is a finite R-module for all i, then f0

a (X) =
inf{i ∈ N0 : Hi

a(X) is not a finite R-module}. We generalize and improve
this result and the equality (5) by showing that the equality fn

a (M,X) =
inf{i ∈ N0 : Hi

a(M,X) is not an FD<n R-module} holds if ExtiR(M/aM,X)
is an FD<n R-module for all i. We also generalize and improve the equalities
(2) and (3). We prove that if ExtiR(M/aM,X) is a finite R-module for all i,
then f1

a (M,X) = inf{i ∈ N0 : Hi
a(M,X) is not a minimax R-module} and,

moreover, if R is a semi-local ring, then f2
a (M,X) = inf{i ∈ N0 : Hi

a(M,X) is
not a weakly Laskerian R-module}.

Grothendieck, in [18], proposed the following conjecture.

Conjecture 1.2. HomR(R/a,Hi
a(N)) is a finite R-module for all i.

Hartshorne gave a counterexample to this conjecture in [19] and defined
an R-module X to be a-cofinite if SuppR(X) ⊆ {p ∈ Spec(R) : p ⊇ a} and
ExtiR(R/a, X) is a finite R-module for all i. He also asked the following ques-
tion.

Question 1.3. When is Hi
a(N) an a-cofinite R-module for all i?

The following question is also an important problem in commutative al-
gebra (see [22, Problem 4]).

Question 1.4. When is AssR(H
i
a(N)) a finite set for all i?

As generalizations of Conjecture and Questions 1.2-1.4, we have the fol-
lowing questions (see [8, Question 1.1] and [29, Question 2.7]).

Question 1.5. When is HomR(R/a,Hi
a(M,N)) a finite R-module for all i?

Question 1.6. When is Hi
a(M,N) an a–cofinite R-module for all i?

Question 1.7. When is AssR(H
i
a(M,N)) a finite set for all i?

These questions were studied by several authors. In this direction, for an
arbitrary R-module X which is not necessarily finite and for a non-negative
integer t, we show that if ExtiR(M/aM,X) is a finite R-module for all i ≤ t
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and Hi
a(M,X) is an FD<2 R-module for all i < t, then Hi

a(M,X) is an a-
cofinite R-module for all i < t, HomR(R/a,Ht

a(M,X)) is a finite R-module,
and AssR(H

t
a(M,X)) is a finite set. This generalizes and improves all of the

previous results concerning Conjecture and Questions 1.2-1.7 (see e.g., [14, 31,
23, 9, 30, 5, 6, 12, 26, 8, 25, 15, 7, 2, 13, 27]).

2. FINITENESS DIMENSIONS

The following lemmas are needed in the proof of the main result of this
section. Note that, by [32, Theorem 2.3], the class of FD<n R-modules forms
a Serre subcategory of the category of R-modules (i.e., the class of R-modules
which is closed under taking submodules, quotients, and extensions).

Lemma 2.1. Let M be a finite R-module, X an arbitrary R-module, and
t a non-negative integer such that ExtiR(M/aM,X) is an FD<n R-module for
all i ≤ t. Then ExtiR(Tor

R
j (R/a,M), X) is an FD<n R-module for all i ≤ t

and all j.

Proof. The proof is similar to that of [28, Lemma 2.1 and Corollary 2.2]
and left to the reader.

Lemma 2.2. Let M be a finite R-module, X an arbitrary R-module, and
t a non-negative integer such that

(i) Extt−i
R (TorRi (R/a,M), X) is an FD<n R-module for all i ≤ t, and

(ii) Extt+1−i
R (R/a,Hi

a(M,X)) is an FD<n R-module for all i < t.

Then HomR(R/a,Ht
a(M,X)) is an FD<n R-module.

Proof. This is sufficiently similar to that of [28, Theorem 2.3] to be omit-
ted. We leave the proof to the reader.

Lemma 2.3. Let X be an a–torsion R-module such that Xp is a finite
Rp-module for all p ∈ Spec(R) with dimR(R/p) ≥ n and HomR(R/a, X) is an
FD<n R-module. Then X is an FD<n R-module.

Proof. Suppose, on the contrary, that X is not an FD<n R-module and
seek a contradiction. Let A1 = {p ∈ AssR(X) : dimR(R/p) ≥ n} and
a1 =

⋂
p∈A1

p. Since X is not an FD<n R-module, dimR(X) ≥ n. Thus
A1 is a non-empty and finite set because AssR(X) = AssR(HomR(R/a, X))
and HomR(R/a, X) is an FD<n R-module. For all p ∈ A1, Xp is a finite Rp-
module and so there exists a finite submodule N(p) of X such that (N(p))p =
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Xp. Let N1 =
∑

p∈A1
N(p). Then N1 is a finite submodule of X such that

A1∩A2 = ∅ and a1 ⊆ a2, where A2 = {p ∈ AssR(X/N1) : dimR(R/p) ≥ n} and
a2 =

⋂
p∈A2

p. Since X is not an FD<n R-module, dimR(X/N1) ≥ n. Note that
X/N1 is an a–torsion R-module and HomR(R/a, X/N1) is an FD<n R-module
from the exact sequence

HomR(R/a, X) −→ HomR(R/a, X/N1) −→ Ext1R(R/a, N1).

Thus A2 is a non-empty and finite set, and so a1 ⊊ a2.

Therefore, using the above method on the R-module X/N1, there is a
finite submodule N2 (⊇ N1) of X such that A2 ∩ A3 = ∅ and a2 ⊊ a3, where
A3 = {p ∈ AssR(X/N2) : dimR(R/p) ≥ n} and a3 =

⋂
p∈A3

p.

Proceeding in the same way, there is an ascending chain of ideals of
Noetherian ring R,

a1 ⊊ a2 ⊊ · · · ⊊ ai ⊊ · · · ,

which is not stable. This contradiction shows that X is an FD<n R-module,
as we desired.

Now we are prepared to state and prove the main result of this section
which generalizes and improves [17, Satz 1], [10, Theorem 9.6.1 and 9.6.2],
[3, Theorem 2.5], [24, Theorem 2.10], [21, Theorem 2.4], and [1, Theorems
1.1(i⇔ii) and 2.3].

Theorem 2.4. Let M be a finite R-module, X an arbitrary R-module,
and t a non-negative integer such that ExtiR(M/aM,X) is an FD<n R-module
for all i ≤ t (e.g., X is an FD<n R-module). Then the following statements
are equivalent:

(i) Hi
a(M,X) is an FD<n R-module for all i ≤ t;

(ii) Hi
aRp

(Mp, Xp) is a finite Rp-module for all p ∈ Spec(R) with dimR(R/p) ≥
n and for all i ≤ t.

Proof. (i)⇒(ii). Let p be a prime ideal of R with dimR(R/p) ≥ n and let
i ≤ t. Since Hi

a(M,X) is an FD<n R-module, there exists a finite submodule Ni

of Hi
a(M,X) such that dimR(H

i
a(M,X)/Ni) < n. Thus (Hi

a(M,X)/Ni)p = 0
and so Hi

aRp
(Mp, Xp) ∼= (Hi

a(M,X))p = (Ni)p is a finite Rp-module.

(ii)⇒(i). We prove by using induction on t. Let t = 0. Since
HomR(R/a,Γa(M,X)) is an FD<n R-module from Lemma 2.2, Γa(M,X) is
an FD<n R-module by Lemma 2.3. Suppose that t > 0 and that t − 1 is
settled. It is enough to show that Ht

a(M,X) is an FD<n R-module because
Hi

a(M,X) is an FD<n R-module for all i ≤ t−1 from the induction hypothesis
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on t − 1. Thus, by Lemmas 2.1 and 2.2, HomR(R/a,Ht
a(M,X)) is an FD<n

R-module. Hence Ht
a(M,X) is an FD<n R-module from Lemma 2.3.

Definition 2.5. (cf. [21, Definition 2.3]) Let M be a finite R-module, X
an arbitrary R-module (not necessarily finite), and n a non-negative integer.
We set

fa(M,X) = inf{i ∈ N0 : H
i
a(M,X) is not a finite R-module}

and

fn
a (M,X) = inf{faRp(Mp, Xp) : p ∈ Spec(R) and dimR(R/p) ≥ n}

which are called finiteness dimension and nth finiteness dimension of M and
X with respect to a, respectively. When M = R, we write fa(X) = fa(R,X)
and fn

a (X) = fn
a (R,X) which are called finiteness dimension and nth finiteness

dimension of X with respect to a, respectively. Thus

fa(X) = inf{i ∈ N0 : H
i
a(X) is not a finite R-module}

and

fn
a (X) = inf{faRp(Xp) : p ∈ Spec(R) and dimR(R/p) ≥ n}.

Corollary 2.6. Let M be a finite R-module and let X be an arbitrary
R-module such that ExtiR(M/aM,X) is an FD<n R-module for all i (in fact,
for all i ≤ fn

a (M,X)). Then

fn
a (M,X) = inf{i ∈ N0 : H

i
a(M,X) is not an FD<n R-module}.

Proof. This follows from Theorem 2.4.

Corollary 2.7. Let M be a finite R-module, X an arbitrary R-module,
and t a non-negative integer such that ExtiR(M/aM,X) is a finite R-module
for all i ≤ t. Then the following statements are equivalent:

(i) Hi
a(M,X) is a finite R-module for all i ≤ t;

(ii) Hi
aRp

(Mp, Xp) is a finite Rp-module for all p ∈ Spec(R) and for all i ≤ t.

Proof. Apply Theorem 2.4 with n = 0.

Corollary 2.8. Let M be a finite R-module and let X be an arbitrary
R-module such that ExtiR(M/aM,X) is a finite R-module for all i (in fact, for
all i ≤ f0

a (M,X)). Then
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f0
a (M,X) = inf{i ∈ N0 : H

i
a(M,X) is not a finite R-module},

that is

fa(M,X) = inf{faRp(Mp, Xp) : p ∈ Spec(R)}.

Proof. Take n = 0 in Corollary 2.6.

We have the following corollaries for the ordinary local cohomology mod-
ules.

Corollary 2.9. Let X be an arbitrary R-module and let t be a non-
negative integer such that ExtiR(R/a, X) is an FD<n R-module for all i ≤ t.
Then the following statements are equivalent:

(i) Hi
a(X) is an FD<n R-module for all i ≤ t;

(ii) Hi
aRp

(Xp) is a finite Rp-module for all p ∈ Spec(R) with dimR(R/p) ≥ n
and for all i ≤ t.

Corollary 2.10. Let X be an arbitrary R-module such that
ExtiR(R/a, X) is an FD<n R-module for all i (in fact, for all i ≤ fn

a (X)).
Then

fn
a (X) = inf{i ∈ N0 : H

i
a(X) is not an FD<n R-module}.

Corollary 2.11. Let X be an arbitrary R-module and let t be a non-
negative integer such that ExtiR(R/a, X) is a finite R-module for all i ≤ t.
Then the following statements are equivalent:

(i) Hi
a(X) is a finite R-module for all i ≤ t;

(ii) Hi
aRp

(Xp) is a finite Rp-module for all p ∈ Spec(R) and for all i ≤ t.

Corollary 2.12. Let X be an arbitrary R-module such that
ExtiR(R/a, X) is a finite R-module for all i (in fact, for all i ≤ f0

a (X)). Then

f0
a (X) = inf{i ∈ N0 : H

i
a(X) is not a finite R-module},

that is

fa(X) = inf{faRp(Xp) : p ∈ Spec(R)}.
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3. COFINITENESS OF GENERALIZED LOCAL
COHOMOLOGY MODULES

Lemma 3.1. Let M be a finite R-module, X an arbitrary R-module, and
s, t non-negative integers such that

(i) ExtiR(M/aM,X) is a finite R-module for all t ≤ i ≤ s+ t+ 1,

(ii) Hi
a(M,X) is an a–cofinite R-module for all i < t, and

(iii) Hi
a(M,X) is an FD<2 R-module for all t ≤ i ≤ s+ t.

Then Hi
a(M,X) is an a–cofinite R-module for all i ≤ s+ t.

Proof. We prove the lemma by induction on s. Let s = 0. Since
HomR(R/a,Ht

a(M,X)) and Ext1R(R/a,Ht
a(M,X)) are finite from [28, Corollary

2.2, Theorem 2.3, Theorem 2.7, and Corollary 2.14], Ht
a(M,X) is a–cofinite by

[2, Theorem 3.1].
Suppose that s > 0 and that s − 1 is settled. It is enough to show that

Hs+t
a (M,X) is a–cofinite because Hi

a(M,X) is a–cofinite for all i ≤ s+t−1 from
the induction hypothesis on s−1. By [28, Corollary 2.2, Theorem 2.3, Theorem
2.7, and Corollary 2.14], HomR(R/a,Hs+t

a (M,X)) and Ext1R(R/a,Hs+t
a (M,X))

are finite. Thus Hs+t
a (M,X) is a–cofinite from [2, Theorem 3.1].

We prove the main result of this section which generalizes and improves
all of the previous results concerning Conjecture and Questions 1.2-1.7 (see
e.g., [14, Theorem 1], [31, Theorem 1.1], [23, Theorem B], [9, Theorem 2.2],
[30, Theorem 2.1], [5, Theorem 2.5], [6, Theorem 2.6], [12, Theorem 2.5], [26,
Theorem 3.2], [8, Theorem 3.6], [25, Theorem 2.10], [15, Theorem 2.5], [7,
Theorems 2.3 and 3.2], [2, Theorem 3.4], and [13, Theorem 1.2]).

Theorem 3.2. Let M be a finite R-module, X an arbitrary R-module,
and t a non-negative integer such that ExtiR(M/aM,X) is a finite R-module
for all i ≤ t and Hi

a(M,X) is an FD<2 R-module for all i < t. Then the
following statements hold true:

(i) Yi and Hi
a(M,X)/Yi are a-cofinite R-modules for all i < t and every

FD<1 R-submodule Yi of H
i
a(M,X). In particular, Hi

a(M,X) is an a-cofinite
R-module for all i < t;

(ii) Let N be a finite R-module. Then ExtjR(N,Yi), TorRj (N,Yi),

ExtjR(N,Hi
a(M,X)/Yi), and TorRj (N,Hi

a(M,X)/Yi) are a-cofinite R-modules

for all i < t, all j, and every FD<1 R-submodule Yi of H
i
a(M,X). In particu-

lar, ExtjR(N,Hi
a(M,X)) and TorRj (N,Hi

a(M,X)) are a-cofinite R-modules for
all i < t and all j;
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(iii) HomR(R/a,Ht
a(M,X)/Y ) is a finite R-module for every FD<1

R-submodule Y of Ht
a(M,X). In particular, HomR(R/a,Ht

a(M,X)) is a fi-
nite R-module;

(iv) AssR(H
t
a(M,X)/Y ) is a finite set for every FD<1 R-submodule Y of

Ht
a(M,X). In particular, AssR(H

t
a(M,X)) is a finite set;

(v) Assume that Extt+1
R (M/aM,X) is finite. Then

Ext1R(R/a,Ht
a(M,X)/Y )

is a finite R-module for every FD<1 R-submodule Y of Ht
a(M,X). In particu-

lar, Ext1R(R/a,Ht
a(M,X)) is a finite R-module.

Proof. (i) Since HomR(R/a,Γa(M,X)) and Ext1R(R/a,Γa(M,X)) are fi-
nite by [28, Corollary 2.2, Theorem 2.3, and Theorem 2.7], Γa(M,X) is a-
cofinite from [2, Theorem 3.1], and so Hi

a(M,X) is a-cofinite for all i < t by
Lemma 3.1. Let i < t and let Yi be an FD<1 R-submodule of Hi

a(M,X).
Then HomR(R/a, Yi) is finite and so Yi is a-cofinite from [2, Lemma 3.3]. Thus
Hi

a(M,X)/Yi is a-cofinite by the short exact sequence

0 −→ Yi −→ Hi
a(M,X) −→ Hi

a(M,X)/Yi −→ 0.

(ii) It follows from the first part and [2, Theorem 3.7].

(iii) Let Y be an FD<1 R-submodule of Ht
a(M,X). From the first part

and [28, Corollary 2.2 and Theorem 2.3], HomR(R/a,Ht
a(M,X)) is finite. Thus

HomR(R/a, Y ) is finite and so Y is a-cofinite by [2, Lemma 3.3]. Hence, from
the exact sequence

HomR(R/a,Ht
a(M,X)) −→ HomR(R/a,Ht

a(M,X)/Y ) −→ Ext1R(R/a, Y ),

HomR(R/a,Ht
a(M,X)/Y ) is finite.

(iv) Follows by the third part and [11, Exercise 1.2.28].

(v) This is similar to the proof of the third part.

Corollary 3.3. Let M be a finite R-module and let X be an arbitrary
R-module such that ExtiR(M/aM,X) is a finite R-module for all i ≤ f2

a (M,X).
Then the following statements hold true:

(i) Yi and Hi
a(M,X)/Yi are a-cofinite R-modules for all i < f2

a (M,X)
and every FD<1 R-submodule Yi of H

i
a(M,X). In particular, Hi

a(M,X) is an
a-cofinite R-module for all i < f2

a (M,X);

(ii) Let N be a finite R-module. Then ExtjR(N,Yi), TorRj (N,Yi),

ExtjR(N,Hi
a(M,X)/Yi), and TorRj (N,Hi

a(M,X)/Yi) are a-cofinite R-modules
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for all i < f2
a (M,X), all j, and every FD<1 R-submodule Yi of Hi

a(M,X).
In particular, ExtjR(N,Hi

a(M,X)) and TorRj (N,Hi
a(M,X)) are a-cofinite R-

modules for all i < f2
a (M,X) and all j;

(iii) HomR(R/a,H
f2
a (M,X)

a (M,X)/Y ) is finite for every FD<1 R-submodule

Y of H
f2
a (M,X)

a (M,X). In particular, HomR(R/a,H
f2
a (M,X)

a (M,X)) is a finite
R-module;

(iv) AssR(H
f2
a (M,X)

a (M,X)/Y ) is a finite set for every FD<1 R-submodule

Y of H
f2
a (M,X)

a (M,X). In particular, AssR(H
f2
a (M,X)

a (M,X)) is a finite set;

(v) Assume that Ext
f2
a (M,X)+1

R (M/aM,X) is finite. Then

Ext1R(R/a,H
f2
a (M,X)

a (M,X)/Y )

is finite for every FD<1 R-submodule Y of H
f2
a (M,X)

a (M,X). In particular, the

R-module Ext1R(R/a,H
f2
a (M,X)

a (M,X)) is finite.

Proof. This follows from Corollary 2.6 and Theorem 3.2.

Corollary 3.4. Let M and X be finite R-modules such that

dimR((M ⊗R X)/a(M ⊗R X)) ≤ 1

(e.g., dim(R/a) ≤ 1). Then the following statements hold true:

(i) Yi and Hi
a(M,X)/Yi are a-cofinite R-modules for all i and every FD<1

R-submodule Yi of Hi
a(M,X). In particular, Hi

a(M,X) is an a-cofinite R-
module for all i;

(ii) Let N be a finite R-module. Then ExtjR(N,Yi), TorRj (N,Yi),

ExtjR(N,Hi
a(M,X)/Yi), and TorRj (N,Hi

a(M,X)/Yi) are a-cofinite

R-modules for all i, all j, and every FD<1 R-submodule Yi of Hi
a(M,X).

In particular, ExtjR(N,Hi
a(M,X)) and TorRj (N,Hi

a(M,X)) are a-cofinite R-
modules for all i and all j;

(iii) AssR(H
i
a(M,X)/Yi) is a finite set for all i and every FD<1 R-submod-

ule Yi of H
i
a(M,X). In particular, AssR(H

i
a(M,X)) is a finite set for all i.

Proof. It follows from Theorem 3.2.

For the ordinary local cohomology modules, we have the following results.
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Corollary 3.5. Let X be an arbitrary R-module and let t be a non-
negative integer such that ExtiR(R/a, X) is a finite R-module for all i ≤ t and
Hi

a(X) is an FD<2 R-module for all i < t. Then the following statements hold
true:

(i) Yi and Hi
a(X)/Yi are a-cofinite R-modules for all i < t and every

FD<1 R-submodule Yi of Hi
a(X). In particular, Hi

a(X) is an a-cofinite R-
module for all i < t;

(ii) Let N be a finite R-module. Then ExtjR(N,Yi), TorRj (N,Yi),

ExtjR(N,Hi
a(X)/Yi), and TorRj (N,Hi

a(X)/Yi) are a-cofinite R-modules for all

i < t, all j, and every FD<1 R-submodule Yi of Hi
a(X). In particular,

ExtjR(N,Hi
a(X)) and TorRj (N,Hi

a(X)) are a-cofinite R-modules for all i < t
and all j;

(iii) HomR(R/a,Ht
a(X)/Y ) is a finite R-module for every FD<1 R-sub-

module Y of Ht
a(X). In particular, HomR(R/a,Ht

a(X)) is a finite R-module;

(iv) AssR(H
t
a(X)/Y ) is a finite set for every FD<1 R-submodule Y of

Ht
a(X). In particular, AssR(H

t
a(X)) is a finite set;

(v) Assume that Extt+1
R (R/a, X) is finite. Then Ext1R(R/a,Ht

a(X)/Y ) is
a finite R-module for every FD<1 R-submodule Y of Ht

a(X). In particular,
Ext1R(R/a,Ht

a(X)) is a finite R-module.

Corollary 3.6. Let X be an arbitrary R-module such that ExtiR(R/a, X)
is a finite R-module for all i ≤ f2

a (X). Then the following statements hold true:

(i) Yi and Hi
a(X)/Yi are a-cofinite R-modules for all i < f2

a (X) and every
FD<1 R-submodule Yi of Hi

a(X). In particular, Hi
a(X) is an a-cofinite R-

module for all i < f2
a (X);

(ii) Let N be a finite R-module. Then ExtjR(N,Yi), TorRj (N,Yi),

ExtjR(N,Hi
a(X)/Yi), and TorRj (N,Hi

a(X)/Yi) are a-cofinite R-modules for all

i < f2
a (X), all j, and every FD<1 R-submodule Yi of Hi

a(X). In partic-
ular, ExtjR(N,Hi

a(X)) and TorRj (N,Hi
a(X)) are a-cofinite R-modules for all

i < f2
a (X) and all j;

(iii) HomR(R/a,H
f2
a (X)

a (X)/Y ) is finite for every FD<1 R-submodule Y

of H
f2
a (X)

a (X). In particular, HomR(R/a,H
f2
a (X)

a (X)) is a finite R-module;

(iv) AssR(H
f2
a (X)

a (X)/Y ) is a finite set for every FD<1 R-submodule Y

of H
f2
a (X)

a (X). In particular, AssR(H
f2
a (X)

a (X)) is a finite set;
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(v) Assume that Ext
f2
a (X)+1

R (R/a, X) is finite. Then

Ext1R(R/a,H
f2
a (X)

a (X)/Y )

is finite for every FD<1 R-submodule Y of H
f2
a (X)

a (X). In particular, the R-

module Ext1R(R/a,H
f2
a (X)

a (X)) is finite.

Corollary 3.7. Let X be a finite R-module such that dimR(X/aX) ≤ 1.
Then the following statements hold true:

(i) Yi and Hi
a(X)/Yi are a-cofinite R-modules for all i and every FD<1

R-submodule Yi of H
i
a(X). In particular, Hi

a(X) is an a-cofinite R-module for
all i;

(ii) Let N be a finite R-module. Then ExtjR(N,Yi), TorRj (N,Yi),

ExtjR(N,Hi
a(X)/Yi), and TorRj (N,Hi

a(X)/Yi) are a-cofinite R-modules for all i,

all j, and every FD<1 R-submodule Yi of H
i
a(X). In particular, ExtjR(N,Hi

a(X))
and TorRj (N,Hi

a(X)) are a-cofinite R-modules for all i and all j;

(iii) AssR(H
i
a(X)/Yi) is a finite set for all i and every FD<1 R-submodule

Yi of H
i
a(X). In particular, AssR(H

i
a(X)) is a finite set for all i.

4. THE FIRST AND THE SECOND FINITENESS DIMENSIONS

In the first main result of this section, we generalize and improve [7,
Proposition 2.2 and Corollary 2.4].

Theorem 4.1. Let M be a finite R-module, X an arbitrary R-module,
and t a non-negative integer such that ExtiR(M/aM,X) is a finite R-module
for all i ≤ t+ 1. Then the following statements are equivalent:

(i) Hi
a(M,X) is a minimax R-module for all i ≤ t;

(ii) Hi
a(M,X) is an FD<1 R-module for all i ≤ t;

(iii) Hi
aRp

(Mp, Xp) is a finite Rp-module for all p ∈ Spec(R) with dimR(R/p) ≥
1 and for all i ≤ t.

Proof. (i)⇒(ii). This is clear.
(ii)⇒(i). Let i ≤ t. Since Hi

a(M,X) is an FD<1 R-module, there exists a
finite submodule Ni of H

i
a(M,X) such that dimR(H

i
a(M,X)/Ni) < 1. On the

other hand, HomR(R/a,Hi
a(M,X)/Ni) is finite by Theorem 3.2. Now, since

dimR(HomR(R/a,Hi
a(M,X)/Ni)) < 1, HomR(R/a,Hi

a(M,X)/Ni) is Artinian.
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Thus Hi
a(M,X)/Ni is Artinian by [10, Theorem 7.1.2], and so Hi

a(M,X) is
minimax.

(ii)⇔(iii). Follows from Theorem 2.4.

Corollary 4.2. Let M be a finite R-module and let X be an arbitrary
R-module such that ExtiR(M/aM,X) is a finite R-module for all i (in fact, for
all i ≤ f1

a (M,X) + 1). Then

f1
a (M,X) = inf{i ∈ N0 : H

i
a(M,X) is not a minimax R-module}

= inf{i ∈ N0 : H
i
a(M,X) is not an FD<1 R-module}.

Proof. This follows from Theorem 4.1.

The following theorem is the second main result of this section which
generalizes and improves [7, Proposition 3.7].

Theorem 4.3. Let R be a semi-local ring, M a finite R-module, X an
arbitrary R-module, and t a non-negative integer such that ExtiR(M/aM,X) is
a finite R-module for all i ≤ t+1. Then the following statements are equivalent:

(i) Hi
a(M,X) is a weakly Laskerian R-module for all i ≤ t;

(ii) Hi
a(M,X) is an FD<2 R-module for all i ≤ t;

(iii) Hi
aRp

(Mp, Xp) is a finite Rp-module for all p ∈ Spec(R) with dimR(R/p) ≥
2 and for all i ≤ t.

Proof. (i)⇒(ii). This is clear from [4, Theorem 3.3].

(ii)⇒(i). Let i ≤ t. Since Hi
a(M,X) is an FD<2 R-module, there is

a finite submodule Ni of Hi
a(M,X) such that dimR(H

i
a(M,X)/Ni) < 2. On

the other hand, by Theorem 3.2, the set AssR(H
i
a(M,X)/Ni) is finite. Thus

SuppR(H
i
a(M,X)/Ni) is a finite set. Hence, by [4, Theorem 3.3], Hi

a(M,X) is
weakly Laskerian.

(ii)⇔(iii). It follows from Theorem 2.4.

Corollary 4.4. Let R be a semi-local ring, M a finite R-module, and
X an arbitrary R-module such that ExtiR(M/aM,X) is a finite R-module for
all i (in fact, for all i ≤ f2

a (M,X) + 1). Then

f2
a (M,X) = inf{i ∈ N0 : H

i
a(M,X) is not a weakly Laskerian R-module}

= inf{i ∈ N0 : H
i
a(M,X) is not an FD<2 R-module}.

Proof. Follows from Theorem 4.3.

We have the following results for the ordinary local cohomology modules.
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Corollary 4.5. Let X be an arbitrary R-module and let t be a non-
negative integer such that ExtiR(R/a, X) is a finite R-module for all i ≤ t+ 1.
Then the following statements are equivalent:

(i) Hi
a(X) is a minimax R-module for all i ≤ t;

(ii) Hi
a(X) is an FD<1 R-module for all i ≤ t;

(iii) Hi
aRp

(Xp) is a finite Rp-module for all p ∈ Spec(R) with dimR(R/p) ≥ 1
and for all i ≤ t.

Corollary 4.6. Let X be an arbitrary R-module such that ExtiR(R/a, X)
is a finite R-module for all i (in fact, for all i ≤ f1

a (X) + 1). Then

f1
a (X) = inf{i ∈ N0 : H

i
a(X) is not a minimax R-module}

= inf{i ∈ N0 : H
i
a(X) is not an FD<1 R-module}.

Corollary 4.7. Let R be a semi-local ring, X an arbitrary R-module,
and t a non-negative integer such that ExtiR(R/a, X) is a finite R-module for
all i ≤ t+ 1. Then the following statements are equivalent:

(i) Hi
a(X) is a weakly Laskerian R-module for all i ≤ t;

(ii) Hi
a(X) is an FD<2 R-module for all i ≤ t;

(iii) Hi
aRp

(Xp) is a finite Rp-module for all p ∈ Spec(R) with dimR(R/p) ≥ 2
and for all i ≤ t.

Corollary 4.8. Let R be a semi-local ring and let X be an arbitrary
R-module such that ExtiR(R/a, X) is a finite R-module for all i (in fact, for
all i ≤ f2

a (X) + 1). Then

f2
a (X) = inf{i ∈ N0 : H

i
a(X) is not a weakly Laskerian R-module}

= inf{i ∈ N0 : H
i
a(X) is not an FD<2 R-module}.
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