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It is known that
∞∑
i=1

1/i2 = π2/6. Meir and Moser asked what is the smallest ϵ

such that all the squares of sides of length 1, 1/2, 1/3, . . . can be packed into
a rectangle of area π2/6 + ϵ. A packing into a rectangle of the right area is
called perfect packing. Chalcraft packed the squares of sides of length 1, 2−t,
3−t, . . . and he found perfect packing for 1/2 < t ≤ 3/5. We will show, based
on an algorithm by Chalcraft, that there are perfect packings if 1/2 < t ≤ 2/3.
Moreover, we show that there is a perfect packing for all t in the range log3 2 ≤
t ≤ 2/3.
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1. INTRODUCTION

Meir and Moser [10] originally noted that since
∞∑
i=2

1/i2 = π2/6 − 1, it

is reasonable to ask whether the set of squares with sides of length 1/2, 1/3,
1/4, . . . can be packed into a rectangle of area π2/6− 1. Failing that, find the
smallest ϵ such that the squares can be packed in a rectangle of area π2/6−1+ϵ.
The problem also appears in [6], [4], [3].

A packing into a rectangle of the right (resp., not the right) area is called
perfect (resp., imperfect) packing. In [10], [7], [2], [11], better and better
imperfect packing can be found.

Chalcraft [5] generalized this question. He packed the squares of side n−t

for n = 1, 2, . . . into a square of the right area. He proved that for all t in the
range [0.5964, 0.6] there is a perfect packing of the squares. In [5], it can be
read that ”Other packings will work for other ranges of t. We can probably
make the t0 in Theorem 8 as close to 1/2 as desired in this way. The more
interesting challenge, however, seems to be to increase the bound t ≤ 3/5.”
Our aim is to increase this bound.

Wästlund [12] proved if 1/2 < t < 2/3, then the squares of side n−t for
n = 1, 2, . . . can be packed into some finite collection of square boxes of the
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same area ζ(2t) as the total area of the tiles. This is an increase of the bound
t ≤ 3/5, but we have many enclosing rectangles.

There are several papers in this topic, e.g. [9], [1], [8].

2. PERFECT PACKING

Theorem 1. For t = 2/3, the squares St
n (n ≥ 1) can be packed perfectly

into the rectangle of dimensions ζ(2t)× 1.

Theorem 2. For all t in the range log3 2 ≤ t ≤ 2/3, the squares St
n

(n ≥ 1) can be packed perfectly into the rectangle of dimensions ζ(2t)× 1.

3. NOTATION

We use the Chalcraft’s algorithm in [5] and we modify the proof of Chal-
craft. For the sake of simplicity, we use the Chalcraft’s notation. For the
completeness, we recall these.

Throughout the paper, the width of a rectangle will always refer to the
shorter side and the height will always refer to the longer side. We use the

constant 1/2 < t ≤ 2/3. As usual, ζ(t) =
∞∑
i=1

i−t. Let St
n denote the square

of side length n−t. A box is a rectangle of sides x, y > 0. Let x × y denote
the box B of sides x and y. We define its area a(B) = xy, its semi-perimeter
p(B) = x+ y, its width w(B) = min(x, y) and its height h(B) = max(x, y).

Given a set of boxes B = {B1, . . . , Bn}, we define a(B) =
n∑

i=1
a(Bi),

h(B) =
n∑

i=1
h(Bi) and w(B) = max

i=1,...,n
w(Bi). Let a(∅) = h(∅) = w(∅) = 0.

4. CHALCRAFT’S ALGORITHM

For the completeness, we repeat the description of Chalcraft’s algorithm.
First, we recall the subroutine of Chalcraft, which we call Algorithm b

as in [5].
Algorithm b
Input: An integer n ≥ 1 and a box B, where w(B) = n−t.
Output: If the algorithm terminates, then it defines an integer mb

= mb(n,B) > n and a set of boxes Bb = Bb(n,B).
Action: If the algorithm terminates, then it packs the squares

St
n, . . . , S

t
mb−1 into B, and Bb is the set of boxes containing the remaining

area. If it does not terminate, then it packs the squares St
n, S

t
n+1, . . . into B.
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(b1) Let n1 = n+ 1, x1 = h(B)− n−t and B1 = ∅.
(b2) Put the square St

n snugly at one end of B.

(b3) If x1 > 0, then let B1 be the remainder of B, so that B1 has
dimensions x1 × n−t.

(b4) For i = 1, 2, . . .

(b5) (Note: At stage i, we have packed St
n, . . . , S

t
ni−1 into B. The

remaining boxes are Bi, which we never use again in this
algorithm, and Bi (as long as xi > 0), which has dimensions
xi × n−t.)

(b6) If xi = 0, then terminate with mb = ni and Bb = Bi.

(b7) If xi < n−t
i , then terminate with mb = ni and Bb = Bi ∪

{Bi}.
(b8) Let xi+1 = xi − n−t

i .

(b9) If xi+1 = 0, then let Ci = Bi.

(b10) If xi+1 > 0, then split Bi into two boxes: one called Ci with
dimensions n−t

i ×n−t, and the other called Bi+1 with dimen-
sions xi+1 × n−t.

(b11) Apply Algorithm b recursively with inputs ni and Ci. If this
terminates, let ni+1 = mb(ni, Ci) and Ci = Bb(ni, Ci).

(b12) Let Bi+1 = Bi ∪ Ci.

(b13) End For.

The subroutine b is used in the Chalcraft’s algorithm c.

Algorithm c

Input: An integer n ≥ 1 and a set of boxes B.

Action: If the algorithm does not fail, then it packs the squares
St
n, S

t
n+1, . . . into B.

(c1) Let n1 = n+ 1 and B1 = B.

(c2) For i = 1, 2, . . .

(c3) (Note: At stage i, we have packed St
n, . . . , S

t
ni−1 into B. The

remaining boxes are Bi.)

(c4) If w(Bi) < n−t
i , then fail.

(c5) Let wi = min{w(C)|C ∈ Bi, w(C) ≥ n−t
i }.

(c6) Let hi = min{h(C)|C ∈ Bi, w(C) = wi}.
(c7) Choose any Bi ∈ Bi which satisfies w(Bi) = wi and h(Bi) =

hi.

(c8) If wi = hi = n−t
i , then

(c9) Put St
ni

snugly into Bi.

(c10) Let Bi+1 = Bi \ {Bi}.
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(c11) Let ni+1 = ni + 1.
(c12) Else

(c13) Cut Bi into two boxes: one called Ci of dimensions wi×n−t
i

and the other called Di of dimensions wi × (hi − n−t
i ).

(c14) Call Algorithm b with inputs ni and Ci. If this terminates,
then let ni+1 = mb(ni, Ci) and Ci = Bb(ni, Ci).

(c15) Let Bi+1 = Bi \ {Bi} ∪ Ci ∪ {Di}.
(c16) End If.
(c17) End For.

5. THE PROOF

The key lemma of Chalcraft is Lemma 1 in [5]. We modify that in the
following way.

Lemma 1. If B = {B1, . . . , Bn} (n ≥ 1), then a(B) ≤ w(B)h(B).

Proof. We have

a(B) =

n∑
i=1

a(Bi) =

n∑
i=1

w(Bi)h(Bi) ≤
n∑

i=1

w(B)h(Bi)

= w(B)

n∑
i=1

h(Bi) = w(B)h(B),

which completes the proof.

We prove the modified Chalcraft’s lemmas in which we use the height
instead of the semi-perimeter.

Lemma 2. Suppose w(B) = n−t and Algorithm b with inputs n and B
terminates with mb = mb(n,B) and Bb = Bb(n,B). Therefore,

h(Bb) ≤
mb−1∑
j=n

j−t.

Proof. The proof is similar to the proof of Lemma 2 in [5]. For complete-
ness, we write it again.

The proof is by induction on the number of squares packed. Of course, if

b terminates with mb = n+ 1, then h(Bb) ≤ n−t =
mb−1∑
j=n

j−t.

We can assume that the lemma is true of all the recursive calls to Algorithm
b. We can also assume that b and all the recursive calls to b terminated.
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Suppose Algorithm b terminates when i = k, so mb = nk. Since Algorithm b
terminated without placing the next square, xk < n−t

k < n−t, so h(Bk) = n−t.
Now by induction,

h(Ci) ≤
ni+1−1∑
j=ni

j−t for i < k,

k−1∑
i=1

h(Ci) ≤
nk−1∑
j=n1

j−t =

mb−1∑
j=n+1

j−t.

If the condition in (b6) was true, then

h(Bb) =

k−1∑
i=1

h(Ci) ≤
mb−1∑
j=n+1

j−t <

mb−1∑
j=n

j−t.

If the condition in (b7) was true, then

h(Bb) =

k−1∑
i=1

h(Ci) + h(Bk) ≤
mb−1∑
j=n+1

j−t + n−t =

mb−1∑
j=n

j−t,

which completes the proof.

Lemma 3. We have

(1) (b+ 1)1−t − a1−t < (1− t)
b∑

j=a

j−t < b1−t − (a− 1)1−t,

(2) a1−2t − (b+ 1)1−2t < (2t− 1)

b∑
j=a

j−2t < (a− 1)1−2t − b1−2t.

We omit the proof.

Lemma 4. Consider step (c4) for some value of i. Suppose the following
conditions hold.

(3) a(Bi) ≥
∞∑

j=ni

j−2t,

(4) h(Bi) ≤
n1−t
i

2t− 1
.

Therefore, step (c4) will not fail for this value of i.
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Proof. We assume, that the algorithm fails. Therefore, we have
w(Bi) < n−t

i . By Lemma 1 and (4) and (2),

a(Bi) ≤ w(Bi)h(Bi) <
n1−2t
i

2t− 1
≤

∞∑
j=ni

j−2t ≤ a(Bi),

a contradiction, which completes the proof of the lemma.

Lemma 5. Given an integer n ≥ 1 and a non-empty set of boxes B,
suppose the following conditions hold

(5) a(B) ≥
∞∑
j=n

j−2t,

(6) h(B) ≤ 1

1− t
(n− 1)1−t,

t ≤ 2

3
.

If we run Algorithm c with the inputs n and B, then the conditions

(7) a(Bi) ≥
∞∑

j=ni

j−2t,

(8) h(Bi) ≤ h(B) +

ni−1∑
j=n

j−t.

hold at step (c4) for all i ≥ 1 for which step (c4) is executed. Moreover, the
algorithm will never fail.

Proof. First, we will show that (7) and (8) ensure that the algorithm will
not fail. By (8), (1), and (6),

h(Bi) ≤ h(B) +

ni−1∑
j=n

j−t

< h(B) +
1

1− t
((ni − 1)1−t − (n− 1)1−t)

≤ 1

1− t
(ni − 1)1−t.

Since t ≤ 2/3,
1

1− t
≤ 1

2t− 1
.

Thus

h(Bi) <
1

1− t
(ni − 1)1−t ≤ 1

2t− 1
(ni − 1)1−t <

n1−t
i

2t− 1
.
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Figure 1 – The squares St
1, S

t
2, S

t
3 and the set of boxes B.

By Lemma 4, (c4) will not fail.
Now, we prove (7) and (8) by induction on i. Of course, they hold for

i = 1 and (7) holds for all i. Let i > 1 be the smallest i for which (8) is not
true.

If the condition in (c8) was true for i− 1, then h(Bi) = h(Bi−1)− n−t
i−1

and ni = ni−1 + 1. Thus by induction,

h(Bi) = h(Bi−1)− n−t
i−1 ≤ h(B) +

ni−1−1∑
j=n

j−t − n−t
i−1

< h(B) +

ni−1−1∑
j=n

j−t = h(B) +

ni−2∑
j=n

j−t < h(B) +

ni−1∑
j=n

j−t.

If the condition in (c8) was not true for i− 1, then we distinguish two cases.
If wi−1 ≥ hi−1 − n−t

i−1 (that is h(Di−1) = wi−1), then

h(Bi) = h(Bi−1) + h(Ci−1)− h(Bi−1) + h(Di−1)

= h(Bi−1) + h(Ci−1)− hi−1 + wi−1 ≤ h(Bi−1) + h(Ci−1).

If wi−1 < hi−1 − n−t
i−1 (that is h(Di−1) = hi−1 − n−t

i−1), then, similarly,

h(Bi) ≤ h(Bi−1) + h(Ci−1).

By induction and Lemma 2,

h(Bi) ≤ h(Bi−1) + h(Ci−1)

≤ h(B) +

ni−1−1∑
j=n

j−t +

ni−1∑
j=ni−1

j−t = h(B) +

ni−1∑
j=n

j−t,

which completes the proof.

Proof of Theorem 1. If the first three squares are packed in the box
B = ζ(2t) × 1 as in Fig. 1 (this is Paulhus’s algorithm [11]), then the re-
maining boxes are

B =
{(

ζ(2t)− 1− 2−t − 3−t
)
× 1, 2−t ×

(
1− 2−t

)
, 3−t ×

(
1− 3−t

)}
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and

h(B) = ζ(2t)− 2 · 3−t = 2.639

< 4.327 =
1

1− t
(4− 1)1−t.

By Lemma 5, the Algorithm c pack perfectly the squares St
n (n ≥ 4) into B,

which completes the proof.

Remark 1. The squares St
n (n ≥ 1) in Theorem 1 can be packed similarly

in a square of the right area.

Proof of Theorem 2. If the first three squares are packed in the box
B = ζ(2t)× 1 as in Fig. 1, then the remaining boxes are

B =
{(

ζ(2t)− 1− 2−t − 3−t
)
× 1, 2−t ×

(
1− 2−t

)
, 3−t ×

(
1− 3−t

)}
.

Observe that ζ(2t) − 1 − 2−t − 3−t > 1, 2−t > 1 − 2−t and 1 − 3−t ≥ 3−t if
t ∈ [log3 2, 2/3]. Let f(t) = h(B). Thus

h(B) = f(t) = ζ(2t)− 2 · 3−t.

Since

g(t) =
1

1− t
31−t

is an increasing, f(t) is a decreasing function on the interval [log3 2, 2/3] and

f(log3 2) = 3.41 < 4.06 = g(log3 2),

the Algorithm c pack perfectly the squares St
n (n ≥ 4) into B, which completes

the proof.

6. DISCUSSION

If we increase the number of the packed squares before we start the Al-
gorithm c and do detailed analysis of the height of the boxes, then we can
decrease the constant log3 2. It remains an interesting question to increase the
bound 2/3.
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