PERFECT PACKING OF SQUARES
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It is known that Z 1/i> = 72/6. Meir and Moser asked what is the smallest ¢

such that all the squares of sides of length 1, 1/2, 1/3, ... can be packed into
a rectangle of area 72/6 4+ ¢. A packing into a rectangle of the right area is
called perfect packing. Chalcraft packed the squares of sides of length 1, 27,
37t ... and he found perfect packing for 1/2 < t < 3/5. We will show, based
on an algorithm by Chalcraft, that there are perfect packings if 1/2 < ¢ < 2/3.
Moreover, we show that there is a perfect packing for all ¢ in the range logs 2 <
t <2/3.
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1. INTRODUCTION

Meir and Moser [10] originally noted that since Z 1/i2 = 72/6 — 1,

is reasonable to ask whether the set of squares with 51des of length 1/2, 1/3,
1/4, ... can be packed into a rectangle of area 72/6 — 1. Failing that, find the
smallest € such that the squares can be packed in a rectangle of area 72 /6 —1+e.
The problem also appears in [6], [4], [3].

A packing into a rectangle of the right (resp., not the right) area is called
perfect (resp., imperfect) packing. In [I0], [7], [2], [II], better and better
imperfect packing can be found.

Chalcraft [5] generalized this question. He packed the squares of side n™*
for n =1,2,... into a square of the right area. He proved that for all ¢ in the
range [0.5964, 0.6] there is a perfect packing of the squares. In [5], it can be
read that ”Other packings will work for other ranges of . We can probably
make the tp in Theorem 8 as close to 1/2 as desired in this way. The more
interesting challenge, however, seems to be to increase the bound t < 3/5.”
Our aim is to increase this bound.

Wistlund [12] proved if 1/2 < t < 2/3, then the squares of side n~! for
n = 1,2,... can be packed into some finite collection of square boxes of the
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same area ((2t) as the total area of the tiles. This is an increase of the bound
t < 3/5, but we have many enclosing rectangles.
There are several papers in this topic, e.g. [9], [1], []].

2. PERFECT PACKING

THEOREM 1. Fort = 2/3, the squares S% (n > 1) can be packed perfectly
into the rectangle of dimensions ((2t) x 1.

THEOREM 2. For all t in the range logs2 < t < 2/3, the squares S,
(n > 1) can be packed perfectly into the rectangle of dimensions ((2t) x 1.

3. NOTATION

We use the Chalcraft’s algorithm in [5] and we modify the proof of Chal-
craft. For the sake of simplicity, we use the Chalcraft’s notation. For the
completeness, we recall these.

Throughout the paper, the width of a rectangle will always refer to the
shorter side and the height will always refer to the longer side. We use the

o0
constant 1/2 < t < 2/3. As usual, ((t) = Y. i~ t. Let S! denote the square
i=1

of side length n~t. A box is a rectangle of sides x,y > 0. Let = x y denote

the box B of sides x and y. We define its area a(B) = zy, its semi-perimeter
p(B) = x 4y, its width w(B) = min(z, y) and its height h(B) = max(z,y).

n

Given a set of boxes # = {By,...,By,}, we define a(%) = > a(B;),

=1
n

h(#) = 'Zlh(Bi) and w(#) = max w(B;). Let a(d) = h(0) = w() = 0.

i= i=1,...,n

4. CHALCRAFT’S ALGORITHM

For the completeness, we repeat the description of Chalcraft’s algorithm.

First, we recall the subroutine of Chalcraft, which we call Algorithm b
as in [0].

Algorithm b

Input: An integer n > 1 and a box B, where w(B) = n"t.

Output: If the algorithm terminates, then it defines an integer my,
= mp(n, B) > n and a set of boxes By, = Bp(n, B).

Action: If the algorithm terminates, then it packs the squares
St,..., 8¢ ,—1 nto B, and Py, is the set of boxes containing the remaining

m
area. If it does not terminate, then it packs the squares S?, Sle, ... into B.
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(bl) Letny=n+1,21=h(B)—n"tand % = 0.
(b2) Put the square S’ snugly at one end of B.

(b3) If 1 > 0, then let B; be the remainder of B, so that B; has
dimensions x1 X n".

t

(bd) Fori=1,2,...

(b11)

(b12)

(Note: At stage i, we have packed S, ..., Sflﬁl into B. The
remaining boxes are Z;, which we never use again in this
algorithm, and B; (as long as x; > 0), which has dimensions
x; X nt)

If ; = 0, then terminate with my = n; and By = Z;.

If z; < ni_t, then terminate with mp = n; and %y = %; U
{Bi}.

Let i1 = x; — n;t.

If Ti+1 = 0, then let Cl = Bz

If ;41 > 0, then split B; into two boxes: one called C; with
dimensions ni_t x n~t, and the other called B;,; with dimen-
sions ;11 x n~t.

Apply Algorithm b recursively with inputs n; and C;. If this
terminates, let n;11 = mp(n;, C;) and €; = Bp(ni, C;).

Let Biy1 = PB; UE;.

(b13) End For.

The subroutine b is used in the Chalcraft’s algorithm c.
Algorithm ¢
Input: An integer n > 1 and a set of boxes £.

Action:
t at
S Spats -

. into A.

(cl) Letny=n+1and % = 2.
(c2) Fori=1,2,...

(c3)

(Note: At stage i, we have packed S, ..., Sf”_l into B. The
remaining boxes are %;.)
If w(%;) < n; ", then fail.
Let w; = min{w(C)|C € %;,w(C) > n;'}.
Let h; = min{h(C)|C € %;, w(C) = w;}.
Choose any B; € %; which satisfies w(B;) = w; and h(B;) =
hi.
If w,=h; = ni_t , then
Put szi snugly into B;.
Let <%)z+1 = @1 \ {Bl}

If the algorithm does not fail, then it packs the squares
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(cl1) Let njy1 =n; + 1.

(c12) Else

(c13) Cut B; into two boxes: one called C; of dimensions w; x n;*
and the other called D; of dimensions w; X (h; — nz_t)

(cl4) Call Algorithm b with inputs n; and C;. If this terminates,
then let Ni+1 = mb(ni, CZ) and (gz = ,%’b(ni, Cz)

(C15) Let #;11 = %; \ {Bz} u%; U {Dl}

(c16)  End If.
(c17) End For.

5. THE PROOF

The key lemma of Chalcraft is Lemma 1 in [5]. We modify that in the
following way.

LEMMA 1. If B={By,...,Bn} (n>1), then a(B) < w(AB)h(A).

Proof. We have

3
3

= w(#) ) WBi) = w(B)W(A),
i=1
which completes the proof. [

We prove the modified Chalcraft’s lemmas in which we use the height
instead of the semi-perimeter.

LEMMA 2. Suppose w(B) = n~t and Algorithm b with inputs n and B
terminates with my = mp(n, B) and %y = Byp(n, B). Therefore,

mp—1

h(By) < Z jt.

Proof. The proof is similar to the proof of Lemma 2 in [5]. For complete-
ness, we write it again.
The proof is by induction on the number of squares packed. Of course, if

mb—l
b terminates with mp = n + 1, then h(%p) <n~ ! = > j L.
=n

We can assume that the lemma is true of all the recursive calls to Algorithm
b. We can also assume that b and all the recursive calls to b terminated.
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Suppose Algorithm b terminates when i = k, so myp = ng. Since Algorithm b
terminated without placing the next square, z; < n,;t <n~t so h(By) =n"".
Now by induction,

ni41—1

Z j7t fori <k,

J=n,
k— ni—1 mp—1
ICIED DERT SR
i=1 Jj=n1 Jj=n+1

If the condition in (b6) was true, then

k—1 mp— 1 mp— 1
WBp) =Y WE)< > i< Z ‘s
i=1 j=n+1

If the condition in (b7) was true, then

k—1 mp—1 mp—1
hBo) =D ME)+nB) < > jli+nt=> 57
=1 j=n—+1 j=n

which completes the proof. [

LEMMA 3. We have

(1) b+ =Tt <=y <0 = (a- D),
j=a
b
(2) a7+ )T <2 - 1)) < (a— )T - p
j=a

We omit the proof.

LEMMA 4. Consider step (c4) for some value of i. Suppose the following
conditions hold.

(3) a(B) > > i,

Jj=n;
1—t

n:
4 h(%;) < ——.
() () <

Therefore, step (c4) will not fail for this value of i.
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Proof. We assume, that the algorithm fails. Therefore, we have
w(%;) < n;'. By Lemma 1 and (4) and @
oo

Z < (B

Jj=n;

a contradiction, which completes the proof of the lemma. [

LEMMA 5. Given an integer n > 1 and a non-empty set of bores A,
suppose the following conditions hold

(5) a(B) =y i
j=n
1 1—t
(6) WB) < 1= 1),
2
t < 3
If we run Algorithm c with the inputs n and A, then the conditions
(7) a(%;) > Zj—”,
J=n;
n;—1
(8) W) <h(B)+ > i

hold at step (c4) for all © > 1 for which step (c4) is executed. Moreover, the
algorithm will never fail.

Proof. First, we will show that and ensure that the algorithm will
not fail. By , , and @,
n;—1

hB) <h(B)+ >

j=n
1 _ _
<h(<@)+ﬁ(( i— D = (-1
1
< ——(n; — 1)
< i)
Since t < 2/3,
1 1
I R
1—t = 2t—1
Thus 1
1 nit
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Figure 1 — The squares St,S%, S% and the set of boxes 4.

By Lemma 4, (c4) will not fail.

Now, we prove and by induction on i. Of course, they hold for
1 =1 and @ holds for all 7. Let ¢ > 1 be the smallest ¢ for which is not
true.

If the condition in (c8) was true for i — 1, then h(%;) = h(%i—1) — n; ",
and n; = n;—1 + 1. Thus by induction,

ni_1—1

hB;) = W Bi_1) —n ) Z it —n

n;—1—1 n;—2 n;—1

DT =B YT <A+ YT

j=n
If the condition in (c8) Was not true for ¢ — 1, then we distinguish two cases.
If wi—1 > hj—1 — (that is h(D;—1) = w;—1), then

h(%i) = h(%ifl) + h(€i-1) — M(Bi-1) + h(Di-1)
=h(PBi—1) + h(Gi—1) — hi—1 + wi—1 < W(Bi—1) + h(i-1)-
If wi1 < hjim1 —n (that is h(Dj—1) = hi—1 — ni__tl), then, similarly,
M%) < h(Bi-1) + h(ECi-1).
By induction and Lemma 2,

M%) < M Bi-1) + h(Gi-1)

n;—1—1 n;—1 n;—1
Z] + Y it =B+ D> i
J=ni—1 Jj=n

which completes the proof ]

Proof of Theorem[1 If the first three squares are packed in the box
B = ((2t) x 1 as in Fig. [l| (this is Paulhus’s algorithm [I1]), then the re-
maining boxes are

B={(C2t)-1-2""=3") x1,27" x (1-27"),37"x (1-37")}
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and
h(PB) =((2t) —2-37" =2.639

1
4327 = —(4— 1)L,
< 4.327 1—t( )

By Lemma 5, the Algorithm ¢ pack perfectly the squares St (n > 4) into %,
which completes the proof. [J

Remark 1. The squares S, (n > 1) in Theorem [I] can be packed similarly
in a square of the right area.

Proof of Theorem[9 If the first three squares are packed in the box
B = ((2t) x 1 as in Fig. [l then the remaining boxes are

B={(C2t)-1-2""=3")x1,27" x (1-27"),37"x (1-37")}.
Observe that ((2t) —1 -2 -3t >1, 27" >1—-2"%and 1 -3t > 37t if
t € [logs 2,2/3]. Let f(t) = h(#). Thus

hB) = f(t)=C(2t) —2-37".
Since

1
g(t) = ﬁ?)l_t
is an increasing, f(t) is a decreasing function on the interval [logs 2,2/3] and

f(logs 2) = 3.41 < 4.06 = g(log;2),

the Algorithm ¢ pack perfectly the squares S, (n > 4) into %, which completes
the proof. [

6. DISCUSSION

If we increase the number of the packed squares before we start the Al-
gorithm ¢ and do detailed analysis of the height of the boxes, then we can
decrease the constant logs 2. It remains an interesting question to increase the
bound 2/3.
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