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We consider the orthogonality preserving property to study sesquilinear forms.
We state some characterizations for Hermitian sesquilinear forms through this
kind of approach. We, then, state a Wigner type equation and present some
results in this regard. We investigate the superstability of the perturbation
of such equation. Finally, we state some results in inner product C∗-modules
concerning the issue.
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1. INTRODUCTION

The notion of sesquilinear form may be regarded as a generalization of
the notion of inner product in some sense. It plays an important role in the
theory of linear operators on Hilbert spaces. There are several other objects
in analysis that invoke intrinsically sesquilinear forms. For example, finite
measures on σ-algebras, positive definite kernels on Banach spaces, positive
linear functionals on (Banach)*-algebras and so on; see [12, 5] and references
therein.

Let X be a vector space over field C and let u : X × X → C be a
mapping which is linear in the first argument and conjugate linear (anti linear)
in the second one. Then u is called a sesquilinear form on X . An inner product
defined on a vector space is an example of a sesquilinear form. However, there
are other sesquilinear forms which are not inner products, necessarily. For
example, if T is a bounded linear operator on a Hilbert space (X , ⟨·, ·⟩), then
u, defined by

u(x, y) = ⟨Tx, y⟩, (x, y ∈ X ),(1)

is a sesquilinear form. Conversely, a sesquilinear form u, defined on a Hilbert
space, determines uniquely a bounded linear operator T satisfying (1) by re-
quiring u to be bounded which means that there exists a positive number M so
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that |u(x, y)| ≤ M∥x∥∥y∥ for x, y ∈ X . For the cases when u is not necessarily
bounded, finding such an operator, defined on the target space, which repre-
sents the sesquilinear form is an interesting problem; see [5]. The sesquilinear
form u is an inner product if and only if T is a positive invertible operator.
A sesquilinear form u is said to be positive semidefinite if u(x, x) ≥ 0 for any
x ∈ X . Indeed, u defines an inner product if and only if u(x, x) > 0 for all
0 ̸= x ∈ X . This is a special case of a greater class of sesquilinear forms,
i.e. the class of Hermitian sesquilinear forms. A sesquilinear form u is called
self-adjoint or Hermitian if u(x, y) = u(y, x) for all x, y. The polarisation iden-
tity which holds true for sesquilinear forms implies that a sesquilinear u(·, ·) is
Hermitian if and only if u(x, x) ∈ R for any x ∈ X .

Our main interest, in this paper, is to respond to the following problem:

P: let u and v be two sesquilinear forms and suppose that u(x, y) = 0 implies
that v(x, y) = 0. Does u = λv for some λ ∈ C?

This problem has been considered for the particular case when u and v define
inner products; see for example [3, 4, 6, 9, 10, 13], and references therein. In
this article, we provide an answer to this problem, on a more general level; see
Theorem 2.3 and Theorem 2.1 below. However, the problem remains open in
its most general sense. We also pay attention to Wigner’s theorem related to
analysis of symmetry properties of quantum systems. We express a Wigner
type equation and present some results in this regard. We investigate the
superstability of the perturbation of such equation, as well.

Finally, we restate some of our results in the framework of inner product
C∗-modules. Let A be a C∗-algebra. A complex linear space V which is a
right A-module with a compatible scalar multiplication is an inner product
A-module if it is equipped with an A-valued inner product ⟨·, ·⟩ : V × V → A
satisfying the following properties:

i) ⟨x, αy + βz⟩ = α⟨x, y⟩+ β⟨x, z⟩,
ii) ⟨x, ya⟩ = ⟨x, y⟩a,
iii) ⟨x, y⟩∗ = ⟨y, x⟩,
iv) ⟨x, x⟩ ≥ 0 and ⟨x, x⟩ = 0 if and only if x = 0,

for all x, y, z ∈ V, a ∈ A and α, β ∈ C. Note that ∥x∥ = ∥⟨x, x⟩∥
1
2 defines a

norm on V due to Cauchy-Schwartz inequality. The interested reader is referred
to [8] for further information of inner product C∗-modules.

2. RESULTS

The following theorem is a generalization of [3, Theorem 1] and [10, The-
orem 2.1]. Modifying the proof of [3, Theorem 1] or [10, Theorem 2.1] one can
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express the proof of this theorem, thus it is unnecessary to state it.

Theorem 2.1. Let (X , ⟨·, ·⟩) be a complex inner product space and let u
be a sesquilinear form on X . The following statements are equivalent;

(i) there exists a λ ∈ C so that u(x, x) = λ∥x∥2, for all x ∈ X ,

(ii) there exists a λ ∈ C so that u(x, y) = λ⟨x, y⟩, for any x, y ∈ X ,

(iii) if ⟨x, y⟩ = 0, then u(x, y) = 0.

Corollary 2.2. Let T be a linear operator on a Hilbert space X and
let α ∈ C. The following statements are equivalent

(i) there exists a λ ∈ C so that α∥T 2x∥2 + ∥Tx∥2 = λ∥x∥2, for all x ∈ X ,

(ii) there exists a λ ∈ C so that α⟨T 2x, T 2y⟩ + ⟨Tx, Ty⟩ = λ⟨x, y⟩, for any
x, y ∈ X ,

(iii) ⟨x, y⟩ = 0 implies that α⟨T 2x, T 2y⟩+ ⟨Tx, Ty⟩ = 0, for any x, y ∈ X .

Note that if we put α = −1
2 and λ = 1 in this theorem, then T is a

2-isometry. One may express the same results for more general n-isometries
[1] instead of 2-isometry. The next theorem, which is the main result in this
part, states another generalization of [3, Theorem 1] and [10, Theorem 2.1].

Theorem 2.3. Let u(·, ·) be a sesquilinear form on a linear space X such
that u(x, y) = 0 whenever u(y, x) = 0, for any x, y ∈ X . Then there exists a
λ ∈ C so that |λ| = 1 and λu is self-adjoint.

Proof. Let x0 be chosen in X such that u(x0, x0) = r0e
iθ0 ̸= 0 where

θ0 ∈ [0, 2π) and r0 > 0, and let y ∈ X . We want to show that

u(y, y) = ±eiθ0 |u(y, y)|.

Assume that u(y, y) = seiη for some s > 0 and η ∈ [0, 2π). The proof divides
into two cases.

Case i. u(x0, y) = 0. Thus, u(y, x0) = 0. Let

v1 =
x0√
r0eiθ0

, v2 =
x0√
r0
, w1 =

y√
seiη

, and w2 =
y√
s
.

Therefore u(vi, wj) = u(wj , vi) = 0 for i, j ∈ {1, 2}. This implies that u(v1 +
w1, v2 − w2) = 0. Hence u(v2 − w2, v1 + w1) = 0 by our assumption which is
u(v2, v1) = u(w2, w1). Hence

u(x0, x0)

r0e−iθ0
=

u(y, y)

se−iη
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that ensures e2iθ0 = e2iη. Thus θ0 = η, η + π which gives

u(y, y) = ±eiθ0 |u(y, y)|.

Case ii. u(x0, y) ̸= 0. Thus u(y, x0) ̸= 0. Let z = x0 − y
u(y,x0)

u(x0, x0).

Therefore, u(z, x0) = 0 which implies that

0 = u(x0, z) = u(x0, x0 −
y

u(y, x0)
u(x0, x0)) = u(x0, x0)−

u(x0, x0)

u(y, x0)
u(x0, y).

It follows that

u(x0, y)

u(y, x0)
=

u(x0, x0)

u(x0, x0)
.(2)

The same argument shows that

u(y, x0)

u(x0, y)
=

u(y, y)

u(y, y)
.(3)

Comparing (2) and (3) we come to

u(x0, x0)

u(x0, x0)
=

u(y, y)

u(y, y)

which implies that θ0 = η, η + π and consequently, in this case, we have

u(y, y) = ±eiθ0 |u(y, y)|.

If u(y, y) = 0 then, obviously, u(y, y) = eiθ0 |u(y, y)| holds true. Now define a
sesquilinear form v to be v := e−iθ0u and note that v(y, y) = ±|u(y, y)| ∈ R for
all y ∈ X . Therefore, v is self-adjoint on X and we are done.

Remark 2.4.
1. If there exists an x0 in X so that 0 ̸= u(x0, x0) ∈ R then u is, itself,

Hermitian.
2. If u is a bounded sequilinear form on a Hilbert space (H , ⟨·, ·⟩), then

we know that there exists a unique bounded linear operator T on H so that
u(x, y) = ⟨Tx, y⟩ for all x, y ∈ H . In fact, this theorem states that if ⟨Tx, y⟩ =
0 implies ⟨Ty, x⟩ = 0, then T is a self-adjoint operator multiplied by a modulus
one constant.

3. In the proof of Theorem 2.3, we can conclude that u(x, y) = e2iθ0u(y, x)
for any x, y ∈ X .

4. If for some λ ∈ C we have that u(x, y) = λu(y, x), for any x, y ∈ X ,
then |λ| = 1. In fact, in this case

u(x, y) = λu(y, x) = |λ|2u(x, y),

which implies that |λ| = 1.
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2.1. Wigner’s Theorem

We are now going to deal with the well-known Wigner’s theorem. This
theorem arises, originally, in quantum theory. It, indeed, provides a significant
tool for presenting physical symmetries such as rotations and translations in
the language of mathematics. It appeared firstly in 1931 ([15] p. 251), and
then it engrossed a lot of attention; see [11, 4, 14] and references therein. Let
f : X → Y be a mapping between inner product spaces. We say that f
satisfies Wigner’s equation if

|⟨f(x), f(y)⟩| = |⟨x, y⟩|, (x, y ∈ X ).

Wigner [15] shows that if f : X → Y is a mapping between inner prod-
uct spaces, satisfying this equation, then it is phase-equivalent to a linear or
conjugate-linear isometry which means that there exists an isometry operator
g which is either linear or anti-linear and there is a scalar-valued function σ
with |σ(x)| = 1, for all x ∈ X so that f = σg.

One could regard the following equation as a generalization of Wigner’s
equation,

|⟨f(x), y⟩| = |⟨f(y), x⟩|, (x, y ∈ X ).(4)

Note that if f : X → X is a mapping on an inner product space satisfying
⟨f(x), y⟩ = ⟨f(y), x⟩, for all x, y ∈ X then f is linear. In fact, if x, y and z are
in X and α ∈ C, then

⟨f(αx+ y), z⟩ = ⟨f(z), αx+ y⟩ = α⟨f(z), x⟩+ ⟨f(z), y⟩ = ⟨αf(x) + f(y), z⟩.
Thus f is a self-adjoint operator whenever X is a Hilbert space and f is
continuous. It is easy to see that f is injective if it is surjective.

Let f be a mapping on an inner product space X satisfying

Re(⟨f(x), y⟩) = Re(⟨f(y), x⟩), (x, y ∈ X ).

If f(ix) = if(x) , then f is linear and ⟨f(x), y⟩ = ⟨f(y), x⟩ for all x, y ∈ X . In
fact, in this case, we have that

Im(⟨f(x), y⟩) = −Im(⟨f(y), x⟩), (x, y ∈ X ),(5)

because

Im(⟨f(x), y⟩) = Re(−i⟨f(x), y⟩) = Re(⟨f(x), iy⟩)
= Re(⟨f(iy), x⟩) = −Im(⟨f(y), x⟩).

Similarly, we can see that if f(ix) = −if(x), for all x ∈ X , then ⟨f(x), y⟩ =
⟨f(y), x⟩, for all x, y ∈ X and, in this case, f is anti-linear. We say that the
mapping f is self-orthogonal at x if ⟨f(x), x⟩ = 0 but f(x) ̸= 0.
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Lemma 2.5 ([7]). Let X be an inner product space over F ∈ {R,C}. If
x, y ∈ X satisfy

|⟨x, v⟩| = |⟨y, v⟩|, (v ∈ X ),

then there is a modulus one λ ∈ F such that y = λx.

Theorem 2.6. Let f : X → X be a mapping on a complex inner product
space X satisfying (4) and (5) and let f not be self-orthogonal at any point x
of X . Then

⟨f(x), y⟩ = ⟨f(y), x⟩, (x, y ∈ X ).

Proof. First, we note that

(6) |⟨f(λx), y⟩| = |⟨f(y), λx⟩| = |λ||⟨f(y), x⟩| = |λ||⟨f(x), y⟩| = |⟨λf(x), y⟩|.

Therefore, f(λx) = λ′f(x) for some λ′ with |λ′| = |λ| by Lemma 2.5.
Condition (5) implies that

Im(⟨f(x), x⟩) = 0, (x ∈ X ).

Now let x ∈ X and f(ix) = λ(x)f(x) in which |λ(x)| = 1. From

Re(λ(x)⟨f(x), x⟩) = Re(⟨f(ix), x⟩) = Im(i⟨f(ix), x⟩) = −Im(⟨f(ix), ix⟩) = 0

and

Im(λ(x)⟨f(x), x⟩) = Im(⟨f(ix), x⟩) = −Im(⟨f(x), ix⟩)
= Im(i⟨f(x), x⟩) = Re(⟨f(x), x⟩)

we have that λ(x) = i that means f(ix) = if(x) for any x ∈ X . Now for
x, y ∈ X we have that

Re(⟨f(x), y⟩) = Im(i⟨f(x), y⟩) = −Im(⟨f(x), iy⟩)
= Im(⟨f(iy), x⟩) = Im(i⟨f(y), x⟩) = Re(⟨f(y), x⟩)

and we are done.

In light of Wigner’s theorem, our conjecture here is that f is phase-
equivalent to a Hermitian linear operator g whenever f is continuous and sat-
isfies (4). In the following, we make some observations in this regard which
may be useful. Let f : X → X be a mapping on a complex inner product
space X satisfying (4). Then

(O1) for λ ∈ C and x ∈ X we have that f(λx) = λ′f(x) for some λ′ with
|λ′| = |λ|. This is concluded immediately due to Lemma 2.5 and (6).
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(O2) for x, y ∈ X there exist λ and λ′ with |λ| = |λ′| = 1 such that

f(x+ y) = λf(x) + λ′f(y).

Indeed for x, y, z ∈ X there exist modulus one numbers η, α, α′, β and β′ so
that

|⟨f(x+ y), z⟩| = |⟨f(z), x+ y⟩|
= |⟨f(z), x⟩+ ⟨f(z), y⟩|
= η(⟨f(z), x⟩+ ⟨f(z), y⟩)
= ηα|⟨f(z), x⟩|+ ηα′|⟨f(z), y⟩|
= ηα|⟨f(x), z⟩|+ ηα′|⟨f(y), z⟩|
= ηαβ⟨f(x), z⟩+ ηα′β′⟨f(y), z⟩
= ⟨γf(x) + γ′f(y), z⟩ = |⟨γf(x) + γ′f(y), z⟩|

where γ = ηαβ and γ′ = ηα′β′. Now, the result is concluded from Lemma 2.5.

(O3) there exists a T : X → X which satisfies (4), is phase-equivalent
to f , and T (λx) = λT (x) for all λ ∈ C and x ∈ X . To see this, let x ∈ X .
There exists a number γ(x) with |γ(x)| = 1 so that

⟨γ(x)f(x), x⟩ = |⟨f(x), x⟩|, (x ∈ X ).

Define T to be T (x) = γ(x)f(x) for all x ∈ X . Thus ⟨T (x), x⟩ ≥ 0 for any
x. Now, we want to show that T (λx) = λT (x) for λ ∈ C and x ∈ X . Let
λ = reiθ ̸= 0 and x ∈ X be chosen to be fixed. Then T (rx) = tT (x) for some
number t with |t| = r by (O1). But

0 ≤ ⟨T (rx), rx⟩ = tr⟨T (x), x⟩.

Since r⟨T (x), x⟩ ≥ 0 we have that t ≥ 0 so t = r. Now assume that T (eiθx) =
eiηT (x) for some η. Therefore,

0 ≤ ⟨T (eiθx), eiθx⟩ = e−iθeiη⟨T (x), x⟩.

Thus e−iθeiη ≥ 0 because ⟨T (x), x⟩ ≥ 0. Hence, η = θ and we are done.

These observations seem to be useful concerning the conjecture stated
above. Because if we could show that T is additive, then according to Theorem
2.3 we get the desired result. But T is close to being additive due to (O2).

2.2. Superstability

In this part, we pay attention to a phenomenon concerning the perturba-
tion of the equation (4) called superstability.



242 S. M. S. Nabavi Sales 8

Theorem 2.7. Let X be a Hilbert space and consider a control function
ϕ : X × X → [0,∞) satisfying

lim
n→∞

cnϕ(c−nx, y) = 0, (x, y ∈ X )(7)

for some positive constant c ̸= 1. Now suppose that a mapping f : X → X
satisfies

||⟨f(x), y⟩| − |⟨f(y), x⟩|| ≤ ϕ(x, y),(8)

for any x, y ∈ X . Then f satisfies (4).

Proof. Let x ∈ X be chosen to be fixed. For n ∈ N let fn define to be
fn(x) := cnf(c−nx). Inequality (8) implies that

||⟨fn(x), y⟩| − |⟨f(y), x⟩|| ≤ cnϕ(c−nx, y), (n ∈ N, y ∈ X ).(9)

Therefore the sequence {|⟨fn(x), y⟩|}n∈N converges for any y ∈ X . Now,
the well-known Banach–Steinhaus theorem implies that {fn(x)}n is bounded.
Hence, there exists a subsequence of which converging weakly to an element of
X , f̃(x) say. Without loss of generality, we may assume that

⟨fn(x), y⟩ → ⟨f̃(x), y⟩, (y ∈ X ).

Thus, in this way, we come to a mapping f̃ : X → X . From (9) and the
assumption (7) we have that

|⟨f̃(x), y⟩| = |⟨f(y), x⟩|, (x, y ∈ X ).(10)

Let x, y ∈ X . From (8) we have that

||⟨fn(x), y⟩| − |⟨fm(y), x⟩|| ≤ cm+nϕ(c−nx, c−my), (m,n ∈ N).

Therefore,

|⟨f̃(x), y⟩| = |⟨fm(y), x⟩|, (m ∈ N).

Letting m → ∞ we observe that

|⟨f̃(x), y⟩| = |⟨f̃(y), x⟩|, (x, y ∈ X ).(11)

Now (10) and (11) ensures that f satisfies (4), and we are done.

2.3. Inner product C∗-moduls

At this point, we are going to restate Theorem 2.3 in the setting of inner
product C∗-modules. We prove the main theorem using some ideas of [6,
Theorem 3.1]. First some preliminaries from [6]; see also [2]. Throughout this
section, we assume that K(H ) ⊆ A ⊆ B(H ) where B(H ) and K(H ) stand
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for the C∗-algebra of all bounded linear operators and the C∗-algebra of all
compact operators on a Hilbert space (H , (., .)), respectively. Let ξ, η ∈ H .
By ξ ⊗ η we mean the rank one operator defined to be (ξ ⊗ η)ν = (ν, η)ξ.
Thus ξ ⊗ ξ is a projection onto the one dimensional subspace generated by ξ,
whenever ∥ξ∥ = 1. Hence when K(H ) ⊆ A ⊆ B(H ), then A contains all of
such minimal projections. Now let e = ξ⊗ξ with ξ ∈ H , ∥ξ∥ = 1 be a minimal
projection and let V be an inner product A-module. Thus

Ve = {xe;x ∈ V}

is a complex inner product space contained in V in which inner product is
defined to be

(x, y) = tr(⟨x, y⟩) (x, y ∈ Ve).
Note that for x = eu and y = ev, where u, v ∈ V,

⟨x, y⟩ = e⟨u, v⟩e = (⟨u, v⟩ξ, ξ) ξ ⊗ ξ

and
(x, y) = tr (⟨x, y⟩) = (⟨u, v⟩ξ, ξ) ,

thus
⟨x, y⟩ = (x, y)e.

Hence the following assertions are obtained immediately; see [6],

(i) x, y ∈ Ve are orthogonal in (Ve, (·, ·)) if and only if they are orthogonal
in (V, ⟨·, ·⟩),

(ii) if x ∈ Ve, then the norm of x induced from (Ve, (·, ·)) is the same as that
induced by (V, ⟨·, ·⟩),

Theorem 2.8. Let A be a C∗-algebra so that K(H ) ⊂ A ⊂ B(H ) for
some Hilbert space H , and let T be a nonzero mapping on an inner product
A-module W. Then the following statements are equivalent;

(i) T is A-linear and ⟨Tx, y⟩ = 0 implies that ⟨Ty, x⟩ = 0 for any x, y ∈ W,

(ii) there exists a complex number λ with |λ| = 1 so that ⟨Tx, y⟩ = λ⟨Ty, x⟩∗
for any x, y ∈ W.

Proof. let e = ξ⊗ ξ be a minimal projection and consider linear operator
Te := T |We defined on We. Te satisfies the following requirement;

(Te(ex), ey) = 0 =⇒ (Te(ey), ex) = 0, (x, y ∈ W).

Therefore Theorem 2.3 ensures that there exists a modulus one number λe so
that

(T (ex), ey) = λe(T (ey), ex)
∗,
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for any x, y ∈ W. This yields

(T (ex), ey)e = λe(T (ey), ex)
∗e,

and hence

⟨T (ex), ey⟩ = λe⟨T (ey), ex⟩∗
which implies that

e⟨T (x), y⟩e = λee⟨T (y), x⟩∗e.(12)

Now let f = η⊗ η be another minimal projection in A and let u = ξ⊗ η. Thus
e = ufu∗ and there exists a modulus one number λf so that

f⟨T (x), y⟩f = λff⟨T (y), x⟩∗f.(13)

From (12) and the fact that ufu∗ = e we have that

ufu∗⟨T (x), y⟩ufu∗ = λee⟨T (y), x⟩∗e.

Whence,

uf⟨T (u∗x), u∗y⟩fu∗ = λee⟨T (y), x⟩∗e

which in conjunction with (13) brings us to

λfuf⟨T (u∗y), u∗x⟩∗fu∗ = λee⟨T (y), x⟩∗e.

It follows that

λfe⟨T (y), x⟩∗e = λee⟨T (y), x⟩∗e.

Now assume that e⟨T (y), x⟩∗e ̸= 0. This implies that λf = λe = λ. Thus

e⟨T (x), y⟩e = λe⟨T (y), x⟩∗e

for any minimal projection e ∈ A and any x, y ∈ W. This implies that
⟨T (x), y⟩ = λ⟨T (y), x⟩∗ for any x, y ∈ W and we are done.

Using this method, one can restate Corollary 2.2 in the setting of inner
product C∗-modules, very routinely.

Acknowledgments. The author wishes to thank the referees for their comments which
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