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In this paper, we consider little Hankel operators Γφ defined on the Bergman
space L2

a(D) with symbol φ ∈ H∞(D) that are contractions. Necessary and
sufficient conditions are obtained for the existence of a nontrivial unitary part
of these little Hankel operators. We also present an explicit description of this
unitary part. This extends the results of Butz for Hankel operators defined on
the Hardy space.
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1. INTRODUCTION

Let T denote the unit circle in the complex plane C and dθ be the arc-
length measure on T. For 1 ≤ p < ∞, Lp(T) will denote the Lebesgue space
of T induced by dθ

2π . Since dθ is finite, Lp(T) ⊂ L1(T) for all p ≥ 1. Given
f ∈ L1(T), the Fourier coefficients of f are

ln(f) = f̂(n) =
1

2π

∫ 2π

0
f(eiθ)e−inθdθ, n ∈ Z,

where Z denotes the set of all integers. For 1 ≤ p < ∞, the Hardy space
of T, denoted by Hp(T), is the subspace of Lp(T) consisting of functions f
with ln(f) = 0 for all negative integers n. Let L∞(T) be the space of es-
sentially bounded measurable functions on T with the essential supremum
norm. Given f ∈ L1(T), the harmonic extension of f to D is denoted by
f̂(z). The function f ∈ Hp(D) if f(z) is an analytic function on D with

sup
r<1

{
1

2π

∫ 2π

0
|f(reiθ)|pdθ

}
< +∞. Fatou’s theorem [7] implies that if f ∈

Hp(D) then the limit f(eiθ) = lim
r→1−

f(reiθ) exists for almost every θ (with re-

spect to dθ) and f(eiθ) ∈ Hp(T) and the harmonic extension of f(eiθ) to D is
precisely f(z). It is also not so important to distinguish [17] between Hp(D)
and Hp(T).
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Let φ ∈ L∞(T) and
(
H2(T)

)⊥
= L2(T)⊖H2(T), the orthogonal comple-

ment of H2(T) in L2(T). The Hankel operator with symbol φ, denoted by Hφ,

is the operator from H2(T) into
(
H2(T)

)⊥
defined by Hφf = (I − P+)(φf).

Here (I −P+) is the orthogonal projection from L2(T) onto
(
H2(T)

)⊥
. Define

other two operators Sφ and Γφ from H2(T) into itself by Sφf = P+J+(φf)
and Γφf = P+(φJ+f), where J+ is a map from L2(T) into L2(T) defined as
J+f(e

it) = f(e−it).
The matrix of Hφ with respect to the standard orthonormal basis of

H2(T) and
(
H2(T)

)⊥
is given by

〈
Hφz

j , z−(i+1)
〉

= φ̂(−(i + j + 1)), the
(i + j + 1)th negative Fourier coefficient of φ, i, j = 0, 1, 2, · · · . The matri-
ces of Hφ, Szφ and ΓJ+(zφ) are same with respect to the standard orthonormal

bases of H2(T) and
(
H2(T)

)⊥
. For the above reasons, all these three operators

Hφ, Sφ and Γφ are referred to as Hankel operators [14] in the literature.
Let D = {z ∈ C : |z| < 1} be the open unit disk in the complex plane C

and dA(z) = 1
πdxdy be the Lebesgue area measure on D, normalized so that

the area measure of D is equal to 1. Let L2(D,dA) be the Hilbert space of
complex-valued, absolutely square integrable, Lebesgue measurable functions
f on D with the inner product

⟨f, g⟩ =
∫
f(z)g(z)dA(z).

The Bergman space L2
a(D) is the space of all analytic functions on D that are in

L2(D, dA). The space L2
a(D) is a closed subspace [4] of L2(D,dA) and hence,

there exists an orthogonal projection P from L2(D,dA) onto L2
a(D). Since

point evaluation at z ∈ D is a bounded linear functional on the Hilbert space
L2
a(D), the Riesz representation theorem implies that there exists a unique

function Kz in L2
a(D) such that

f(z) =

∫
D
f(w)Kz(w)dA(w),

for all f in L2
a(D). Let K(z, w) be the function on D×D defined by K(z, w) =

Kz(w). The function K(z, w) is called the Bergman kernel [17] of D or the
reproducing kernel of L2

a(D) andK(z, w) = 1
(1−zw̄)2 , for z, w ∈ D. The sequence

of functions {en(z)} = {
√

(n+ 1)zn}∞n=0 forms an orthonormal basis [17] for
L2
a(D).

Let L∞(D,dA) denote the Banach space of Lebesgue measurable func-
tions f on D with ∥f∥∞ = ess sup{|f(z)| : z ∈ D} < ∞. The space of all
bounded analytic functions on D will be denoted by H∞(D). For ϕ ∈ L∞(D),
the Toeplitz operator Tϕ on L2

a(D) is defined by Tϕf = P (ϕf), f ∈ L2
a(D). The

operator Tz is called the Bergman shift operator. The big Hankel operator Hϕ
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is a mapping from L2
a(D) into (L2

a(D))⊥ defined by Hϕf = (I − P )(ϕf), f ∈
L2
a(D). The function ϕ is called the symbol of the Hankel operator Hϕ. The lit-

tle Hankel operator hϕ from L2
a(D) into L2

a(D) = {f̄ : f ∈ L2
a(D)} is defined by

hϕ = P̄ (ϕf), f ∈ L2
a(D) where P̄ is the projection from L2(D, dA) onto L2

a(D).
There are also many equivalent ways of defining little Hankel operators. For ex-
ample, one can define the map Sϕ from L2

a(D) into L2
a(D) by Sϕf = P (J(ϕf)),

where J is the mapping from L2(D) into L2(D) defined by J(h(z)) = h(z̄).
The map J is unitary and it is not difficult to see that hϕ = JSϕ. Let Γϕ be
the mapping from L2

a(D) into L2
a(D) defined by Γϕf = P (ϕJf). It is also not

difficult to verify that ΓJϕ = Sϕ. Thus the little Hankel operator hϕ is unitarily
equivalent to the operator Sψ for some ψ ∈ L∞(D) and hϕ is unitarily equiv-
alent to the operator Γθ for some θ ∈ L∞(D). Hence, we shall refer all these
operators hϕ, Sϕ and Γϕ in the sequel as little Hankel operators on L2

a(D).
On the Hardy space of the disk, there is essentially one type of Hankel

operators. In the Bergman space setting, there are two very different notions
of Hankel operators, the big and little Hankel operators. The big Hankel
operator Hϕ maps into (L2

a(D))⊥, while hϕ maps into the much smaller space

L2
a(D). The orthogonal complement of H2(T) in L2(T) differs by only one

dimension from H2(T) = {f̄ : f ∈ H2(T)}, whereas in the Bergman space
setting, (L2

a(D))⊥ = L2(D,dA) ⊖ L2
a(D) is much bigger than L2

a(D). On the
Hardy space of the disk, some of the results on Hankel operators [14], [15]
were obtained by examining the corresponding Hankel matrices, with respect
to the standard orthonormal basis on H2(T). On the Bergman space L2

a(D),
the Hankel operators do not have nice matrices. However, there are many
similarities between the theory of little Hankel operators on the Bergman space
and the theory of Hankel operators on the Hardy space.

Let E be the unilateral shift on H2(T). A necessary and sufficient con-
dition for an operator H ∈ L(H2(T)) to be a Hankel operator ([14], [15]) is
that E∗H = HE. Hence, the kernel of a Hankel operator on the Hardy space
is an invariant subspace of the unilateral shift on H2(T) and it was shown by
Kronecker [15] that the finite rank Hankel operators have symbols of the form
zūh where u is a finite Blaschke product and h ∈ H∞(T). In this case, the rank
of H is no greater than the number of zeroes of u (counted with multiplicity).
Furthermore, the kernel of a Hankel operator is nonempty if the symbol is of
the form zūh where u is inner and h ∈ H∞(T).

Little Hankel operators on the Bergman space behave more like Hankel
operators on the Hardy space. It was shown by N. S. Faour [8] that if Tz is
the Bergman shift operator then an operator S from L2

a(D) into itself is a little
Hankel operator if and only if T ∗

z S = STz. Thus the kernel of a little Hankel
operator on the Bergman space is an invariant subspace of the Bergman shift
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operator. It was shown in [5] that if Sϕ is a finite rank little Hankel operator on
L2
a(D) then kerSϕ = ΘL2

a(D) for some inner function [11] Θ ∈ L2
a(D) such that

the following conditions hold: (i) Θ vanishes on a= {aj}Nj=1, a finite sequence
of points in D. (ii) ∥Θ∥L2 = 1. (iii) Θ is equal to a constant plus a linear
combination of the Bergman kernel functions K(z, a1),K(z, a2), · · · ,K(z, an)
and certain of their derivatives. Further, if Sϕ is finite rank then rankSϕ =
number of zeroes of Θ counting multiplicities. Moreover, it is easy to check
that Sϕ = 0 if and only if ϕ ∈ (L2

a)
⊥ and if ψ is in L∞(D) and Sψ is a finite rank

little Hankel operator on L2
a(D) then ψ = ϕ+χ where χ ∈ (L2

a)
⊥ ∩L∞(D) and

ϕ̄ is a linear combination of the Bergman kernels and some of their derivatives.
Thus the little Hankel operator on the Bergman space does share some features
with the Hankel operators on the Hardy space.

It is well known [17], that the Hankel operator Hϕ̄, ϕ ∈ H2(T) is bounded
if and only if ϕ ∈ BMOA = P+L

∞(T) and Hϕ̄ is compact if and only if
ϕ ∈ VMOA = P+C(T). If ϕ is analytic in D, then the little Hankel operator
hϕ̄ defined on L2

a(D) is bounded if and only if ϕ ∈ B = PL∞(D), the Bloch
space. Similarly, if ϕ is analytic in D, then the little Hankel operator hϕ̄ defined

on L2
a(D) is compact if and only if ϕ ∈ B0 = PC(D), the little Bloch space.

There exists a best compact approximant to a Hankel operator on the Hardy
space [14],[15] which is also a Hankel operator. In [9], Ghatage has shown that
given ϕ belonging the Bloch space B, there exists ϕ0 belonging to the little
Bloch space B0, such that ∥Sϕ̄∥e = ∥Sϕ̄ − Sϕ̄0∥. Thus, a bounded little Hankel
operator on the Bergman space always has a best compact approximant that
is also a little Hankel operator on the Bergman space. For details, see [9]. In
this paper, we obtain necessary and sufficient conditions for the existence of
a nontrivial unitary part of little Hankel operators defined on the Bergman
space L2

a(D) with symbol φ ∈ H∞(D) that are contractions. We also present
an explicit description of this unitary part. This extends the results of Butz
[2] for Hankel operators defined on the Hardy space.

Let L(H,K) be the set of all bounded linear operators from the Hilbert
space H into the Hilbert space K and let L(H) = L(H,H).

Definition 1.1. A maximizing vector for T ∈ L(H,K) is a nonzero vector
x ∈ H such that ∥Tx∥ = ∥T∥∥x∥.

Thus a maximizing vector for T is one at which T attains its norm.
Compact operators on Hilbert spaces do have maximizing vectors.

Definition 1.2. An operator R ∈ L(H) is called a contraction if ∥R∥ ≤ 1.
A contraction R ∈ L(H) is completely non-unitary if R has no nontrivial
reducing subspace M such that the restriction of R to M is unitary.
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It is known [16] that for any contraction R on H, we can find a unique
orthogonal decomposition H = G

⊕
K such that R

∣∣
G

is unitary and R
∣∣
K

is
completely non-unitary. We also include the possibility that either G or K
may be the subspace {0}. The subspace G is given by G = {f ∈ H : ∥Rnf∥ =
∥f∥ = ∥R∗nf∥, n = 1, 2, . . . } and is called the unitary subspace of R. The
operator R

∣∣
G
(the restriction of R to G) is called the unitary part of R.

In 1972, Goor [10] established that if Tψ is a Toeplitz operator defined
on the Hardy space H2(T) with symbol ψ ∈ L∞(T), and ∥Tψ∥ ≤ 1, then Tψ
is completely non-unitary unless ψ is a constant. In 1977, Butz [2], using the
result of Goor obtained necessary and sufficient conditions for the existence of
a nontrivial unitary part of a Hankel contraction. In this paper, we extend
the result of Butz [2] and obtained necessary and sufficient conditions for the
existence of a nontrivial unitary part of a little Hankel operator defined on the
Bergman space which is also a contraction.

The organizations of this paper is as follows: In Section 2, we derive
certain elementary properties of little Hankel operators Γφ, φ ∈ H∞(D). We

show that ∥Γφ∥ = distL∞(D)(φ, z̄H∞(D)). In Section 3, we find conditions on
Γφ that guarantees it has a nontrivial unitary subspace G and discuss where
such result finds its use in the form of few corollaries. Finally, we end up with
a section which first concludes the article and then provides a discussion which
may lead to several new problems in this area.

2. PRELIMINARIES

In this section, we show that if φ ∈ H∞(D), then
∥Γφ∥ = distL∞(D)(φ, z̄H∞(D))

and Γ∗
φ = Γϕ+ , where φ

+(z) = φ(z̄). Further, given φ ∈ H∞(D), there exists
a ψ ∈ L∞(D) such that Γφ = ΓJψ and ∥ψ∥∞ = ∥Γφ∥. The characterization of
bounded Hankel operator on the Hardy space is due to Nehari [12]. He showed
that a Hankel matrix corresponds to a bounded operator H ∈ L(H2(T)) if and
only if there exists a function φ in L∞(T) such that H = Sφ. Moreover, φ can
be chosen so that ∥Sφ∥ = ∥φ∥∞. In Theorem 2.4, we show that similar char-
acterization is also possible for little Hankel operators defined on the Bergman
space. To prove Theorem 2.4, we need to establish the results of Lemma 2.1
and Lemma 2.2 and Lemma 2.3.

Lemma 2.1. Let φ ∈ H∞(D). Then ∥Γφ∥ ≤ distL∞(D)(φ, z̄H∞(D)).

Proof. Notice that Γφ = 0 if φ ∈ z̄H∞(D). This can be verified as

follows: Let f ∈ L2
a(D) and φ ∈ z̄H∞(D). Then Γφf = P (φJf) = 0 since
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φJf ∈ L2
a(D). Now ∥Γφf∥ = ∥P (φJf)∥ ≤ ∥φ∥∞∥Jf∥ = ∥φ∥∞∥f∥ for f ∈

L2
a(D). Thus ∥Γφ∥ ≤ ∥φ∥∞. Further, since Γφf = Γφ−z̄ḡf for all g ∈ H∞(D),

hence ∥Γφ∥ = ∥Γφ−z̄ḡ∥ ≤ ∥φ − z̄ḡ∥∞ for all g ∈ H∞(D). It follows therefore

that ∥Γφ∥ ≤ distL∞(D)(φ, z̄H∞(D)).

Let {uk}∞k=1 be an orthonormal basis of a Hilbert space H. Let A ∈ L(H)
and assume A = (ajk)

∞
j,k=1 is the matrix representation of A with respect

to the orthonormal basis {uk}∞k=1. Put Auk = gk, k = 1, 2, 3, . . . . Since

ajk = ⟨Auk, uj⟩, j, k = 1, 2, 3, . . . , hence gk =

∞∑
j=1

ajkuj , k = 1, 2, 3, . . . and

∞∑
j=1

|ajk|2 < ∞, k = 1, 2, 3, . . . . Thus the kth column of A are the components

of the vector into which A maps the kth element of the basis. We shall use
this idea in proving the next lemma.

Lemma 2.2. Consider the infinite matrix R = [rij ]
∞
i,j=−∞ and let Rts be

the sub matrix of R given by Rts = [rij ]
∞
i=t,j=s where t, s ∈ Z. If Rts defines a

contraction on l2 for all t, s ∈ Z then R defines a contraction on l2(Z).

Proof. Let D be the matrix of a contraction on l2(Z). Then any column
of D consists of the components of the image of a basis vector and so is an l2

sequence of norm less than or equal to 1. Similarly, every row of D (applying
this idea to D∗) is an l2 sequence of norm less than or equal to 1. Let D = Rts.

Then

∞∑
j=s

|rtj |2 ≤ 1 for all t, s ∈ Z. Hence
∞∑

j=−∞
|rtj |2 ≤ 1, t ∈ Z. Thus

if z = (zn)
∞
n=−∞ ∈ l2(Z), then the series yt =

∞∑
j=−∞

rtjzj converges. Let

Rz = y = (yt)
∞
t=−∞. Suppose ∥z∥ = 1 in l2(Z). Then zs = (zs, zs+1, zs+2, . . . )

has norm at most 1 in l2, and so ∥Rtszs∥ ≤ 1. That is,

∞∑
i=t

|
∞∑
j=s

rijzj |2 ≤ 1.

Letting s → −∞, we obtain
∑∞

i=t |yi|2 ≤ 1, t ∈ Z, and then letting t → −∞,
we obtain

∑∞
i=−∞ |yi|2 ≤ 1. Hence y ∈ l2(Z) and ∥y∥ ≤ 1 and R defines a

contraction on l2(Z).

Let Lϕ̃ denotes an operator in L(L2
a(D)) with a classical Toeplitz matrix

with respect to the standard orthonormal basis of L2
a(D) with symbol ϕ̃ in

L∞(T), i.e., ⟨L
ϕ̃
ej , ei⟩ =

̂̃
ϕ(i− j) where

̂̃
ϕ(k) is the kth Fourier coefficient of ϕ̃.

Similarly, Bϕ̃ denotes an operator in L(L2
a(D)) with a classical Hankel matrix
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with respect to the standard orthonormal basis of L2
a(D) with symbol ϕ̃ in

L∞(T), i.e., ⟨Bϕ̃ej , ei⟩ =
̂̃
ϕ(i+ j) where

ˆ̃
ϕ(k) is the kth Fourier coefficient of ϕ̃.

It is important to note that if ϕ̃ and ψ̃ belong to L∞(T) then L
ϕ̃ψ

= Bϕ̃+Bψ̃ +

Lϕ̃Lψ̃ and B
ϕ̃ψ

= Lϕ̃+Bψ̃ + Bϕ̃Lψ̃ where ϕ̃+(z) = ϕ̃(z̄). Moreover, if ϕ =∑∞
k=0 ϕ̂(k)z

k belongs to L∞(D) then ϕ̃ will denote the function
∑∞

k=0 ϕ̂(k)e
ikθ

in L∞(T).
Notice also that if ϕ ∈ H∞(D) then Tϕ = D1Lϕ̃D2 where D1 is the

operator on L2
a(D) given byD1ej =

1√
j+1

ej andD2 the operator on L
2
a(D) given

by D2ej =
√
j + 1ej . The operator D1 is bounded but D2 is an unbounded

operator and D2D1 = I, the identity operator. Similarly if ϕ ∈ H∞(D) then
Tϕ = D2Lϕ̃D1. Let Sϕ be the little Hankel operator on L2

a(D). If ϕ ∈ H∞(D)
then Sϕ = 0. Now consider the operator W : L2

a(D) −→ L2
a(D) such that

Wej = ej+1, j ≥ 0. It can easily be checked that (D1WD2)
n = D1W

nD2 and
∥D1W

nD2∥ = 1. Similarly, one can also check that

∥D1W
∗nD2∥ = ∥(D1W

∗D2)
n∥ =

√
n+ 1.

Let R : L2
a(D) −→ L2

a(D) such that Rf(z) = f(z)−f(0)
z . Let S = Tz, the

Bergman shift operator. It is to be noted that RS = I,R = D1W
∗D2 and

S = D1WD2. Further observe that R = Tz̄+K where K is a compact operator
on L2

a(D).

Lemma 2.3. If φ ∈ L∞(D), then the following hold:

(i) Γ∗
φ = Γϕ+, where φ

+(z) = φ(z̄).

(ii) If ϕ ∈ H∞(D), then Sϕ = D2Bψ̃D2 where ψ̃(eiθ) =
∑∞

k=0
1

k+1 ϕ̂(−k)e
−ikθ

i.e., ψ̃ is the convolution on the circle of ϕ̃ =
∑∞

k=0 ϕ̂(−k)e−ikθ with the
function ϕ̃1 =

∑∞
k=0

1
k+1e

−ikθ.

Proof. Let f, g ∈ L2
a(D). Then

⟨Γ∗
φf, g⟩ = ⟨f,Γφg⟩ = ⟨f, P (φJg)⟩ = ⟨f, φJg⟩ =

∫
D
f(z)φ(z)(Jg)(z)dA(z)

=

∫
D
f(z̄)φ+(z)g(z)dA(z) =

∫
D
(Jf)(z)φ+(z)g(z)dA(z)

= ⟨P (φ+Jf), g⟩ = ⟨Γφ+f, g⟩.

Hence Γ∗
φ = Γϕ+ for φ ∈ L∞(D). The proof of (i) follows.

If ϕ ∈ H∞(D), then with respect to the basis {zn
√
n+ 1, n ≥ 0}, the

matrix of Sϕ ∈ L(L2
a(D)) is (mijai+j) where (ai+j) is the matrix of Hϕ ∈
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L(H2) with respect to the basis {einθ, n ≥ 0} and mij =
√
i+1

√
j+1

i+j+1 . This

brings us to the map Φ which sends bounded Hankel operators on H2 into
bounded Bergman little Hankel operators on L2

a(D) via Schur multiplication
defined by Φ(A) = (mijaij) where A = (aij) with respect to the standard basis
{einθ, n ≥ 0} of H2 and mij is the multiplier defined above. If A = (aij), then
Φ(A) = (mijaij) withmij > 0 for all i, j. The operators Sϕ andD2Bψ̃D2 belong

to L(L2
a(D)). The proof of (ii) follows since the matrices of these operators with

respect to the standard orthonormal basis for L2
a(D) are same where

ψ̃(eiθ) =
∞∑
k=0

1

k + 1
ϕ̂(−k)e−ikθ(2.1)

i.e., ψ̃ is the convolution on the circle of ϕ̃ =
∑∞

k=0 ϕ̂(−k)e−ikθ with the function
ϕ̃1 =

∑∞
k=0

1
k+1e

−ikθ.

Theorem 2.4. Let φ ∈ H∞(D). Then ∥Γφ∥ = distL∞(D)(φ, z̄H∞(D)).

Further, there exists ψ ∈ L∞(D) such that Γφ = ΓJψ and ∥ψ∥∞ = ∥Γφ∥.

Proof. From Lemma 2.1, it follows that ∥Γφ∥ ≤ distL∞(D)(φ, z̄H∞(D)).
We shall prove the opposite inequality. Without loss of generality, we shall
assume ∥Γφ∥ = 1. This is so, because we may replace φ by λφ for some
suitable scalar λ. Now from Lemma 2.3, it follows that Γφf = P (φJf) =
PJ((Jφ)f) = SJφf and SJφ = D2BJ̃φ∗φ̃1

D2 where D2ej =
√
j + 1ej , j =

0, 1, 2, . . . and Ξ̃ = J̃φ ∗ φ̃1 is the convolution on the circle of J̃φ with φ̃1,
where φ̃1(e

iθ) =
∑∞

k=0
1

k+1e
−ikθ and B

Ξ̃
is the operator in L(L2

a(D)) having a

classical Hankel matrix with symbol Ξ̃ ∈ L∞(T).
Let

̂̃
Jφ(−n) = a−n, n ∈ Z+. Let

H0 =


a0 a−1 a−2 . . .
a−1 a−2 a−3 . . .
a−2 a−3 a−4 . . .
. . . . . . . . . . . .


be the matrix of SH

2

J̃φ
(Hankel operator defined on H2(T) with symbol J̃φ) with

respect to the orthonormal basis { eint√
2π
}∞n=0 of H2(T) and it has norm 1 as an

operator on l2. Construct a1, a2, · · · ∈ C inductively as follows. Suppose that
aj , 1 ≤ j < k are such that the infinite Hankel matrix

Hk =

 ak ak−1 ak−2 · · · a1 a0 a−1 · · ·
ak−1 ak−2 ak−3 · · · a0 a−1 a−2 · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·


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is a contraction, k ∈ N
⋃
{0}. Notice that this is so when k = 0. We shall adjoin

a new first column so as to preserve the Hankel structure and the property of
being a contraction. The Hankel pattern fixes all the entries of the new first
column except its first entry, which is to be adjusted.

Let

Hk(p) =

 p ak ak−1 ak−2 · · ·
ak ak−1 ak−2 ak−3 · · ·
. . . . . . . . . . . . . . .

 =

[
p Q
R S

]
,

where Q,R and S are suitable matrices of types 1 × ∞,∞ × 1 and ∞ × ∞,

respectively. Further, we have
[
R S

]
= Hk =

[
Q
S

]
, and Hk is a contraction,

by the inductive hypothesis. Using Parrott’s theorem [13], we guarantee the
existence of an element p ∈ C such that Hk(p) is a contraction. Let ak+1 = p.
NowHk+1 = Hk(ak+1) and is a contraction. By induction the sequence (ak)

∞
k=1

has the property that ∥Hk∥ ≤ 1 for all k ≥ 1. Consider the infinite Hankel
matrix R = (a−i−j+1)

∞
i,j=−∞. Let

Rts =

a−t−s+1 a−t−s · · ·
a−t−s a−t−s−1 · · ·
. . . . . . . . .


which is either H−t−s+1 or (if t + s > 1) a submatrix of H0. In either case
it is a contraction, and so R is itself a contraction by Lemma 2.2. From [1],

the function ψ with Fourier series ψ̃(t) =

∞∑
n=−∞

ane
int belongs to L∞(T) and

satisfies ∥ψ̃∥ = ∥R∥ ≤ 1. Let eiθg(eiθ) = J̃φ − ψ̃. Since J̃φ and ψ̃ have the
same non-positive Fourier coefficients a−n, n ≥ 0, hence eiθg(eiθ) ∈ eiθH∞(T).
Let zg, Jφ, ψ be the harmonic extensions of eiθg(eiθ), J̃φ and ψ̃, respectively.
Then zg = Jφ− ψ ∈ zH∞(D). Hence

J(zg) ∈ z̄H∞(D)

and
0 = ΓJ(zg) = Szg = SJφ − Sψ = Γφ − ΓJψ.

Thus Γφ = ΓJψ and

∥Γφ∥ ≤ distL∞(D)(φ, z̄H∞(D)) ≤ ∥φ− J(zg)∥∞ = ∥Jψ∥∞ = ∥ψ∥∞ ≤ 1

= ∥Γφ∥.

This proves that ∥Γφ∥ = distL∞(D)(φ, z̄H∞(D)).
Further z̄ḡ ∈ z̄H∞(D), ΓJψ = Γφ−J(zg) = Γφ and

∥ψ∥∞ = ∥Jψ∥∞ = ∥φ− J(zg)∥∞ = ∥Jψ∥∞ ≤ distL∞(D)(φ, z̄H∞(D)).
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Hence ∥ψ∥∞ = ∥Jψ∥∞ = distL∞(D)(φ, z̄H∞(D)) = ∥Γφ∥.

Definition 2.5. Let φ ∈ H∞(D). If there exists ψ ∈ L∞(D) such that
Γφ = ΓJψ and ∥ψ∥∞ = ∥Γφ∥ then the function Jψ is called the minifunction
of Γφ.

3. BEST APPROXIMATION AND THE MINIFUNCTION OF Γφ

In this section, we show that if φ ∈ H∞(D) and Γφ has a maximizing

vector f , then there is a unique best approximation z̄ḡ ∈ z̄H∞(D) to φ in the

L∞(D) norm and J(zg) = φ− ΓJψf
f , where Jψ, ψ ∈ L∞(D) is the minifunction

of Γφ. Further, we find conditions on Γφ that guarantees it has a nontrivial
unitary subspace G and discussed the applications of these results in the form
of few corollaries. The techniques used in Theorem 3.1 and Theorem 3.2 is
similar to those used in the Hardy space case. For details, see Partington [14]
and Butz [2].

Theorem 3.1. Let φ ∈ H∞(D). Suppose Γφ has a maximizing vector f .

Then there is a unique best approximation z̄ḡ ∈ z̄H∞(D) to φ in the L∞(D)
norm such that ∥φ − z̄ḡ∥∞ = distL∞(D)(φ, z̄H∞(D)). Further, J(zg) = φ −
ΓJψf
f , where Jψ, ψ ∈ L∞(D) is the minifunction of Γφ.

Proof. Without loss of generality, assume ∥f∥ = 1. By Theorem 2.4,
there exists ψ ∈ L∞(D) such that Γφ = ΓJψ and ∥Γφ∥ = ∥ψ∥∞. Now

∥Γφ∥ = ∥Γφf∥ = ∥ΓJψf∥ = ∥P (JψJf)∥ = ∥P (J(ψf))∥ = ∥JPJ(ψf)∥
= ∥P̄ (ψf)∥ ≤ ∥ψf∥ ≤ ∥ψ∥∞∥f∥ = ∥ψ∥∞ = ∥Γφ∥.

Thus ∥P̄ (ψf)∥ = ∥JPJ(ψf)∥ = ∥ψf∥. But ψf = P̄ (ψf)+(I− P̄ )(ψf). Hence
∥ψf∥2 = ∥P̄ (ψf)∥2 + ∥(I − P̄ )(ψf)∥2. Therefore, ∥(I − P̄ )(ψf)∥ = 0. That is,
(I − P̄ )(ψf) = 0.

Thus we obtain ψf = P̄ (ψf) = hψf = JPJ(ψf) = JΓJψf = JΓφf for
all f ∈ L2

a(D), the domain of Γφ. Now f is non zero almost everywhere on D
as ∥f∥ = 1. Let ψ(z) =

(JΓJψf)(z)
f(z) almost everywhere. Let

J(zg) = φ− Jψ = φ−
ΓJψf

f
.

Since Γφ = ΓJψ, we obtain J(zg) ∈ z̄H∞(D) and ∥φ − J(zg)∥∞ = ∥Jψ∥∞ =

∥ψ∥∞ = ∥Γφ∥ = distL∞(D)(φ, z̄H∞(D)).
To prove the uniqueness, let h ∈ H∞(D) be such that

∥φ− J(zh)∥∞ = distL∞(D)(φ, z̄H∞(D)).
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Let Jψ = φ− J(zh). Then Γφ = ΓJψ and ∥ψ∥∞ = ∥Jψ∥∞ = ∥Γφ∥. Then we

proceed as before to show that ψ(z) =
(JΓJψf)(z)

f(z) .

Theorem 3.2. Let φ ∈ H∞(D) and Γφ be the little Hankel operator
defined on the Bergman space with symbol φ. Then Γφ will have a non trivial
unitary subspace G only when there exists a minifunction ψ(z) for Γφ such that

(i) |ψ(z)| = 1 a.e on D.

(ii) ψ(z)Jψ(z) = c2 a.e. for some constant c of modulus 1. In this case, the
minifunction ψ is unique and G is given by the following three equivalent
expressions.

(iii) G =
(
zψL2

a(D)
)⊥ ∩ L2

a(D) where
(
zψL2

a(D)
)⊥

is the orthogonal comple-
ment of zψL2

a(D) with respect to L2(D, dA).

(iv) G =
{
f ∈ L2

a(D) : Γ∗
φΓφf = f

}
.

(v) G =
{
f ∈ L2

a(D) : c̄Γφf = f
}⊕{

f ∈ L2
a(D) : c̄Γφf = −f

}
.

Proof. Let φ ∈ H∞(D). Then by Theorem 2.4, there exists ψ1 ∈ L∞(D)
such that Γφ = Γψ1 and ∥ψ1∥∞ = ∥Γφ∥ = ∥Γψ1∥. Then ∥Γψ1∥ = ∥Γφ∥ ≤ 1
and suppose Γφ = Γψ1 has a nontrivial unitary subspace. By Lemma 2.3, it
follows that there exists f ̸= 0 in L2

a(D) such that ∥Γnψ1
f∥ = ∥f∥ = ∥Γn

ψ+
1

f∥ for

n = 1, 2, . . . . If n = 1, this gives that

∥f∥ = ∥Γψ1f∥ = ∥P (ψ1Jf)∥ ≤ ∥ψ1Jf∥ ≤ ∥ψ1∥∞∥Jf∥ = ∥Jf∥ = ∥f∥.

Hence, we obtain P (ψ1Jf) = ψ1Jf and therefore Γψ1f = ψ1Jf ∈ L2
a(D).

It follows from Theorem 3.1, that the minifunction ψ1 is unique. Now since
∥ψ1Jf∥ = ∥Jf∥, we obtain∫

D
|ψ1(z)|2|Jf(z)|2dA(z) =

∫
D
|Jf(z)|2dA(z).

Hence

∫
D
(|ψ1(z)|2 − 1)|Jf(z)|2dA(z) = 0. This implies |ψ1(z)| = 1 a.e on D.

This establishes (i).
Taking now n = 2, we obtain

∥f∥ = ∥Γ2
ψ1
f∥ = ∥Γψ1(ψ1Jf)∥ ≤ ∥ψ1(Jψ1)f∥ ≤ ∥ψ1∥∞∥Jψ1∥∞∥f∥ ≤ ∥f∥

and therefore Γ2
ψ1
f = ψ1(Jψ1)f = Tθf where θ = ψ1(Jψ1). Proceeding simi-

larly, we obtain

Γ2n+1
ψ1

f = ψn+1
1 (Jψn1 )Jf, n = 0, 1, 2, . . . .(3.1)
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and

Γ2n
ψ1
f = [ψ1Jψ1]

nf, n = 1, 2, 3, . . . .(3.2)

Similarly, we can also verify that Γ2n
ψ+
1

f = [ψ+
1 Jψ

+
1 ]
nf, n = 1, 2, 3, . . . where

ψ+
1 (z) = ψ1(z̄) = Jψ1(z). Thus

Γ2
ψ+
1
f = [ψ+

1 Jψ
+
1 ]f = Tψ+

1 ψ1
f = Tψ1Jψ1

f = T ∗
θ f.

Thus the Toeplitz operator Tθ has a nontrivial unitary part. Therefore, it
follows from [6] that (ψ1Jψ1)(z) = c2 a.e. on D for some constant c ∈ C, |c| =
1. Hence c̄ψ1(z) = cψ+

1 (z), z ∈ D. Formulas (3.1) and (3.2) now reduce to

Γ2n+1
ψ1

f = c2nΓψ1f, n = 0, 1, 2, . . . .

Γ2n
ψ1
f = c2nf, n = 1, 2, 3, . . . .

valid for all f in the unitary subspace of Γψ1 . Similar expressions can be
obtained for Γ2n+1

ψ+
1

f and Γ2n
ψ+
1

f . The maximal subspace on which Γφ is unitary

now becomes

G =
{
f ∈ L2

a(D) : ∥Γφf∥ = ∥f∥
}
=

{
f ∈ L2

a(D) : ∥Γψ1f∥ = ∥f∥
}

=
{
f ∈ L2

a(D) : Γ∗
ψ1
Γψ1f = f

}
=

{
f ∈ L2

a(D) : Γ∗
φΓφf = f

}
which establishes (iv).

Again we have f ∈ G if and only if ψ1Jf ∈ L2
a(D) if and only if (Jψ1)f ⊥

zL2
a(D) if and only if f ∈ (zψ+

1 L
2
a(D))⊥ ∩ L2

a(D) (the orthogonal complement
of (zψ+

1 L
2
a(D)) with respect to L2(D, dA)). Now f ∈ (zψ+

1 L
2
a(D))⊥ ∩ L2

a(D) if
and only if f ∈ (zψ1L

2
a(D))⊥∩L2

a(D) (the orthogonal complement with respect
to L2(D,dA)), since Jψ1 = c2ψ1. This establishes (iii). Finally, since |c| = 1,
we have (c̄Γψ1)

∗ = c̄Γψ1 . Hence c̄Γψ1 is self-adjoint with ∥c̄Γψ1∥ = 1. This
establishes (v) and the proof is complete.

Let Ω be a bounded symmetric domain in C. We assume that Ω is in its
standard (Harish-Chandra) realization so that 0 ∈ Ω and Ω is circular. The
domain Ω is also starlike; i.e., z ∈ Ω implies that tz ∈ Ω for all t ∈ [0, 1]. Let
Aut(Ω) be the Lie group of all automorphisms (biholomorphic mappings) of
Ω, and G0 the isotropy subgroup at 0; i.e., G0 = {Ψ ∈ Aut(Ω) : Ψ(0) = 0}.
Since Ω is bounded symmetric, we can canonically define for each a in Ω an
automorphism ϕa in Aut(Ω) such that

(i) ϕa ◦ ϕa(z) ≡ z;

(ii) ϕa(0) = a, ϕa(a) = 0;

(iii) ϕa has a unique fixed point in Ω.
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Actually, the above three conditions completely characterize the ϕ′as as the set
of all (holomorphic) geodesic symmetries of Ω. When Ω = D, we have noted
that

ϕa(z) =
a− z

1− az
,

for all a and z in D. They are involutive Möbius transformations on D.
Let dA be the normalized Lebesgue measure on Ω. We consider the

Bergman space L2
a(Ω) of holomorphic functions in L2(Ω, dA). The reproducing

kernel K(z, w) of L2
a(Ω, dA) is holomorphic in z and anti-holomorphic in w,

and ∫
Ω
|K(z, w)|2dA(w) = K(z, z) > 0,

for all z in Ω. Thus we can define for each λ ∈ Ω a unit vector kλ in L2
a(Ω)

by kλ(z) = K(z,λ)√
K(λ,λ)

. For any Ψ ∈ Aut(Ω), we denote by JΨ(z) the complex

Jacobian determinant of the mapping Ψ : Ω → Ω. If a ∈ Ω, then there exists a
unimodular constant θ(a) such that

Jϕa(z) = θ(a)ka(z),

for all z ∈ Ω. In the simplest case Ω = D, we have ϕa(z) =
a−z
1−az and

Jϕa(z) = ϕ′a(z) = −ka(z),

thus θ(a) = −1 is independent of a.
The results of Theorem 3.1 and Theorem 3.2 can be extended to this

setting. We shall define little Hankel operator Γϕ on L2
a(Ω) with symbol ϕ in

L∞(Ω) and one can establish a version of Theorem 3.1 as the matrices of little
Hankels in this case also have special forms. With the same conditions cited
in Theorem 3.1, one can guarantee the existence of a minifunction. Further,
Theorem 3.2 will be valid, since in this case proceeding similarly one can show
that the Toeplitz operator Tθ = Tψ1Jψ1 defined on L2

a(Ω) has a nontrivial
unitary part and hence it follows from [6] that ψ1Jψ1 ≡ c2 a.e. on Ω for some
constant c ∈ C with |c| = 1 where ψ1 is the minifunction of Γϕ.

We shall now present a characterization of those little Hankel operators
Γφ, with φ ∈ H∞(D) such that it has a nontrivial unitary subspace.

Corollary 3.3. Let Γφ be a little Hankel operator on L2
a(D) with sym-

bol φ ∈ H∞(D). Suppose Γφ is a contraction. Then a necessary and sufficient
condition that Γφ have a nontrivial unitary subspace is that there exists a con-
stant c ∈ C, |c| = 1 such that c̄Γψ1 is self-adjoint where ψ1 is the minifunction
of Γφ and that

G =
{
f ∈ L2

a(D) : Γψ1f = cf
}⊕{

f ∈ L2
a(D) : Γψ1f = −cf

}
̸= {0}.

Proof. The corollary follows from Theorem 3.2.
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Using a result of [16] for completely nonunitary contractions, we can
define a functional calculus for functions v ∈ H∞(D).

Corollary 3.4. Let Γ be a little Hankel operator on L2
a(D) which is also

a contraction. If either ∥Γ∥ < 1 or cΓ is not real for all c ∈ C, then the map
v → v(Γ) from H∞(D) into L(L2

a(D)) defined by

v(Γ) = strong limr→1

∞∑
k=0

akr
kΓk

where v(z) =
∞∑
k=0

akz
k is a contractive homomorphism of the algebra H∞(D)

into L(L2
a(D)).

Proof. The result follows from [16] and Theorem 3.2.

Theorem 3.2 can be also be used to establish a property of the point
spectrum of a bounded little Hankel operator.

Corollary 3.5. Let Γφ be a bounded little Hankel operator on L2
a(D)

with symbol φ ∈ H∞(D). If µ = ∥Γφ∥ is an eigenvalue of Γφ, then Γφ is
self-adjoint. Hence, if αΓφ is not self-adjoint for any nonzero α ∈ C, then
|µ| < ∥Γφ∥ holds for all eigenvalue µ of Γφ (if any).

Proof. Without loss of generality, we shall assume ∥Γφ∥ = 1. This implies
G =

{
f ∈ L2

a(D) : Γφf = f
}
is a reducing subspace of Γφ (for example, see

[16]). If f ̸= 0 satisfies Γφf = f , then by the proof of Theorem 3.2, Γ∗
φ = ᾱΓφ

and Γ2
φf = αf for some α ∈ C, |α| = 1. But since Γ2

φf = f , we get α = 1, and
hence Γ∗

φ = ᾱΓφ = Γφ which shows that Γφ is self-adjoint.

4. CONCLUDING REMARKS

Butz [3] obtained characterization for the existence of a nontrivial unitary
part of a generalized Toeplitz operator acting on a Hilbert space with unilateral
shift. In this contest, it will be of interest to obtain characterizations for the
existence of a nontrivial unitary part of a Toeplitz operator defined on the
Bergman space over any bounded symmetric domain.
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