
SOME PROPERTIES OF {k}-PACKING FUNCTION PROBLEM IN
GRAPHS

JOZEF KRATICA, ALEKSANDAR SAVIĆ, and ZORAN MAKSIMOVIĆ*

Communicated by Ioan Tomescu

The recently introduced {k}-packing function problem is considered in this pa-
per. Relationship between cases when k = 1, k ≥ 2 and linear programming
relaxation are introduced with sufficient conditions for optimality. For arbitrary
simple connected graphG, we propose a construction procedure for finding values
of k for which L{k}(G) can be determined in the polynomial time. Additionally,
relationship between {1}-packing function and independent set number is estab-
lished. Optimal values for some special classes of graphs and general upper and
lower bounds are introduced, as well.

AMS 2020 Subject Classification: 05C69, 05C12.

Key words: {k}-packing function problem, independent set, dominating set, in-
teger linear programming.

1. INTRODUCTION

1.1. Problem definition

In this paper, we will consider simple, finite and undirected graphs. For a
given graph G, let V (G) and E(G) denote its vertex and edge sets, respectively.
For any v ∈ V (G), its open neighborhood NG(v) is the set of all vertices that
are adjacent to v, and its closed neighborhood is NG[v] = NG(v) ∪ {v}. For a
function f : V (G) → N∪{0}, and A ⊆ V (G) the sum

∑
v∈A

f(v) will be denoted

as f(A). Let |V (G)| = n and AG = [aij]n×n where

aij =

{
1, i = j ∨ (i, j) ∈ E(G)

0, otherwise.

For a graph G and a positive integer k, a function f : V (G) → N∪{0}, is
a {k}-packing function of graph G, if for each vertex v ∈ V (G) value f(NG[v])

*Corresponding author.

MATH. REPORTS 25(75) (2023), 2, 263–277

doi: 10.59277/mrar.2023.25.75.2.263

http://dx.doi.org/10.59277/mrar.2023.25.75.2.263

264 J. Kratica, A. Savić, and Z. Maksimović 2

is at most k. The maximum possible value of f(V (G)) over all {k}-packing
functions of graph G is denoted as L{k}(G). Formally,

L{k}(G) = max
f :V (G)→N∪{0}

{f(V (G))|(∀v ∈ V (G))f(NG[v]) ≤ k}.

For a given graph G and k ∈ N, a set of vertices B ⊆ V (G) is called a
k-limited packing in G if for all v ∈ V (G) it holds that |N [v] ∩ B| ≤ k. The
maximum size of k-limited packing of a graph G is denoted with Lk(G).

The distance between vertices u and v, denoted as dG(u, v) is the length
of the shortest u − v path. The square of a graph G, named G2, is the graph
obtained from G by adding all edges between vertices from V (G) that have
a common neighbor, i.e. G2 = (V (G), E(G2)), where E(G2) = {(u, v) ∈
V (G) × V (G) | dG(u, v) ≤ 2}. The complement of a graph G, named G, is
defined as G = (V (G), E(G)), where E(G) = {(u, v) ∈ V (G) × V (G) |u ̸=
v ∧ (u, v) /∈ E(G)}. The independent set I(G) of a graph is a subset of V (G),
such that there are no edges between them, i.e. (u, v ∈ I(G) ⇒ (u, v) /∈ E(G)).
The independence number of a graph, named α(G) is the cardinality of a
maximal independent set I(G).

1.2. Previous work

For k being fixed positive integer, Meir and Moon [12] introduced k-
packing set P ⊂ V (G) as a set of vertices such that the distance between u
and v is greater than k for distinct u, v ∈ P , and k-packing number (ρk(G)) as
the number of vertices of such largest set. It stands that ρ1(G) = α(G) is the
independence number.

Gallant et al. in [7] introduced k-limited packing as a modification of
packing number problem allowing that intersection of each closed neighborhood
with a given set contains no more than k vertices. In [2, 3] Dobson et al. proved
that k-limited packing is NP-complete for split and bipartite graphs. It was
also shown that the problem (in the case when the input is a P4 tidy graph) is
solvable in polynomial time.

1.3. Preliminaries and useful results

The notion of {k}-packing function was introduced by Leoni and Hinrich-
sen [11] as a variation of k-limited packing in order to solve the problem of locat-
ing garbage dumps in a given city. In this scenario, it is possible to place more
than one dump in a certain location, requesting that no more than k dumps are
placed in each vertex and its neighborhood. Relationship between k-limited

3 {k}-packing function problem 265

packing and {k}-packing function stating that L{k}(G) ≥ Lk(G) is established
in [10]. Additionally, in [11], it is shown that L{k}(G) = Lk(G ⊗Kk) (⊗ is a
strong product of graphs). Therefore, when k = 1 it holds L{1}(G) = L1(G).

Three other useful propositions and one theorem are given bellow.

Proposition 1. ([4]) For a graph G and a positive integer k it holds
L{k}(G) ≥ k · L1(G)

Proposition 2. ([13]) For any connected graph G and integer k ∈ {1, 2}
Lk(G) ≥ ⌈k·diam(G)+k

3 ⌉

Proposition 3. ([7, 5, 4]) For path Pn holds L{k}(Pn) = ⌈n3 ⌉ · k.

The proposition directly holds from the facts that L1(Pn) = ⌈n3 ⌉ ([7]),
γ(Pn) = ⌈n3 ⌉ ([5]) and γ(G) = L1(G) ⇒ L{k}(Pn) = k · L1(Pn) ([4]).

Theorem 1. [4] The {k}-packing function problem is NP-complete for
all integer k fixed.

The polynomial equivalence between {k}-packing function problem and
k-limited packing in graphs is discussed in [10].

2. NEW PROPERTIES OF {k}-PACKING FUNCTION
PROBLEM

2.1. Relationship between {k}-packing and {1}-packing

In this section, we establish relationship between {k}-packing, {1}-packing
problem and relaxation of {1}-packing, as well as some properties of {k}-
packing function problem for certain classes of graphs. Without loss of gen-
erality, we assume that considered graphs are connected and have at least
two vertices. This is because if the graph is not connected, we can consider
connected components instead, using the following simple property.

Property 1. If G is not connected and has connected components

Con1(G), Con2(G), . . .Connc(G) then L{k}(G) =
nc∑
i=1

L{k}(Coni(G)).

Proof. Let v ∈ V be an arbitrary vertex from a connected component
Conj(G). Since v ∈ Conj(G) ⇒ N [v] ⊆ Conj(G), then all constraints f(NG[v]) ≤
k can be grouped by connected components and considered independently.

Let Z∗
rlx(G) be an optimal solution of the relaxed {1}-packing problem.

Relaxation is performed by

Z∗
rlx(G) = max

f :V (G)→[0,+∞)
{f(V (G))|(∀v ∈ V (G))f(NG[v]) ≤ 1},

266 J. Kratica, A. Savić, and Z. Maksimović 4

i.e. relaxed packing function can take fractional (real) values.
Now we can formulate relationship among L{k}(G), L{1}(G) and Z∗

rlx(G).

Proposition 4. For arbitrary k ∈ N it stands that

k · L{1}(G) ≤ L{k}(G) ≤ k · Z∗
rlx(G).

Proof. It should be noted that L{k}(G) ≥ k ·L{1}(G) directly follows from
Proposition 1 and the fact that L{1}(G) = L1(G).

Let frlx : V (G) → [0,+∞) be a relaxed {1}-packing function with maxi-
mum value of all such functions. As it stands that

(∀v ∈ V (G))frlx(NG[v]) ≤ 1 ⇒ k · frlx(NG[v]) ≤ k

and {k}-packing function has non negative integer values, then

L{k}(G) = max
h:V (G)→N∪{0}

{h(V (G))|(∀v ∈ V (G))h(NG[v]) ≤ k}

which is less than or equal to

k · max
f :V (G)→[0,+∞)

{f(V (G))|(∀v ∈ V (G))f(NG[v]) ≤ 1} = k · Z∗
rlx(G).

It is interesting to find when equalities hold, i.e. when k · L{1}(G) =
L{k}(G) or k · L{1}(G) = k · Z∗

rlx(G). Sufficient condition for both equalities
will be given in the following theorem.

Theorem 2. If AG is a totally unimodular matrix, then

L{k}(G) = k · L{1}(G) = k · Z∗
r (G).

Proof. Let G = (V,E) be a graph whose AG is a totally unimodular
matrix. Let us consider {k}-packing function problem. The problem can be
formulated as a following integer linear program. Let us denote the variables
xi, i = 1, . . . , |V | such that xi = f(i). Then, {k}-packing function problem can
be formulated as

(1) max

|V |∑
i=1

xi

subject to

(2)
∑

j∈NG[i]

xj ≤ k, i = 1, . . . , |V |

(3) xi ∈ {0, 1, . . . , k}, i = 1, . . . , |V |

5 {k}-packing function problem 267

It is easy to see that condition
∑

i∈NG[j]

xi ≤ k could be replaced with

|V |∑
j=1

aijxj ≤ k where aij are elements of matrix AG. Now, the formulation is

(4) max

|V |∑
i=1

xi

subject to

(5)

|V |∑
j=1

aijxj ≤ k, i = 1, . . . , |V |

(6) xi ∈ {0, 1, . . . , k}, i = 1, . . . , |V |.

Since this is Integer Linear Programming (ILP) formulation, it is natural
to consider its relaxation. Instead of integer constraint xi ∈ {1, . . . , k}, let
us consider non-negativity constraint xi ≥ 0. From the first constraint, it is
obvious that for every vertex i, xi ≤ k will hold. Let us now consider linear
programming formulation

(7) max

|V |∑
i=1

xi

subject to

(8)

|V |∑
j=1

aijxj ≤ k, i = 1, . . . , |V |

(9) xi ≥ 0, i = 1, . . . , |V |.

Note that this formulation for k = 1 is exactly Linear Programming (LP)
formulation of Z∗

rlx(G):

(10) max

|V |∑
i=1

xi

subject to

(11)

|V |∑
j=1

aijxj ≤ 1, i = 1, . . . , |V |

(12) xi ≥ 0, i = 1, . . . , |V |.

268 J. Kratica, A. Savić, and Z. Maksimović 6

Since at least one feasible solution of the formulation above exists, xi =
0, i = 1, . . . , |V |, and all variables have upper bound, an optimal solution also
exists. It is known from the theory of integer linear programming (Theorem
19.1 in [14]) that polyhedron X(b), defined as X(b) = {x|Ax ≥ b} for any
integer vector b, is an integer if and only if the matrix A is totally unimodular.
Since polyhedron of relaxation of our problem is X(b) = {x|AGx ≤ k · e|V |},
where e|V | = (1, . . . , 1)T is vector of ones and dimension equal to |V |, has
totally unimodular matrix AG, it can be concluded that all of polyhedron
nodes are integer. This means that all optimal solutions of the relaxation
problem are integer. As ILP and LP formulations differ only in the condition
of integrality, it can be concluded that optimal solutions of the relaxation and
ILP formulation are the same under the conditions of this theorem.

We have proved that L{1}(G) = Z∗
rlx(G). From Proposition 4 which states

that

k · L{1}(G) ≤ L{k}(G) ≤ k · Z∗
rlx(G)

and equality of the first and the third term directly holds

k · L{1}(G) = L{k}(G) = k · Z∗
rlx(G).

From the well-known fact that any LP problem has a polynomial com-
plexity, the following assertion holds.

Corollary 1. If AG is a totally unimodular matrix, then {k}-packing
function problem can be solved in polynomial time.

However, total unimodularity of matrix AG is not necessary condition for
k ·L{1}(G) = L{k}(G) = k ·Z∗

rlx(G) to hold, which is illustrated by the following
example.

Example 1. Let graph G be a claw graph with four vertices, i.e. G =
(V,E), where V = {1, 2, 3, 4} and E = {{1, 2}, {1, 3}, {1, 4}}. Matrix AG is
not totally unimodular since det(AG) = −2. Since N [1] = V (G), taking into
consideration L{1}(G), we have f(V (G)) = f(N [1]) ≤ 1. We can construct {1}-
packing function f where f(V (G)) = 1: f(1) = 1 and f(2) = f(3) = f(4) =
0. It is obvious that constructed function f is also maximum Z∗

rlx(G) of the
relaxation problem. From the previous facts, clearly L{1}(G) = Z∗

rlx(G) = 1.
Because of Proposition 4, it holds k · L{1}(G) = L{k}(G) = k · Z∗

rlx(G) = k.

The following example illustrates the case when k · L{1}(G) < L{k}(G).

Example 2. Let us consider graph G given in Figure 1.

7 {k}-packing function problem 269

1 3 5

2 4 6

Figure 1 – An example of a graph G where k · L{1}(G) < L{k}(G).

For graph G presented in Figure 1, 2 · L{1}(G) = 2 < L{2}(G) = 3 holds,
since values L{1}(G) = 1 and L{2}(G) = 3 are obtained by a total enumeration.
For k = 1, {1}-packing function with maximal value is defined as follows:
f1(1) = 1; f1(2) = f1(3) = f1(4) = f1(5) = f1(6) = 0. For k = 2, {2}-packing
function with maximal value is defined as follows: f2(2) = f2(3) = f2(6) = 1;
f2(1) = f2(4) = f2(5) = 0.

Next, we present an example where L{k}(G) < k · Z∗
R(G).

Example 3. Let graph G be defined by V (G) = {1, 2, . . . , 30} and adja-
cency matrix AG shown in Figure 2. For G presented in Figure 2, L{1}(G) =
1 < ⌊Z∗

rlx(G)⌋ = 2 holds. Values L{1}(G) = 1 can be obtained using ILP formu-

lation (4)-(6), while Z∗
rlx(G) = 7

3 can be obtained from relaxed LP formulation
(10)-(12). Values of function f which correspond to Z∗

rlx(G) are:

f(3) = f(4) = 1
7 ;

f(5) = f(6) = 2
21 ;

f(8) = f(13) = f(20) = f(24) = 4
21 ;

f(10) = f(16) = f(18) = 5
21 ;

f(19) = 1
21 and f(11) = 1

3 .

For any other vertex v, f(v) = 0.

2.2. Relationship between {k}-packing and relaxation of {1}-packing

In the sequel, we will prove that equality L{k}(G) = k ·Z∗
rlx(G) holds for

all graphs, but only for certain values of k.

Theorem 3. For an arbitrary graph G, (∃q ∈ N)(∀k1 ∈ N) L{k1·q}(G) =
k1 · q · Z∗

rlx(G).

Proof. For an arbitrary graph G, let (x∗1, . . . , x
∗
n) be an optimal solution

of linear programming formulation (10)-(12), with objective function value

270 J. Kratica, A. Savić, and Z. Maksimović 8

AG =

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 0
0 0 0 1 1 1 0 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 1 1 1 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 1 0 1 0 0 1 0
0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 1 0 1 0 0 0 1 1 1 0 1 1 0 0 0 1 1 1 0 0 0 1 0 1
0 1 0 0 0 0 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1
0 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 1 0 1 0 0 1 1
0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 1 0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 1 0 1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1
0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 0 0 0 1 0
0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1 1
0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 1 0 1 1 0 1 1 1
0 0 1 0 1 0 1 1 0 0 0 1 0 1 0 0 0 1 0 1 1 0 1 0 1 0 1 1 1 1
1 1 1 0 1 0 0 0 0 0 1 1 0 1 1 0 1 0 0 0 1 1 0 1 1 1 1 0 0 0
1 0 0 1 0 0 1 0 1 1 0 1 1 0 1 0 0 0 0 1 0 1 1 1 0 0 0 1 1 0
1 0 0 0 0 1 0 0 1 1 0 0 0 1 1 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1
1 1 0 1 0 0 0 0 1 0 0 1 0 1 0 1 1 1 0 1 0 1 1 1 1 0 0 1 1 0
1 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 1
1 1 0 0 1 1 0 0 1 0 1 1 0 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 1 1
0 1 1 0 1 0 1 0 0 0 0 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0 0 1 0 1
0 1 0 0 0 1 0 0 1 0 0 1 0 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1
0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 0 0 0 1 1 1 0
1 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 1 0 0 0 1 1 0 1 1 0 1 1 1
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1
1 0 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 0 1 0 1 1 1 0 1 1 1 1 0 1
0 0 0 0 1 1 1 0 0 0 0 0 1 0 1 1 1 0 0 1 0 1 1 1 1 0 1 1 1 0

Figure 2 – An example of a graph G where L{k}(G) < ⌊k · Z∗
rlx(G)⌋

Z∗
rlx(G). Since constraint matrix AG is an integer matrix and right-hand side

vector b = (1 1 . . . 1)T is also the integer vector, then each feasible solution must
be a vector with rational coordinates. Therefore, it also holds for optimal
solution, i.e. (∀i)(x∗i = pi

qi
where pi ∈ Z, qi ∈ N and gcd(pi, qi) = 1 where

gcd(a, b) is the greatest common divisor of a and b. Let us introduce q =
lcm(q1, . . . , qn) where lcm is the least common multiple. From the definition
it is obvious that q1, . . . qn ∈ N ⇒ q ∈ N. If x∗i = 0 then pi = 0, let fix qi = 1 in
that case. If (10)-(12) has multiple optimal solutions we will assume that we
can arbitrarily choose one of them.

Let k = k1 · q and let (y∗1, . . . , y
∗
n) denote optimal solution of the dual

problem of the linear programming formulation (10)-(12). This solution sat-
isfies AG · (y∗1 . . . y∗n)T ≥ (1 1 . . . 1)T . Since (x∗1, . . . , x

∗
n) and (y∗1, . . . , y

∗
n) are

optimal solutions of the mutually dual problems it follows that values of cor-

responding objective functions are equal, that is
n∑

i=1
x∗i =

n∑
i=1

y∗i . Dual problem

of the problem (7)-(9) is

(13) max

|V |∑
i=1

k · Yi = k ·
|V |∑
i=1

Yi

9 {k}-packing function problem 271

subject to

(14)

|V |∑
i=1

aijYi ≥ 1, j = 1, . . . , |V |

(15) Yi ≥ 0, i = 1, . . . , |V |.

As it can be seen, the value of objective function is k times the value of
objective function of the dual of problem (10)-(12). Now, it can be concluded

that the optimal value of objective function (7) is equal to k ·
n∑

i=1
x∗i and con-

sequently that (k ·x∗1, . . . , k ·x∗n) is the optimal solution of linear programming
formulation (7)-(9). As k = q·k1, such that q = lcm(q1, . . . , qn) and (∀i)x∗i =

pi
qi

then k1 · q · x∗i = k1 · q · pi
qi

∈ Z. Since (k1 · q · x∗1, . . . , k1 · q · x∗n) is a vector of
integers, and it is optimal solution of linear programming formulation (7)-(9)
then it is also optimal solution of integer linear programming formulation (4)-
(6) with the optimal value k1 · q · Z∗

rlx. Therefore, L{k1·q}(G) = k1 · q · Z∗
rlx,

which confirms the statement of the theorem.

Corollary 2. lim
k→+∞

L{k}(G)

k = Z∗
rlx(G).

Proof. For a given graph G let us consider sequence (L{k}(G))k∈N and its
subsequence (L{l·q}(G))l∈N and q ∈ N as defined in Theorem 3. From Property
4 it follows that

(∀k)L{k}(G) ≤ k · Z∗
rlx(G)

implying

(∀k)
L{k}(G)

k
≤ Z∗

rlx(G).

For subsequence (L{l·q}(G))l∈N from Theorem 3 it holds

(∀l)L{l·q}(G) = l · q · Z∗
rlx(G),

so

(∀l)
L{l·q}(G)

l · q
= Z∗

rlx(G),

implying lim
l→+∞

L{l·q}(G)

l·q = Z∗
rlx(G), which directly confirms the statement.

Corollary 3. For any graph G there exists q ∈ N such that L{k1·q}(G)
can be found in polynomial time for any k1 ∈ N.

Proof. Let us consider q as defined in Theorem 3. If k = q · q1 then by
Theorem 3, optimal solution of L{k}(G) can be obtained as optimal solution of
linear programming formulation (7)-(9). Since it can be achieved in polynomial
time, then in this case L{k}(G) can be obtained in polynomial time.

272 J. Kratica, A. Savić, and Z. Maksimović 10

Observation 1. It should be noted that in Theorem 1 ([4]) the word
”fixed” is necessary. Although for each simple connected graph G and for some
values of k, L{k}(G) it can be determined in polynomial time, the considered
problem is still NP-complete for k fixed.

Observation 2. It should be noted that q defined in Theorem 3 is not
necessarily minimal in the case with multiple optimal solution of (10)-(12).
The number of optimal solutions can be, in the worst case, infinite (even un-
countable), though they all have the same optimal value, the minimal value of
q defined in Theorem 3 may not be obtained in polynomial time.
Even in the case with single optimal solution of (10)-(12), q = lcm(q1, · · · qn)
may not be the minimal k for which (10)-(12) has integer optimal solution.

2.3. New properties of {1}-packing function

Previous considerations were based on the Integer Linear Programming
formulation of the proposed problem and its relaxation. Now, let us present
several properties of {k}-packing function problem which are not derived from
ILP formulation. In the following proposition, it will be proven that {1}-
packing function problem of an arbitrary graph G can be reduced to vertex
independence number problem on a graph G2.

Proposition 5. L{1}(G) = α(G2).

Proof. (⇒) Let f be a 1-packing function whose value f(V (G)) = L{1}(G).
We define I = {v ∈ V (G) | f(v) = 1}. Let u, v ∈ V (G), u ̸= v and (u, v) ∈
E(G2), i.e. d(u, v) ≤ 2. Then we have two cases:

Case 1: v ∈ N(u). Since f is 1-packing function then

f(N [u]) =
∑

v∈N [u]

f(v) ≤ 1

implying f(u) + f(v) ≤ 1.
Case 2: u, v ∈ N(w). Since f is 1-packing function then

f(N [w]) =
∑

v∈N [w]

f(v) ≤ 1

implying f(u) + f(v) ≤ 1.
In both cases, we have f(u) + f(v) ≤ 1 implying that (u /∈ I ∨ v /∈ I).

Since for each edge from E(G2) it has at least one endpoint in I, then I is the
independent set of G2.

(⇐) Let I be an independent set of G2. We define f(v) =

{
1, v ∈ I

0, v /∈ I
.

11 {k}-packing function problem 273

Let v be an arbitrary vertex from V (G), and u,w ∈ N(v) and u ̸= w.
Then, d(u,w) ≤ 2. Since I is an independent set of G2 at most one of vertices
u,w is in I, so f(u) + f(v) + f(w) ≤ 1. Since u and w are arbitrary vertices
from N(v), then

f(N [v]) =
∑

w∈N [v]

f(w) ≤ 1.

In the case when v has only one neighbor u, it holds that f(N [v]) = f(u) +
f(v) ≤ 1. Since v is an arbitrary vertex from V (G) it follows that f is 1-packing
function of G.

Corollary 4. L{1}(G) = ρ2(G).

Corollary 5. If diam(G) = 2, then L{1}(G) = 1.

Proof. If diam(G) = 2, then G2 = K|V (G)|, and consequently, L{1}(G) =
α(K|V (G)|) = 1.

Next, we propose computationally efficient lower bound based on the
graph diameter.

Proposition 6. L{k}(G) ≥ ⌈1+diam(G)
3 ⌉ · k.

Proof. From Proposition 2 it stands that L1(G) ≥ ⌈diam(G)+1
3 ⌉. On the

other hand, from Proposition 1 it stands that L{k} ≥ k ·L1. By combining the
mentioned inequalities, we obtain

L{k} ≥ k · L1 ≥ k · ⌈diam(G) + 1

3
⌉.

This lower bound is tight as it can be seen from Proposition 3.

Next, we introduce the upper bound based on the vertices’ degree.

Proposition 7. L{k}(G) ≤ ⌊ nk
1+δ(G)⌋.

Proof. For each vertex v ∈ V (G) it holds that f(N [v]) ≤ k. Summing
previous inequalities over all vertices from V we obtain:

n · k ≥
∑
v∈V

f(N [v]) =
∑
v∈V

∑
w∈N [v]

f(w).

274 J. Kratica, A. Savić, and Z. Maksimović 12

On the other hand, for arbitrary vertex u from V , f(u) appears exactly
1 + deg(u) times in previous sums: once for the vertex u and deg(u) times for
each vertex that is adjacent to the vertex u. Therefore, we get:∑

v∈V

∑
w∈N [v]

f(w) =
∑
u∈V

(1 + deg(u)) · f(u) ≥
∑
u∈V

(1 + δ) · f(u) =

= (1 + δ) ·
∑
u∈V

f(u) = (1 + δ) · f(V (G)).

As a consequence, the following holds

f(V (G)) ≤ n · k
1 + δ

⇒ f(V (G)) ≤
⌊
n · k
1 + δ

⌋
.

This inequality holds because f(V (G)) ∈ N ∪ {0}.

Corollary 6. If G is a regular graph of degree r, then L{k}(G) ≤ ⌊ nk
1+r⌋.

Bounds in Proposition 7 are tight as it can be seen from the two following
statements.

Property 2. For complete graph (clique) Kn holds L{k}(Kn) = k.

Proposition 8. For cycle Cn it holds that L{k}(Cn) = ⌊n·k3 ⌋.

Proof. Let graph Cn be a cycle, i.e. Cn = (V,E) where

V = {0, 1, 2, . . . , n− 1} and

E = {{0, 1}, {1, 2}, {2, 3}, . . . , {n− 2, n− 1}, {n− 1, 0}}.
Let us define a function f as follows

f(vi) =

⌊k3⌋, i ≡ 0 (mod 3),

⌊k3 + 0.5⌋, i ≡ 1 (mod 3),

⌈k3⌉, i ≡ 2 (mod 3).

All possible cases are presented in Table 1.

It is obvious that in each case f(N [w]) ≤ k and f(V (G)) = ⌊n·k3 ⌋. There-
fore, we proved that L{k}(Cn) ≥ ⌊n·k3 ⌋. Since Cn is a regular graph with r = 2
it holds that

L{k}(G) ≤ ⌊ nk

1 + 2
⌋ = ⌊nk

3
⌋.

Consequently, equality L{k}(G) = ⌊nk3 ⌋ holds.

13 {k}-packing function problem 275

Table 1 – f(N [v]) for Cn

n k v f(N [v])

3m 3l vi, i = 0, . . . , 3m − 1 ⌊ 3l
3
⌋ + ⌊ 3l

3
+ 0.5⌋ + ⌈ 3l

3
⌉ = l + l + l = 3l = k ≤ k

f(V (C3m)) = m · 3l = ⌊nk
3

⌋

3m 3l + 1 vi, i = 0, . . . , 3m − 1 ⌊ 3l+1
3

⌋ + ⌊ 3l+1
3

+ 0.5⌋ + ⌈ 3l+1
3

⌉ = l + l + l + 1 = 3l + 1 = k ≤ k

f(V (C3m)) = m · (3l + 1) = ⌊nk
3

⌋

3m 3l + 2 vi, i = 0, . . . , 3m − 1 ⌊ 3l+2
3

⌋ + ⌊ 3l+2
3

+ 0.5⌋ + ⌈ 3l+2
3

⌉ = l + l + 1 + l + 1 = 3l + 2 = k ≤ k

f(V (C3m)) = m · (3l + 2) = ⌊nk
3

⌋

3m + 1 3l v0 ⌊ 3l
3
⌋ + ⌊ 3l

3
⌋ + ⌊ 3l

3
+ 0.5⌋ = l + l + l = 3l = k ≤ k

3m + 1 3l vi, i = 1, . . . , 3m − 1 ⌊ 3l
3
⌋ + ⌊ 3l

3
+ 0.5⌋ + ⌈ 3l

3
⌉ = l + l + l = 3l = k ≤ k

3m + 1 3l v3m ⌈ 3l
3
⌉ + ⌊ 3l

3
⌋ + ⌊ 3l

3
⌋ = l + l + l = 3l = k ≤ k

f(V (C3m+1)) = (m + 1) · l + ml + ml = 3ml + l = l(3m + 1) = ⌊ (3m+1)3l
3

⌋ = ⌊nk
3

⌋

3m + 1 3l + 1 v0 ⌊ 3l+1
3

⌋ + ⌊ 3l+1
3

⌋ + ⌊ 3l+1
3

+ 0.5⌋ = l + l + l = 3l = k − 1 ≤ k

3m + 1 3l + 1 vi, i = 1, . . . , 3m − 1 ⌊ 3l+1
3

⌋ + ⌊ 3l+1
3

+ 0.5⌋ + ⌈ 3l+1
3

⌉ = l + l + l + 1 = 3l + 1 = k ≤ k

3m + 1 3l + 1 v3m ⌈ 3l+1
3

⌉ + ⌊ 3l+1
3

⌋ + ⌊ 3l+1
3

⌋ = l + 1 + l + l = 3l + 1 = k ≤ k

f(V (C3m+1)) = (m + 1) · l + ml + m(l + 1) = 3ml + m + l = ⌊ (3m+1)(3l+1)
3

⌋ = ⌊nk
3

⌋

3m + 1 3l + 2 v0 ⌊ 3l+2
3

⌋ + ⌊ 3l+2
3

⌋ + ⌊ 3l+2
3

+ 0.5⌋ = l + l + l + 1 = 3l + 1 = k − 1 ≤ k

3m + 1 3l + 2 vi, i = 1, . . . , 3m − 1 ⌊ 3l+2
3

⌋ + ⌊ 3l+2
3

+ 0.5⌋ + ⌈ 3l+2
3

⌉ = l + l + 1 + l + 1 = 3l + 2 = k ≤ k

3m + 1 3l + 2 v3m ⌈ 3l+2
3

⌉ + ⌊ 3l+2
3

⌋ + ⌊ 3l+2
3

⌋ = l + 1 + l + l = 3l + 1 = k − 1 ≤ k

f(V (C3m+1)) = (m + 1) · l + m(l + 1) + m(l + 1) = 3ml + l + 2m = ⌊ (3m+1)(3l+2)
3

⌋ = ⌊nk
3

⌋

3m + 2 3l v0 ⌊ 3l
3

+ 0.5⌋ + ⌊ 3l
3
⌋ + ⌊ 3l

3
+ 0.5⌋ = l + l + l = 3l = k ≤ k

3m + 2 3l vi, i = 1, . . . , 3m ⌊ 3l
3
⌋ + ⌊ 3l

3
+ 0.5⌋ + ⌈ 3l

3
⌉ = l + l + l = 3l = k ≤ k

3m + 2 3l v3m+1 ⌊ 3l
3
⌋ + ⌊ 3l

3
+ 0.5⌋ + ⌊ 3l

3
⌋ = l + l + l = 3l = k ≤ k

f(V (C3m+2)) = (m + 1) · l + (m + 1) · l + m · l = 3ml + 2l = ⌊ (3m+2)3l
3

⌋ = ⌊nk
3

⌋

3m + 2 3l + 1 v0 ⌊ 3l+1
3

+ 0.5⌋ + ⌊ 3l+1
3

⌋ + ⌊ 3l+1
3

+ 0.5⌋ = l + l + l = 3l = k − 1 ≤ k

3m + 2 3l + 1 vi, i = 1, . . . , 3m ⌊ 3l+1
3

⌋ + ⌊ 3l+1
3

+ 0.5⌋ + ⌈ 3l+1
3

⌉ = l + l + l + 1 = 3l + 1 = k ≤ k

3m + 2 3l + 1 v3m+1 ⌊ 3l+1
3

⌋ + ⌊ 3l+1
3

+ 0.5⌋ + ⌊ 3l+1
3

⌋ = l + l + l = 3l = k − 1 ≤ k

f(V (C3m+2)) = (m + 1) · l + (m + 1) · l + m(l + 1) = 3ml + m + 2l = ⌊ (3m+2)(3l+1)
3

⌋ = ⌊nk
3

⌋

3m + 2 3l + 2 v0 ⌊ 3l+2
3

+ 0.5⌋+⌊ 3l+2
3

⌋+⌊ 3l+2
3

+ 0.5⌋ = l+1+l +l +1 = 3l+2 = k ≤ k

3m + 2 3l + 2 vi, i = 1, . . . , 3m ⌊ 3l+2
3

⌋ + ⌊ 3l+2
3

+ 0.5⌋ + ⌈ 3l+2
3

⌉ = l + l + 1 + l + 1 = 3l + 2 = k ≤ k

3m + 2 3l + 2 v3m+1 ⌊ 3l+2
3

⌋ + ⌊ 3l+2
3

+ 0.5⌋ + ⌊ 3l+2
3

⌋ = l + l + 1 + l = 3l + 1 = k − 1 ≤ k

f(V (C3m+2)) = (m + 1) · l + (m + 1)(l + 1) + m(l + 1) = 3ml + 2l + 2m + 1 = ⌊ (3m+2)(3l+2)
3

⌋ = ⌊nk
3

⌋

276 J. Kratica, A. Savić, and Z. Maksimović 14

3. CONCLUSIONS

In this paper, the {k}-packing function problem is studied. First, the
special relation was established between the cases when k = 1, k ≥ 2, and
the optimal solution of the linear programming relaxation. Second, sufficient
conditions for optimality were introduced. It was proven that, for an arbitrary
simple connected graph G and some values of k, L{k}(G) can be determined in
the polynomial time. Next, {1}-packing function problem was studied and its
connection with the independent set number and 2-packing problem. Finally,
lower and upper bound were introduced as well as optimal values for some
special classes of graphs.

The future work could be directed to the problem of finding the {k}-
packing function number of some graph products.

Acknowledgments. This work is partially supported by the Ministry of Science,
Technology and Development, Republic of Serbia, grants 174010 and 174033.

REFERENCES

[1] A. Brandstädt, V.D. Chepoi, and F.F. Dragan, The algorithmic use of hypertree struc-
ture and maximum neighbourhood orderings. In: E.W. Mayr et al. (Eds.), International
Workshop on Graph-Theoretic Concepts in Computer Science. Lecture Notes in Comput.
Sci. 903 (1994), 65–80.

[2] M.P. Dobson, V. Leoni, and G. Nasini, The k-limited packing and k-tuple domination
problems in strongly chordal, p 4-tidy and split graphs. Electron. Notes Discrete Math.
36 (2010), 559–566.

[3] M.P. Dobson, V. Leoni, and G. Nasini, The multiple domination and limited packing
problems in graphs. Inform. Process. Lett. 111 (2011), 23, 1108–1113.

[4] P. Dobson, E. Hinrichsen, and V. Leoni, On the complexity of the {k}-packing function
problem. Int. Trans. Oper. Res. 24 (2017), 347–354.

[5] A. Frendrup, M.A. Henning, B. Randerath, and P.D. Vestergaard, An upper bound on
the domination number of a graph with minimum degree 2. Discrete Math. 309 (2009),
4, 639–646.

[6] M. Gairing, S.T. Hedetniemi, P. Kristiansen, and A.A. McRae, Self-stabilizing algo-
rithms for {k}-domination. In: S.T. Huang and T. Herman (Eds.), Symposium on Self-
Stabilizing Systems. Lecture Notes in Comput. Sci. 2704 (2003), 49–60.

[7] R. Gallant, G. Gunther, B.L. Hartnell, and D.F. Rall, Limited packings in graphs. Dis-
crete Appl. Math. 158 (2010), 12, 1357–1364.

[8] R.M. Karp, Reducibility among combinatorial problems. In: R.E. Miller et al. (Eds.),
Complexity of computer computations. Proceedings of a symposium on the complexity
of computer computations. Plenum Press, New York, London, 1972, pp. 85–103.

[9] V. Leoni, M.P. Dobson, and E. Hinrichsen, NP-completeness of the {k}-packing function
problem in graphs. Electron. Notes Discrete Math. 50 (2015), 115–120.

15 {k}-packing function problem 277

[10] V. Leoni and M.P. Dobson, Towards a Polynomial Equivalence Between {k}-Packing
Functions and k-Limited Packings in Graphs. In: R. Cerulli et al. (Eds.), Fourth Inter-
national Symposium, ISCO 2016. Lecture Notes in Comput. Sci. 9849 (2016), 160–165.

[11] V. Leoni and E. Hinrichsen, k-Packing Functions of Graphs. In: P. Fouilhoux et al.
(Eds.), Third International Symposium, ISCO 2014. Lecture Notes in Comput. Sci.
8596 (2014), 325–335.

[12] A. Meir and J. Moon, Relations between packing and covering numbers of a tree. Pacific
J. Math. 61 (1975), 1, 225–233.

[13] D.A. Mojdeh and B. Samadi, Packing parameters in graphs: New bounds and a solution
to an open problem. J. Comb. Optim. 38 (2019), 3, 739-747. arXiv:1705.08667.

[14] A. Schrijver, Theory of Linear and Integer Programming. Wiley-Interscience Series in
Discrete Mathematics, John Wiley & Sons, Chichester, 1986.

Received October 24, 2019 Jozef J. Kratica
Serbian Academy of Sciences and Arts

Mathematical Institute
Kneza Mihaila 36/III, 11000 Belgrade, Serbia

jkratica@mi.sanu.ac.rs

Aleksandar Lj. Savić
University of Belgrade
Faculty of Mathematics

Studentski trg 16/IV, 11000 Belgrade, Serbia
asavic@matf.bg.ac.rs

Zoran Lj. Maksimović
Military Academy

University of Defence
Generala Pavla Jurǐsića Šturma 33,

11000 Belgrade, Serbia
zoran.maksimovic@gmail.com

	INTRODUCTION
	Problem definition
	Previous work
	Preliminaries and useful results

	New properties of {k}-packing function problem
	Relationship between {k}-packing and {1}-packing
	Relationship between {k}-packing and relaxation of {1}-packing
	New properties of {1}-packing function

	CONCLUSIONS

