
ON COMMUTATORS IN FINITE P-GROUPS OF ALMOST
MAXIMAL CLASS

NAZILA AZIMI SHAHRABI and MEHRI AKHAVAN-MALAYERI*

Communicated by Sorin Dăscălescu

Let Γ(G) denote the set of commutators of a group G, G′ = ⟨Γ(G)⟩ and c(G)
(or cw(G)) the minimal number such that every element of G′ can be expressed
as a product of at most c(G) commutators. Recently, we proved that if G is a
finite p-group of maximal class, then Γ(G) = G′. For finite p-groups of almost
maximal class, the situation is more complicated. In this paper, we show that if
p = 2 then Γ(G) = G′. If p > 2 we have two cases, according to the minimum
number of generators of G, d(G). We prove that if d(G) = 3, then G′ = Γ(G)
and if d(G) = 2, c(G) ⩽ 2. As a consequence of this result, we prove that if
G = A ≀ P , in which A is a nontrivial finite abelian group and P is a 2-group of
almost maximal class of order 2n, n ≥ 5, then the commutator length of G is
equal to 2 or 3. Finally, we will provide various examples.
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1. INTRODUCTION

Let G be a group and G′ its commutator subgroup. Denote by c(G) (or
cw(G)) the minimal number such that every element of G′ can be expressed
as a product of at most c(G) commutators. A group G is called a c-group if
c(G) is finite. For any positive integer n, denote by cn the class of groups with
commutator length (or commutator width) equal to n. Denote by Γ(G) the set
of commutators in G.

In a group product of two commutators one may not be a commutator.
Many examples of groups whose commutator subgroups contain a non com-
mutator element are groups of prime power order. In [14], L. C. Kappe and R.
F. More proved that for p = 2 the smallest integer n such that there exists a
group of order 2n in which Γ(G) ̸= G′ is n = 7. And for any odd prime n = 6
is the smallest such number. In [3], Akhavan-Malayeri, used wreath product
constructions to obtain, for any positive integer n, a solvable group of derived
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length n and commutator length equal to 1 or 2. Let W = G ≀H be the wreath
product of G by an n-generator abelian group H. In [2], she proved that every
element of W ′ is a product of at most n+2 commutators, and every element of
W 2is a product of at most 3n+4 squares in W . This generalizes our previous
result.

Throughout, p denotes a fixed prime and cl(G), d(G) denote the nilpo-
tency class and the minimum number of generators of G, respectively. Recall
that if |G| = pn and cl(G) = c, then the coclass of G is cc(G) = n − c. A
non-abelian group of coclass 1 is called a p-group of maximal class and a group
of coclass 2 is called a p-group of almost maximal class. Recently, Akhavan-
Malayeri proved that if G is a p-group of maximal class, then Γ(G) = G′ (see
[5]). For finite p-groups of almost maximal class, the situation is more com-
plicated. In this paper, we show that if p = 2 then Γ(G) = G′ and if p > 2,
then either d(G) = 3 and c(G) = 1 or d(G) = 2 and c(G) = 1 or 2. As a
consequence of this result, we show that if P is a 2-group with cc(P ) < 3 and
G = P ≀ C1 ≀ · · · ≀ Cn where Ci is a finite cyclic group for 1 ≤ i ≤ n, then
Γ(G) = G′. Finally, let A be a non trivial finite abelian group and P be a
2-group of almost maximal class of order 2n, n ≥ 5. Let G = A ≀ P . By using
Guralnick’s [9] result, we show that the commutator length of G is equal to 2
or 3. We also give a precise formula for expressing every element of G′ as a
product of two or three commutators.

2. MAIN RESULTS

Let G be a group and x, y ∈ G, then xy = y−1xy and [x, y] = x−1y−1xy.
By Z(G), we denote the center of G. The i-th terms of the upper central series
of G is denoted by Zi(G) and i-th terms of the lower central series of G for
i ≥ 2 is denoted by γi(G). And γ2(G) is denoted by G′.

Let G be a 2-group of almost maximal class of order 2n, n ≥ 5. First, we
describe some notations which will be kept throughout. Following [8] and [12],
by γ1(G) we mean the subgroup of G with the property that γ1(G)/γ4(G) is
the centraliser in G/γ4(G) of G′/γ4(G). Let s ∈ G such that s ̸∈ γ1(G) and
s ̸∈ CG(γn−3(G)), and s1 ∈ γ1(G) \ Zn−3(G), we put

si+1 = [si, s], i = 1, 2, · · · .

If s, si are defined as above, then |γi(G)/γi+1(G)| = 2 and γi(G) =
⟨si, γi+1(G)⟩ where i = 2, 3, ..., n− 2. Also |G : γ1(G)| = |γ1(G) : Zn−3(G)| = 2
(see ([12, Theorem 3.4 and Theorem 3.1])).

In the rest of the paper, we use the above notations.

The main results of this paper are as follows.
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Theorem 2.1. Let G be a p-group of almost maximal class of order pn,
n ≥ 4.

(i) If p = 2, then c(G) = 1. Also, for n ≥ 5, every element of G′ can be
expressed as [g, s] for suitable g ∈ γ1(G).

(ii) If p > 2, then either d(G) = 3 and c(G) = 1 or d(G) = 2 and c(G) =
1 or 2.

To illustrate the applications of our results, the following consequences
are given.

Corollary 2.1. Let G be a 2-group of almost maximal class of order
2n, n ≥ 5 and s ∈ G \ γ1(G). Then

(i) If G/G′ has exponent 2, then every element of G can be expressed in the
form sisj1t

k[g, s] in which 0 ≤ i, j, k < 2 and g ∈ γ1(G) and t ∈ CG(s)\G′.

(ii) If γ1(G)/G′ has exponent 4, then every element of G can be expressed in
the form sisj1[g, s] in which 0 ≤ i < 2, 0 ≤ j < 4 and g ∈ γ1(G).

(iii) If G/G′ has exponent 4 and γ1(G)/G′ has exponent 2, then every element
of G can be expressed in the form sisj1[g, s] in which 0 ≤ i < 4, 0 ≤ j < 2
and g ∈ γ1(G).

As a consequence of Theorem 2.1 and by repeated application of Rhem-
tulla’s [15] result, we have

Corollary 2.2. Let P a 2-group with cc(P ) < 3. Suppose G = P ≀ C1 ≀
· · · ≀ Cn where Ci is a finite cyclic group for 1 ≤ i ≤ n. Then Γ(G) = G′.

One interesting result is indicated by the following theorem.

Theorem 2.2. Let A be a nontrivial finite abelian group and P be a 2-
group of almost maximal class of order 2n with n ≥ 5. Let G = A ≀ P .

(i) If P/P ′ has exponent 4, then c(G) = 2. In particular, every element
of G′ is a product of at most two commutators [b1, s1][s, g]

b, for suitable
g ∈ G and b, b1 of the base of group G.

(ii) If P/P ′ has exponent 2, then c(G) = 2 or 3. In particular, every element
of G′ is a product of at most three commutators [b2, t][b1, s1][s, g]

b, for
suitable g ∈ G and b, b1, b2 of the base of group G.

Finally, we will provide various examples to illustrate that in Theorem
2.1 (ii) both c(G) = 1 and c(G) = 2 can occur.
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3. PROOFS

To prove Theorem 2.1, we need the following results. The third is a result
of Peter Stroud [17].

Theorem 3.1 ([5, Theorem 1]). If G is a p-group of maximal class, then
Γ(G) = G′.

In the following theorem, we state various sufficient conditions implying
that Γ(G) = G′.

Theorem 3.2. The following conditions on a group G imply Γ(G) = G′:

(i) If G is nilpotent and G′ is cyclic (see [16, Corollary p. 642]).

(ii) Let G be a finite p-group with G′ elementary abelian of rank less than or
equal to 3 (see [14, Theorem 2.4]).

(iii) G′ is an abelian p-group for p > 3 and d(G′) ≤ 3 (see [10, Theorem B]).

The following lemma is a result of Peter Stroud [17].

Lemma 3.1. Let G = ⟨x1, x2, ..., xn⟩ be a nilpotent group. Then every
element of G′ is a product of n commutators [x1, g1]...[xn, gn], for suitable gi
in G.

We shall use the following well known identities for groups which are
nilpotent of class 3.

Lemma 3.2. Let G be a nilpotent group of class 3 and let x,y be elements
of G. Then, for all integers r,s the following hold:

[xr, y] = [x, y]r[x, y, x]r(r−1)/2,

[xr, ys] = [x, y]rs[x, y, x]rs(r−1)/2[x, y, y]rs(s−1)/2.

Now, we turn to the proof of Theorem 2.1.

Proof of Theorem 2.1. Suppose G is a group of almost maximal class
of order pn. If n = 4, then |G′| = p and |G/G′| = p3. By Theorem 3.2 (i),
Γ(G) = G′. We also include a direct proof. It is clear that the minimum
number of generators of G, d(G), equals to 2 or 3. Suppose G = ⟨a, b⟩. Since
G′ ≤ Z(G), we have G′ = ⟨[a, b]⟩ = {1, [a, b], · · · , [ap−1, b]} = Γ(G). Now, if
G = ⟨a, b, c⟩, then G′ = ⟨[a, b], [a, c], [b, c]⟩. Since |G′| = p, we may assume
G′ = ⟨[a, b]⟩ = {1, [a, b], · · · , [ap−1, b]} = Γ(G).

In the rest of the proof, we may assume n ≥ 5.
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(i) For n ≥ 5, we will use induction on n. If n = 5, then G′ = ⟨s2, s3⟩.
Since |G′| = 4 and |γi(G)/γi+1(G)| = 2 for i = 2, 3, every element of G′ has
the form [si1, s][s

j
2, s] = [si1s

j
2, s] where 0 ≤ i, j < 2.

Next, let n > 5 and G be a 2-group of almost maximal class of order 2n.
Let also G = G/γn−2(G). It is easy to prove that G is a 2-group of almost
maximal class of order 2n−1 and γi(G) = γi(G) for 1 ≤ i ≤ n− 2.

It is clear that s ̸∈ γ1(G). We claim that s ̸∈ CG(γn−4(G)). Suppose in-
stead s ∈ CG(γn−4(G)). Therefore 1 = [sn−4, s] = sn−3, hence sn−3 ∈ γn−2(G)
and so γn−3(G) = ⟨sn−3, γn−2(G)⟩ = γn−2(G), a contradiction. Therefore,
s ̸∈ CG(γn−4(G)).

We know s1 ∈ γ1(G)\Zn−3(G). We claim that s1 ̸∈ Zn−4(G). Suppose in-
stead s1 ∈ Zn−4(G), therefore for all g1, ..., gn−4 ∈ G, we have [s1, g1, ..., gn−4] =
1, so [s1, g1, ..., gn−4] ∈ γn−2(G) ≤ Z(G). Therefore s1 ∈ Zn−3(G), a contra-

diction. By induction on n, G
′
= {[g, s]|g ∈ γ1(G)}. Hence if γ ∈ G′, then

γ = [g, s] with g ∈ γ1(G). Thus γ = [g, s]skn−2 = [g, s][skn−3, s] = [gskn−3, s] for
0 ≤ k < 2. This shows Γ(G) = G′ and completes the proof.

(ii) If n = 5, then G/G′ is a group of order p2 or p3. Suppose |G/G′| = p3.
Then by Theorem 3.2, Γ(G) = G′.

Suppose |G/G′| = p2. If G = ⟨a, b⟩, then G′ = ⟨[a, b], [a, b, a], [a, b, b]⟩.
We have 1 = [a, b, bp] = [a, b, b]p and 1 = [a, b, ap] = [a, b, a]p since ap, bp ∈ G′

and cl(G) = 3. Therefore γ3(G) has exponent p. By Lemma 3.2, we have
[bp, a] = [b, a]p[b, a, b]p(p−1)/2 = [b, a]p. So |[a, b]| = p or p2. We claim that
|[a, b]| = p. Suppose instead, |[a, b]| = p2. So there exist x ∈ {a, b} such that
[a, b, x] ̸∈ ⟨[a, b]⟩, since otherwise G′ = ⟨[a, b]⟩, a contradiction. Now, we have
two cases:

(a) If x = a, then G′ = ⟨[a, b]⟩ × ⟨[a, b, a]⟩. Now, ap ∈ G′, therefore
ap = [a, b]i[a, b, a]j for 0 ≤ i < p2 and 0 ≤ j < p. Since G′ is an abelian
group, we have 1 = [ap, a] = [[a, b]i[a, b, a]j , a] = [a, b, a]i. So p|i and [ap, b] =
[[a, b]i, b] = [a, b, b]i = 1. But [a, b]p = [ap, b] = 1, a contradiction.

(b) If x = b, then by a similar argument, we will have the same contra-
diction as case (a). So G′ is an elementary abelian group and by Theorem 3.2,
Γ(G) = G′.

If n ≥ 6 and d(G)=3, by ([8, p. 65]), G contains a subgroup H of maximal
class in which γi(H) = γi(G) for 2 ≤ i ≤ n − 2. Therefore by Theorem 3.1,
c(G) = 1. If d(G) = 2, by Lemma 3.1, c(G) ≤ 2.

We will provide various examples to illustrate that in Theorem 2.1(ii)
both c(G) = 1 and c(G) = 2 can occur.

Remark 3.3 ([6, Remark. 3.2]). Note that in a 2-group G of almost
maximal class of order 2n, n ≥ 5, we have |Zn−3(G) : G′| = 2 and |G : G′| = 8.
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So G/G′ ∼= Z2 × Z4 or G/G′ ∼= Z2 × Z2 × Z2.

We use the following lemma, to prove Corollary 2.1.

Lemma 3.3 ([6, Lemmas 3.12, 3.13 and 3.15]). Let G be a group of almost
maximal class and order 2n, n ≥ 5.

(i) If G/G′ ∼= Z3
2, then G = ⟨s, s1, t⟩ and Zn−3(G) = ⟨t, G′⟩ where t ∈

CG(s) \G′.

(ii) If γ1(G)/G′ is cyclic, then G = ⟨s, s1⟩ and Zn−3(G) = ⟨s21, G′⟩.

(iii) If G/G′ ∼= Z4 × Z2, γ1(G)/G′ ∼= Z2
2, then G = ⟨s, s1⟩ and Zn−3(G) =

⟨s2, G′⟩.

Proof of Corollary 2.1. Corollary 2.1 is an immediate consequence of
Lemma 3.3 and Theorem 2.1.

Proof of Corollary 2.2. Indeed, Rhemtulla [15], proved that the wreath
product of a c1-group by a finite cyclic group is again a c1-group. Repeated
application of Rhemtulla’s result shows that the group G, satisfies the desired
property and the proof is complete.

Lemma 3.4 ([1, Lemma 3]). Let A be a normal subgroup of G = ⟨x1, ..., xn⟩.
If A is abelian or A lies in the second center Z2(G) of G, then every element
of [G,A] has the form

∏n
i=1[xi, ai], where ai ∈ A.

Proof of Theorem 2.2. (i) Let G be the wreath product of a nontrivial
finite abelian group A and a 2-group of almost maximal class P . By Lemma
3.3, P = ⟨s, s1⟩.

Let B = Dr
|P |
i=1Ai where Ai

∼= A , be the base group of G. Now G = BP
is the semidirect product of B by P . Hence [B,P ] is a normal subgroup of G
and G′ = [BP,BP ] = [B,P ]P ′ . Since B is a normal abelian subgroup of G, we
see that [P,B] = [G,B]. Now by Lemma 3.4, [B,P ] = {[b1, s1][b, s]|b, b1 ∈ B}.
By Theorem 2.1, every element of G′ has the form γ = [b1, s1][b, s][s, g] =
[b1, s1][s, gb

−1]b. Hence c(γ) ≤ 2. Now by [9, Theorem 1] some element of
[P,B] is not a commutator. Thus c(G) = 2, as required.

The proof of (ii) is similar to the proof of (i).

4. EXAMPLES

In this section, we collect several examples.
Example 1. To give this example, we will use [14, Corollary 5.6]. First,

consider the abelian group W = ⟨u⟩ × ⟨v⟩ × ⟨w⟩ ∼= Z9 ×Z3 ×Z3 where |u| = 9,
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|v| = |w| = 3. The group G will be constructed by two suitable split extensions,
starting with W. Let A = W ⋊ ⟨a⟩ in which |a| = 3. The action of a on the
generators of W is given as follows: [u, a] = v, [v, a] = u6 and [w, a] = 1. Let
G = A⋊ ⟨c⟩ in which |c| = 3. The action of c on the generators of A is given
as follows: [a, c] = uw−1, [u, c] = vw−1, [v, c] = u6, and [w, c] = 1. According
to [14, Corollary 5.6], cl(G) = 4 and Γ(G) ̸= G′.

It is clear that |G| = 36, hence cc(G) = 2. By Theorem 2.1, c(G) = 2 and
d(G) = 2.

Example 2. To give this example, we will use [14, Corollary 5.4]. Let p ≥ 5
be a prime. Let V = ⟨u⟩×⟨v⟩×⟨w⟩×⟨z⟩ ∼= Z4

p where |u| = |v| = |w| = |z| = p.
The group G will be constructed by two suitable split extensions, starting with
V. Let B = V ⋊ ⟨b⟩ in which |b| = p. The action of b on the generators of V
is given as follows: [u, b] = w, and [v, b] = [w, b] = [z, b] = 1. Let G = B ⋊ ⟨a⟩
in which |a| = p. The action of a on the generators of B is given as follows:
[b, a] = u, [u, a] = v, [v, a] = z and [w, a] = [z, a] = 1. According to [14,
Corollary 5.4], cl(G) = 4 and Γ(G) ̸= G′.

It is clear that |G| = p6, hence cc(G) = 2. By Theorem 2.1, c(G) = 2 and
d(G) = 2.

Next, we give an example of a p-group of almost maximal class of order
p6 for p > 3 such that Γ(G) = G′.

Example 3. Let G = ⟨α1, α2, β, β1, β2, γ|[α1, β1] = [α2, β2] = [β, βi] =
[β1, β2] = [αi, γ] = [βi, γ] = [β, γ] = 1, [α1, α2] = β, [β, αi] = βi, [α1, β2] =
[α2, β1] = βp = γ, αp

1 = β−1
1 γ−1/2, αp

2 = β2γ
1/2, βp

i = γp = 1, (i = 1, 2)⟩ such
that p > 3. According to [13, p. 619], |G| = p6, G′ ∼= (Zp)

2×Zp2 and cl(G) = 4.
Hence cc(G) = 2 and d(G′) = 3, therefore by Theorem 3.2, Γ(G) = G′.

Finally, let p be a prime. We give examples of finite p-groups of almost
maximal class in which the commutator length is equal to 1. We will use a
special case of a theorem of M. Akhavan-Malayeri [4].

Example 4. Let p be a prime. Set G = Zp2 ≀ Zp. By [4, Theorem 2]
cl(G) = 2p− 1, d(G) = 2 and c(G) = 1. It is clear that |G| = p2p+1 therefore,
cc(G) = 2.

Example 5. Let G = ⟨x, y, t : x2n−2
= t2 = y2 = 1, xy = x−1+2n−4

t, xt =
x2

n−3+1, ty = t⟩. According to [7, p. 101], for n ≥ 6, G is a group of almost
maximal class of order 2n. By Theorem 2.1 (i), c(G) = 1.
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