CHARACTERIZATION OF FINITE DIMENSIONAL NILPOTENT LIE ALGEBRAS BY THE DIMENSION OF THEIR SCHUR MULTIPLIERS, $s(L)=5$

AFSANEH SHAMSAKI and PEYMAN NIROOMAND

Communicated by Sorin Dăscălescu

Abstract

It is known that the dimension of the Schur multiplier of a non-abelian nilpotent Lie algebra L of dimension n is equal to $\frac{1}{2}(n-1)(n-2)+1-s(L)$ for some $s(L) \geq 0$. The structure of all nilpotent Lie algebras has been given for $s(L) \leq 4$ in several papers. Here, we are going to give the structure of all non-abelian nilpotent Lie algebras for $s(L)=5$.

AMS 2020 Subject Classification: 17B30.
Key words: Schur multiplier, nilpotent Lie algebra, capable Lie algebra.

1. INTRODUCTION AND MOTIVATION

Let L be a finite dimensional nilpotent Lie algebra such that $L \cong F / R$ for a free Lie algebra F. Then by [4], the Schur multiplier $\mathcal{M}(L)$ of L is isomorphic to $R \cap F^{2} /[R, F]$. By a result of Moneyhun in [11], there exists a non-negative integer $t(L)$ such that $\operatorname{dim} \mathcal{M}(L)=\frac{1}{2} n(n-1)-t(L)$. It is a classical question to determine the structure of L by looking at the dimension of its Schur multiplier. The answer to this problem was given for $t(L) \leq 8$ in [5, 8, 9] and by putting some conditions on L for $t(L) \leq 16$ in 6] by several authors.

From [13], when L is a non-abelian nilpotent Lie algebra, the dimension of the Shur multiplier of L is equal to $\frac{1}{2}(n-1)(n-2)+1-s(L)$ for some $s(L) \geq 0$. It not only improves the bound of Moneyhun but also let us ask the same natural question about the characterization of Lie algebras in term of size $s(L)$. The answer to this question was given by several papers in $[15,22,23]$ for $s(L) \leq 4$ and for $s(L) \leq 15$ when conditions are put on L in [24].

It is not easy to characterize the nilpotent Lie algebras for $s(L) \geq 4$ by using the only methods of previous articles [13, 22, 23]. Thanks to a result of [18] and the classification of indecomposable Lie algebras of Gong [10], here we are able to characterize the structure of all nilpotent Lie algebras L for $s(L)=$ 5. It is important to know that the classifications of Gong were originally MATH. REPORTS 25(75) (2023), 2, 301-312
doi: $10.59277 / \mathrm{mrar}$.2023.25.75.2.301
studied in mathematical physics in the papers of Patera, Zassenhaus [19] and Morozov [12], but they are recently reconsidered by Bagarello and Russo in [1, 2, 3]. This emphasizes that the invariant $s(L)$ turns out to be very useful in many contexts of theoretical physics.

Throughout the paper, we may assume that L is a Lie algebra over an algebraically closed field of characteristic not equal to 2 and $A(n)$ and $H(m)$ are used to denote the abelian Lie algebra of dimension n and the Heisenberg Lie algebra of dimension $2 m+1$, respectively.

For the sake of convenience for the reader, some notations and terminology from [7, 8, 9, 10] are listed below.
$L_{3,2} \cong H(1) \quad$ with a basis $\left\{x_{1}, x_{2}, x_{3}\right\}$ and the multiplication $\left[x_{1}, x_{2}\right]=$ x_{3},
$L_{4,3} \cong L(3,4,1,4) \quad$ with a basis $\left\{x_{1}, \ldots, x_{4}\right\}$ and the multiplication $\left[x_{1}, x_{2}\right]=$ $x_{3},\left[x_{1}, x_{3}\right]=x_{4}$,
with a basis $\left\{x_{1}, \ldots, x_{5}\right\}$ and the multiplication $\left[x_{1}, x_{2}\right]=$ $x_{3},\left[x_{1}, x_{3}\right]=x_{5},\left[x_{2}, x_{4}\right]=x_{5}$,
$L_{5,6} \cong L^{\prime}(7,5,1,7) \quad$ with a basis $\left\{x_{1}, \ldots, x_{5}\right\}$ and the multiplication $\left[x_{1}, x_{2}\right]=$ $x_{3},\left[x_{1}, x_{3}\right]=x_{4},\left[x_{1}, x_{4}\right]=\left[x_{2}, x_{3}\right]=x_{5}$,
$L_{5,7} \cong L(7,5,1,7) \quad$ with a basis $\left\{x_{1}, \ldots, x_{5}\right\}$ and the multiplication $\left[x_{1}, x_{2}\right]=$ $x_{3},\left[x_{1}, x_{3}\right]=x_{4},\left[x_{1}, x_{4}\right]=x_{5}$,
$L_{5,8} \cong L(4,5,2,4) \quad$ with a basis $\left\{x_{1}, \ldots, x_{5}\right\}$ and the multiplication $\left[x_{1}, x_{2}\right]=$ $x_{4},\left[x_{1}, x_{3}\right]=x_{5}$,
$L_{5,9} \cong L(7,5,2,7) \quad$ with a basis $\left\{x_{1}, \ldots, x_{5}\right\}$ and the multiplication $\left[x_{1}, x_{2}\right]=$ $x_{3},\left[x_{1}, x_{3}\right]=x_{4},\left[x_{2}, x_{3}\right]=x_{5}$,
$L_{6,10} \quad$ with a basis $\left\{x_{1}, \ldots, x_{6}\right\}$ and the multiplication $\left[x_{1}, x_{2}\right]=$ $x_{3},\left[x_{1}, x_{3}\right]=x_{6},\left[x_{4}, x_{5}\right]=x_{6}$,
$L_{6,22}(\varepsilon)$
27B
$27 A$
$L_{3}=157$
$37 B$
$37 C$
$37 D$
with a basis $\left\{x_{1}, \ldots, x_{6}\right\}$ and the multiplication $\left[x_{1}, x_{2}\right]=$ $x_{5},\left[x_{1}, x_{3}\right]=x_{6},\left[x_{2}, x_{4}\right]=\varepsilon x_{6},\left[x_{3}, x_{4}\right]=x_{5}, \varepsilon \in \mathbb{F}$,
with a basis $\left\{x_{1}, \ldots, x_{7}\right\}$ and the multiplication $\left[x_{1}, x_{2}\right]=$ $\left[x_{3}, x_{4}\right]=x_{6},\left[x_{1}, x_{5}\right]=\left[x_{2}, x_{3}\right]=x_{7}$,
with a basis $\left\{x_{1}, \ldots, x_{7}\right\}$ and the multiplication $\left[x_{1}, x_{2}\right]=$ $x_{6},\left[x_{1}, x_{4}\right]=x_{7},\left[x_{3}, x_{5}\right]=x_{7}$,
with a basis $\left\{x_{1}, \ldots, x_{7}\right\}$ and the multiplication $\left[x_{1}, x_{2}\right]=$ $x_{3},\left[x_{1}, x_{3}\right]=\left[x_{2}, x_{4}\right]=\left[x_{5}, x_{6}\right]=x_{7}$
with a basis $\left\{x_{1}, \ldots, x_{7}\right\}$ and the multiplication $\left[x_{1}, x_{2}\right]=$ $x_{5},\left[x_{2}, x_{3}\right]=x_{6},\left[x_{3}, x_{4}\right]=x_{7}$,
with a basis $\left\{x_{1}, \ldots, x_{7}\right\}$ and the multiplication $\left[x_{1}, x_{2}\right]=$ $\left[x_{3}, x_{4}\right]=x_{5},\left[x_{2}, x_{3}\right]=x_{6},\left[x_{2}, x_{4}\right]=x_{7}$,
with a basis $\left\{x_{1}, \ldots, x_{7}\right\}$ and the multiplication $\left[x_{1}, x_{2}\right]=$ $\left[x_{3}, x_{4}\right]=x_{5},\left[x_{1}, x_{3}\right]=x_{6},\left[x_{2}, x_{4}\right]=x_{7}$.

We state some results without proof and refer the reader to see [14, 15 , 20, 23]. We recall that the Lie algebras $27 B$ and $27 A$ in [10] are expressed by different notations L_{1} and L_{2} in the following proposition, respectively.

Proposition 1.1 (See [16, Proposition 2.10]). The Schur multiplier of Lie algebras $L_{6,22}(\varepsilon), L_{5,8}, L_{1}$ and L_{2} are abelian Lie algebras of dimension 8, 6, 9 and 10 , respectively.

A Lie algebra L is called capable provided that $L \cong H / Z(H)$ for a Lie algebra H. From [21, Definition 1.4], $Z^{*}(L)$ is used to the denote the epicenter of L. The importance of $Z^{*}(L)$ is due to the fact that L is capable if and only if $Z^{*}(L)=0$. Another notion having relation to the capability is the concept of the exterior center of a Lie algebra $Z^{\wedge}(L)$ which is introduced in [14]. It is known that from [14, Lemma 3.1]), $Z^{*}(L)=Z^{\wedge}(L)$.

Lemma 1.2 (See [23, Corollary 2.3]). Let L be a non-capable nilpotent Lie algebra of dimension n such that $\operatorname{dim} L^{2} \geq 2$. Then

$$
n-3<s(L)
$$

Let $\otimes_{\text {mod }}$ be used to denote the operator of usual tensor product of Lie algebras. Then

Theorem 1.3 (See [18, Theorem 2.1]). Let L be a finite dimensional nilpotent Lie algebra non-abelian Lie algebra of class two. Then

$$
0 \rightarrow \operatorname{ker} g \rightarrow L^{2} \otimes_{\text {mod }} L^{a b} \xrightarrow{g} \mathcal{M}(L) \rightarrow \mathcal{M}\left(L^{a b}\right) \rightarrow L^{2} \rightarrow 0
$$

is exact, where

$$
g: x \otimes\left(z+L^{2}\right) \in L^{2} \otimes_{\text {mod }} L^{a b} \mapsto[\bar{x}, \bar{z}]+[R, F] \in \mathcal{M}(L)=R \cap F^{2} /[R, F]
$$

$$
\pi(\bar{x}+R)=x \text { and } \pi(\bar{z}+R)=z . \text { Moreover, the subalgebra }
$$

$$
K=\left\langle[x, y] \otimes\left(z+L^{2}\right)+[z, x] \otimes\left(y+L^{2}\right)+[y, z] \otimes\left(x+L^{2}\right) \mid x, y, z \in L\right\rangle
$$

is contained in $\operatorname{ker} g$.

2. MAIN RESULTS

We begin with the following lemma that is easily proven.
Lemma 2.1. There is no n-dimensional nilpotent Lie algebra with $s(L)=$ 5, when
(i) $\operatorname{dim} L^{2} \geq 4$;
(ii) $\operatorname{dim} L^{2}=1$.

Proof. (i) Let L be a nilpotent Lie algebra such that $m=\operatorname{dim} L^{2} \geq 4$ and $s(L)=5$. [15, Theorem 3.1] and our assumption implies that $\frac{1}{2}(n-1)(n-2)-4=\operatorname{dim} \mathcal{M}(L) \leq \frac{1}{2}(n+m-2)(n-m-1)+1 \leq \frac{1}{2}(n+2)(n-5)+1$.

This is a contradiction.
(ii) By contrary. Let L be a Lie algebra such that $\operatorname{dim} L^{2}=1$ and $s(L)=5$. Then by using [13, Lemma 3.3], $L \cong H(m) \oplus A(n-2 m-1)$ for some $m \geq 1$. Looking at [22, Corollary 2.5] shows that $s(L)=0$ or $s(L)=2$, when $m=1$ or $m \geq 2$, respectively. It is a contradiction. Hence, the result follows.

By using Lemma 2.1, we may assume that a nilpotent Lie algebras L with $s(L)=5$ has $2 \leq \operatorname{dim} L^{2} \leq 3$. First assume that $\operatorname{dim} L^{2}=2$.

Lemma 2.2. Let L be an n-dimensional non-capable nilpotent Lie algebra of dimension at most 7 and $\operatorname{dim} L^{2}=2$. Then L is isomorphic to one of the Lie algebras $L_{6,10}, L_{2}$ or L_{3}. Moreover, $s\left(L_{6,10}\right)=5$ and $s\left(L_{2}\right)=s\left(L_{3}\right)=6$.

Proof. The proof is similar to [23, Theorem 2.6].
Theorem 2.3. Let L be an n-dimensional nilpotent Lie algebra with $s(L)=5$ and $\operatorname{dim} L^{2}=2$. Then L is isomorphic to one of the Lie algebras $L(4,5,2,4) \oplus A(4), L(3,4,1,4) \oplus A(3), L(4,5,1,6) \oplus A(2), L_{6,22}(\varepsilon) \oplus A(2)$ or $L_{6,10}$.

Proof. Since $\operatorname{dim} L^{2}=2, L$ is nilpotent of class two or three. Let L be a Lie algebra of nilpotency class two. If L is a capable Lie algebra, then it should be isomorphic to one of the Lie algebras $L_{6,22}(\varepsilon) \oplus A, L_{5,8} \oplus A$ or $L_{1} \oplus A$, for an abelian Lie algebra A by using [16, Corollary 2.13].

Case (i) Let $L \cong L_{6,22}(\varepsilon) \oplus A$. Proposition 1.1 implies $\operatorname{dim} M\left(L_{6,22}(\varepsilon)\right)=$ 8. Since $5=s(L)=\frac{1}{2}(n-1)(n-2)+1-\operatorname{dim} \mathcal{M}(L)$ and $\operatorname{dim} \mathcal{M}(L)=$ $8+\frac{1}{2}(n-6)(n+1)$ by using [5, Theorem 1] and [11, Lemma 23], we have $n=8$. Hence $L \cong L_{6,22}(\varepsilon) \oplus A(2)$.

Case (ii) Let now $L \cong L_{5,8} \oplus A$. We know from Proposition 1.1 that $\operatorname{dim} \mathcal{M}\left(L_{5,8}\right)=6$. Since $5=s(L)=\frac{1}{2}(n-1)(n-2)+1-\operatorname{dim} \mathcal{M}(L)$ and $\operatorname{dim} \mathcal{M}(L)=6+\frac{1}{2}(n-5) n$ by using [5, Theorem 1] and [11, Lemma 23], we have $n=9$. Therefore $L \cong L_{5,8} \oplus A(4) \cong L(4,5,2,4) \oplus A(4)$.

Case (iii) Let $L \cong L_{1} \oplus A$. We know $\operatorname{dim} \mathcal{M}\left(L_{1}\right)=9$ by using Proposition 1.1. Since $5=s(L)=\frac{1}{2}(n-1)(n-2)+1-\operatorname{dim} \mathcal{M}(L)$ and $\operatorname{dim} \mathcal{M}(L)=$ $9+\frac{1}{2}(n-7)(n+2)$ by using [5, Theorem 1] and [11, Lemma 23], we have $n=5$, which is contradiction. Thus L cannot be isomorphic to $L_{1} \oplus A$.

Now let L be a Lie algebra of nilpotency class 3 . If L is a capable Lie algebra, then it should be isomorphic to one of the Lie algebras $L_{4,3} \oplus A(n-4)$ or $L_{5,5} \oplus A(n-5)$ by using [17, Theorem 5.5].

Case (i). Let $L \cong L_{4,3} \oplus A(n-4)$. Since $\operatorname{dim} \mathcal{M}\left(L_{4,3}\right)=2$ by using [8, Section 2], we have $\operatorname{dim} \mathcal{M}(L)=2+\frac{1}{2}(n-4)(n-1)$ by using [5, Theorem 1] and [11, Lemma 23]. Since $5=s(L)=\frac{1}{2}(n-1)(n-2)+1-\operatorname{dim} \mathcal{M}(L)$ and $\operatorname{dim} \mathcal{M}(L)=2+\frac{1}{2}(n-4)(n-1)$, we have $n=7$. Hence $L \cong L_{4,3} \oplus A(3) \cong$ $L(3,4,1,4) \oplus A(3)$.

Case (ii). Suppose $L \cong L_{5,5} \oplus A(n-5)$. [8, Section 3] shows that $\operatorname{dim} \mathcal{M}\left(L_{5,5}\right)=4$. Now [5, Theorem 1] and [11, Lemma 23] imply that $\operatorname{dim} \mathcal{M}(L)=4+\frac{1}{2} n(n-5)$. Since $5=s(L)=\frac{1}{2}(n-1)(n-2)+1-\operatorname{dim} \mathcal{M}(L)$ and $\operatorname{dim} \mathcal{M}(L)=4+\frac{1}{2} n(n-5)$, we have $n=7$. Therefore $L \cong L_{5,5} \oplus A(2) \cong$ $L(4,5,1,6) \oplus A(2)$.

If L is a non-capable Lie algebra of nilpotency class 2 or 3, then by using Lemma 1.2, we have $n \leq 7$. Therefore, $L \cong L_{6,10}$ by using Lemma 2.2. This completes the proof.

We now consider the case that $\operatorname{dim} L^{2}=3$. By looking all nilpotent Lie algebras listed in [7], we may choose all n-dimensional nilpotent Lie algebras L such that $\operatorname{dim} L^{2}=3$ for $n=5$ or 6 in the Table 1 .

Table 1

Name	Nonzero multiplication
$L_{5,6}$	$\left[x_{1}, x_{2}\right]=x_{3},\left[x_{1}, x_{3}\right]=x_{4},\left[x_{1}, x_{4}\right]=\left[x_{2}, x_{3}\right]=x_{5}$
$L_{5,7}$	$\left[x_{1}, x_{2}\right]=x_{3},\left[x_{1}, x_{3}\right]=x_{4},\left[x_{1}, x_{4}\right]=x_{5}$
$L_{5,9}$	$\left[x_{1}, x_{2}\right]=x_{3},\left[x_{1}, x_{3}\right]=x_{4},\left[x_{2}, x_{3}\right]=x_{5}$
$L_{6,6}$	$\left[x_{1}, x_{2}\right]=x_{3},\left[x_{1}, x_{3}\right]=x_{4},\left[x_{1}, x_{4}\right]=\left[x_{2}, x_{3}\right]=x_{5}$
$L_{6,7}$	$\left[x_{1}, x_{2}\right]=x_{3},\left[x_{1}, x_{3}\right]=x_{4},\left[x_{1}, x_{4}\right]=x_{5}$
$L_{6,9}$	$\left[x_{1}, x_{2}\right]=x_{3},\left[x_{1}, x_{3}\right]=x_{4},\left[x_{2}, x_{3}\right]=x_{5}$
$L_{6,11}$	$\left[x_{1}, x_{2}\right]=x_{3},\left[x_{1}, x_{3}\right]=x_{4},\left[x_{1}, x_{4}\right]=\left[x_{2}, x_{3}\right]=\left[x_{2}, x_{5}\right]=x_{6}$
$L_{6,12}$	$\left[x_{1}, x_{2}\right]=x_{3},\left[x_{1}, x_{3}\right]=x_{4},\left[x_{1}, x_{4}\right]=\left[x_{2}, x_{5}\right]=x_{6}$
$L_{6,13}$	$\left[x_{1}, x_{2}\right]=x_{3},\left[x_{1}, x_{3}\right]=\left[x_{2}, x_{4}\right]=x_{5},\left[x_{1}, x_{5}\right]=\left[x_{3}, x_{4}\right]=x_{6}$
$L_{6,19}(\epsilon)$	$\left[x_{1}, x_{2}\right]=x_{4},\left[x_{1}, x_{3}\right]=x_{5},\left[x_{1}, x_{5}\right]=\left[x_{2}, x_{4}\right]=x_{6},\left[x_{3}, x_{5}\right]=\epsilon x_{6}$
$L_{6,20}$	$\left[x_{1}, x_{2}\right]=x_{4},\left[x_{1}, x_{3}\right]=x_{5},\left[x_{1}, x_{5}\right]=\left[x_{2}, x_{4}\right]=x_{6}$
$L_{6,23}$	$\left[x_{1}, x_{2}\right]=x_{3},\left[x_{1}, x_{3}\right]=\left[x_{2}, x_{4}\right]=x_{5},\left[x_{1}, x_{4}\right]=x_{6}$
$L_{6,24}(\epsilon)$	$\left[x_{1}, x_{2}\right]=x_{3},\left[x_{1}, x_{3}\right]=\left[x_{2}, x_{4}\right]=x_{5},\left[x_{1}, x_{4}\right]=\varepsilon x_{6},\left[x_{2}, x_{3}\right]=x_{6}$
$L_{6,25}$	$\left[x_{1}, x_{2}\right]=x_{3},\left[x_{1}, x_{3}\right]=x_{5},\left[x_{1}, x_{4}\right]=x_{6}$
$L_{6,26}$	$\left[x_{1}, x_{2}\right]=x_{4},\left[x_{1}, x_{3}\right]=x_{5},\left[x_{2}, x_{3}\right]=x_{6}$

Assume L is nilpotent Lie algebra of dimension 7 such that $\operatorname{dim} L^{2}=3$. By looking at the classification of all nilpotent Lie algebras in [10], L must be isomorphic to one of the Lie algebras listed in Tables 2 and 3.

Table 2-7-dimensional indecomposable nilpotent Lie algebras
Name

37 A
$37 B$
$37 C$
$37 D$
$257 A$
257B
$257 C$
257D
$257 E$
257F
257G
257H
$257 I$
257 J
257 K
$257 L$
147 A
147B
1457 A
1457B
137 A
137B
$137 C$
$137 D$
1357A
1357B
$1357 C$

Nonzero multiplication

$$
\begin{aligned}
& {\left[x_{1}, x_{2}\right]=x_{5},\left[x_{2}, x_{3}\right]=x_{6},\left[x_{2}, x_{4}\right]=x_{7}} \\
& {\left[x_{1}, x_{2}\right]=x_{5},\left[x_{2}, x_{3}\right]=x_{6},\left[x_{3}, x_{4}\right]=x_{7}}
\end{aligned}
$$

$$
\left[x_{1}, x_{2}\right]=\left[x_{3}, x_{4}\right]=x_{5},\left[x_{2}, x_{3}\right]=x_{6},\left[x_{2}, x_{4}\right]=x_{7}
$$

$$
\left[x_{1}, x_{2}\right]=\left[x_{3}, x_{4}\right]=x_{5},\left[x_{1}, x_{3}\right]=x_{6},\left[x_{2}, x_{4}\right]=x_{7}
$$

$$
\left[x_{1}, x_{2}\right]=x_{3},\left[x_{1}, x_{3}\right]=\left[x_{2}, x_{4}\right]=x_{6},\left[x_{1}, x_{5}\right]=x_{7}
$$

$$
\left[x_{1}, x_{2}\right]=x_{3},\left[x_{1}, x_{3}\right]=x_{6},\left[x_{1}, x_{4}\right]=\left[x_{2}, x_{5}\right]=x_{7}
$$

$$
\left[x_{1}, x_{2}\right]=x_{3},\left[x_{1}, x_{3}\right]=\left[x_{2}, x_{4}\right]=x_{6},\left[x_{2}, x_{5}\right]=x_{7}
$$

$$
\left[x_{1}, x_{2}\right]=x_{3},\left[x_{1}, x_{3}\right]=\left[x_{2}, x_{4}\right]=x_{6},\left[x_{1}, x_{4}\right]=\left[x_{2}, x_{5}\right]=x_{7}
$$

$$
\begin{gathered}
{\left[x_{1}, x_{2}\right]=x_{3},\left[x_{1}, x_{3}\right]=\left[x_{4}, x_{5}\right]=x_{6},\left[x_{2}, x_{4}\right]=x_{7}} \\
{\left[x_{1}, x_{2}\right]=x_{3},\left[x_{2}, x_{3}\right]=\left[x_{4}, x_{5}\right]=x_{6},\left[x_{2}, x_{4}\right]=x_{7}} \\
{\left[x_{1}, x_{2}\right]=x_{3},\left[x_{1}, x_{3}\right]=\left[x_{4}, x_{5}\right]=x_{6},\left[x_{1}, x_{5}\right]=\left[x_{2}, x_{4}\right]=x_{7}} \\
{\left[x_{1}, x_{2}\right]=x_{3},\left[x_{1}, x_{3}\right]=\left[x_{2}, x_{4}\right]=x_{6},\left[x_{4}, x_{5}\right]=x_{7}} \\
{\left[x_{1}, x_{2}\right]=x_{3},\left[x_{1}, x_{3}\right]=\left[x_{1}, x_{4}\right]=x_{6},\left[x_{1}, x_{5}\right]=\left[x_{2}, x_{3}\right]=x_{7}} \\
{\left[x_{1}, x_{2}\right]=x_{3},\left[x_{1}, x_{3}\right]=\left[x_{2}, x_{4}\right]=x_{6},\left[x_{1}, x_{5}\right]=\left[x_{2}, x_{3}\right]=x_{7}} \\
{\left[x_{1}, x_{2}\right]=x_{3},\left[x_{1}, x_{3}\right]=x_{6},\left[x_{2}, x_{3}\right]=\left[x_{4}, x_{5}\right]=x_{7}} \\
{\left[x_{1}, x_{2}\right]=x_{3},\left[x_{1}, x_{3}\right]=\left[x_{2}, x_{4}\right]=x_{6},\left[x_{2}, x_{3}\right]=\left[x_{4}, x_{5}\right]=x_{7}} \\
{\left[x_{1}, x_{2}\right]=x_{4},\left[x_{1}, x_{3}\right]=x_{5},\left[x_{1}, x_{6}\right]=\left[x_{2}, x_{5}\right]=\left[x_{3}, x_{4}\right]=x_{7}} \\
{\left[x_{1}, x_{2}\right]=x_{4},\left[x_{1}, x_{3}\right]=x_{5},\left[x_{1}, x_{4}\right]=\left[x_{2}, x_{6}\right]=\left[x_{3}, x_{5}\right]=x_{7}}
\end{gathered}
$$

$$
\begin{gathered}
{\left[x_{1}, x_{i}\right]=x_{i+1} \quad i=2,3, \quad\left[x_{1}, x_{4}\right]=\left[x_{5}, x_{6}\right]=x_{7}} \\
{\left[x_{1}, x_{i}\right]=x_{i+1} \quad i=2,3,\left[x_{1}, x_{4}\right]=\left[x_{2}, x_{3}\right]=\left[x_{5}, x_{6}\right]=x_{7}} \\
{\left[x_{1}, x_{2}\right]=x_{5},\left[x_{1}, x_{5}\right]=\left[x_{3}, x_{6}\right]=x_{7},\left[x_{3}, x_{4}\right]=x_{6}}
\end{gathered}
$$

$$
\left[x_{1}, x_{2}\right]=x_{5},\left[x_{3}, x_{4}\right]=x_{6},\left[x_{1}, x_{5}\right]=\left[x_{2}, x_{4}\right]=\left[x_{3}, x_{6}\right]=x_{7}
$$

$$
\left[x_{1}, x_{2}\right]=x_{5},\left[x_{1}, x_{4}\right]=\left[x_{2}, x_{3}\right]=x_{6},\left[x_{1}, x_{6}\right]=x_{7},\left[x_{3}, x_{5}\right]=-x_{7}
$$

$$
\left[x_{1}, x_{2}\right]=x_{5},\left[x_{1}, x_{4}\right]=\left[x_{2}, x_{3}\right]=x_{6},\left[x_{1}, x_{6}\right]=\left[x_{2}, x_{4}\right]=x_{7},\left[x_{3}, x_{5}\right]=-x_{7}
$$

$$
\left[x_{1}, x_{2}\right]=x_{4},\left[x_{1}, x_{4}\right]=\left[x_{2}, x_{3}\right]=x_{5},\left[x_{1}, x_{5}\right]=\left[x_{2}, x_{6}\right]=x_{7},\left[x_{3}, x_{4}\right]=-x_{7}
$$

$$
\left[x_{1}, x_{2}\right]=x_{4},\left[x_{1}, x_{4}\right]=\left[x_{2}, x_{3}\right]=x_{5},\left[x_{1}, x_{5}\right]=\left[x_{3}, x_{6}\right]=x_{7},\left[x_{3}, x_{4}\right]=-x_{7}
$$

$$
\left[x_{1}, x_{2}\right]=x_{4},\left[x_{1}, x_{4}\right]=\left[x_{2}, x_{3}\right]=x_{5},\left[x_{1}, x_{5}\right]=\left[x_{2}, x_{4}\right]=x_{7},\left[x_{3}, x_{4}\right]=-x_{7}
$$

Table 3-7-dimensional decomposable nilpotent Lie algebras

Name	Name
$L_{4,3} \oplus H(1)$	$L_{6,19}(\epsilon) \oplus A(1)$
$L_{5,6} \oplus A(2)$	$L_{6,20} \oplus A(1)$
$L_{5,7} \oplus A(2)$	$L_{6,23} \oplus A(1)$
$L_{5,9} \oplus A(2)$	$L_{6,24}(\epsilon) \oplus A(1)$
$L_{6,11} \oplus A(1)$	$L_{6,25} \oplus A(1)$
$L_{6,12} \oplus A(1)$	$L_{6,26} \oplus A(1)$
$L_{6,13} \oplus A(1)$	

We need the following lemma from [23, Lemma 2.7] for the proof of the Main Theorem.

Lemma 2.4. Let L be an n-dimensional nilpotent Lie algebra such that $n=5,6$ or $7, \operatorname{dim} L^{2}=\operatorname{dim} Z(L)=3$ and $Z(L)=L^{2}$. Then the structure and the Schur multiplier of L are given in the following table.

Table 4					
Name	$\operatorname{dim} \mathcal{M}(L)$	$s(L)$	Name	$\operatorname{dim} \mathcal{M}(L)$	$s(L)$
$L_{6,26}$	8	3	$37 C$	11	5
$37 A$	12	4	$37 D$	11	5
$37 B$	11	5			

Lemma 2.5. Let L be a nilpotent Lie algebra of dimension at most 7 such that $\operatorname{dim} L^{2}=3$, $\operatorname{dim} Z(L)=2$ and $Z(L) \subset L^{2}$. Then the structure and the Schur multiplier of L are given in the following table.

Table 5

Name	$\operatorname{dim} \mathcal{M}(L)$	$s(L)$	Name	$\operatorname{dim} \mathcal{M}(L)$	$s(L)$
$L_{5,9}$	3	4	$257 E$	8	8
$L_{6,23}$	6	5	$257 F$	9	7
$L_{6,24}(\epsilon)$	5	6	$257 G$	8	8
$L_{6,25}$	6	5	$257 H$	8	8
$257 A$	9	7	$257 I$	8	8
$257 B$	8	8	$257 J$	8	8
$257 C$	9	7	$257 K$	6	10
$257 D$	8	8	$257 L$	6	10

Proof. The proof is similar to [23, Lemma 2.5]. \square

Lemma 2.6. Let L be an n-dimensional nilpotent Lie algebra such that $n=7$, $\operatorname{dim} L^{2}=3$ and $\operatorname{dim} Z(L)=4$. Then the structure and the Schur multiplier of L are given in the following table.

Table 6

Name	$\operatorname{dim} \mathcal{M}(L)$	$s(L)$
$L_{5,9} \oplus A(2)$	8	8
$L_{6,26} \oplus A(1)$	11	5

Proof. Since $\operatorname{dim} Z(L)=4, L$ is isomorphic to $L_{5,9} \oplus A(2)$ or $L_{6,26} \oplus A(1)$ by searching in Tables 2 and 3 . Let $L \cong L_{6,26} \oplus A(1)$. Since $\operatorname{dim} \mathcal{M}\left(L_{6,26}\right)=$ 8 by using Table 4 , we have $\operatorname{dim} \mathcal{M}(L)=11$ by using [5. Theorem 1] and [11, Lemma 23]. Hence $s(L)=5$. Also by using similar method, we can see $\operatorname{dim} \mathcal{M}\left(L_{5,9} \oplus A(2)\right)=8$ and $s(L)=8$.

Lemma 2.7 ([23, Lemma 2.9]). Let L be an n-dimensional nilpotent Lie algebra such that $n=5,6$ or $7, \operatorname{dim} L^{2}=3$ and $\operatorname{dim} Z(L)=1$. Then the structure and the Schur multiplier of L are given in the following table.

Table 7

Name	$\operatorname{dim} \mathcal{M}(L)$	$s(L)$	Name	$\operatorname{dim} \mathcal{M}(L)$	$s(L)$
$L_{5,6}$	3	4	$1457 A$	6	10
$L_{5,7}$	3	4	$1457 B$	6	10
$L_{6,11}$	5	6	$137 A$	7	9
$L_{6,12}$	5	6	$137 B$	7	9
$L_{6,13}$	4	7	$137 C$	7	9
$L_{6,19}(\epsilon)$	5	6	$137 D$	7	9
$L_{6,20}$	5	6	$1357 A$	7	9
$147 A$	8	8	$1357 B$	6	10
$147 B$	8	8	$1357 C$	6	10

Recall that a Lie algebra L is called generalized Heisenberg of rank n if $L^{2}=Z(L)$ and $\operatorname{dim} L^{2}=n$.

Lemma 2.8. Let L be an n-dimensional generalized Heisenberg of rank 3 with $s(L)=5$, then $n \leq 7$.

Proof. By Theorem 1.3, we have $\operatorname{dim} \operatorname{ker} g=\operatorname{dim} \mathcal{M}\left(L^{a b}\right)-\operatorname{dim} L^{2}+$ $\operatorname{dim} L^{a b} \otimes_{\text {mod }} L^{2}-\operatorname{dim} \mathcal{M}(L)$. Since $\operatorname{dim} \mathcal{M}(L)=\frac{1}{2}(n-1)(n-2)-4$ and $\operatorname{dim} L^{a b}=n-3$, we have $\operatorname{dim} \operatorname{ker} g=n-3$.

By contrary, let $n \geq 8$. Then $d=\operatorname{dim} L^{a b}=n-3 \geq 5$. Since $\operatorname{dim} L^{2}=3$, we can choose a basis $\left\{x_{1}+L^{2}, \ldots, x_{d}+L^{2}\right\}$ for $L^{a b}$ such that $\left[x_{1}, x_{2}\right],\left[x_{2}, x_{3}\right]$ and $\left[x_{3}, x_{4}\right]$ are non-trivial in L^{2}. Thus

$$
\left.L^{a b} \otimes_{\bmod } L^{2} \cong \bigoplus_{i=1}^{d}\left(\left\langle x_{i}+L^{2}\right)\right\rangle \otimes_{\text {mod }} L^{2}\right)
$$

Hence, all elements of
$\left\{\left[x_{1}, x_{2}\right] \otimes x_{i}+L^{2} \oplus\left[x_{i}, x_{1}\right] \otimes x_{2}+L^{2} \oplus\left[x_{2}, x_{i}\right] \otimes x_{1}+L^{2}, \mid 3 \leq i \leq d, i \neq 1,2\right\}$ and
$\left\{\left[x_{2}, x_{3}\right] \otimes x_{i}+L^{2} \oplus\left[x_{i}, x_{3}\right] \otimes x_{2}+L^{2} \oplus\left[x_{3}, x_{i}\right] \otimes x_{2}+L^{2}, \mid 3 \leq i \leq d, i \neq 1,2,3\right\}$ $\left\{\left[x_{3}, x_{4}\right] \otimes x_{i}+L^{2} \oplus\left[x_{i}, x_{3}\right] \otimes x_{4}+L^{2} \oplus\left[x_{4}, x_{i}\right] \otimes x_{3}+L^{2}, \mid 3 \leq i \leq d, i \neq 2,3,4\right\}$ are linearly independent and so $2(n-6)+n-5 \leq \operatorname{ker} g$. That is a contradiction for $n \geq 8$. Therefore, the assumption is false and the result follows.

Let $c(L)$ be used to show the nilpotency class of L. Then
Lemma 2.9. There is no nilpotent Lie algebra L with $\operatorname{dim} L^{2}=3$, $\operatorname{dim} Z(L)=1$ and $s(L)=5$ such that $L / Z(L) \cong L_{5,8} \oplus A(2)$.

Proof. By contrary, let L be a nilpotent Lie algebra L with $\operatorname{dim} L^{2}=3$, $\operatorname{dim} Z(L)=1$ and $s(L)=5$ such that $L / Z(L) \cong L_{5,8} \oplus A(2)$. Then $\operatorname{dim} L=8$ and $c l(L)=3$. Since $c l(L)=3$ and $\operatorname{dim} Z(L)=1$, we have $L^{3}=Z(L)$. On the other hand, $\operatorname{dim} \mathcal{M}(L)=\operatorname{dim} \mathcal{M}(L / Z(L))+\left(\operatorname{dim} L / L^{2}-1\right) \operatorname{dim} Z(L)-$ $\operatorname{dim} \operatorname{ker} \lambda_{3}$ and $\operatorname{dim} \operatorname{ker} \lambda_{3} \geq 2$ by using proof [20, Theorem 1.1]. Thus
$\operatorname{dim} \mathcal{M}(L) \leq \operatorname{dim} \mathcal{M}(L / Z(L))+\left(\operatorname{dim} L / L^{2}-1\right) \operatorname{dim} Z(L)-2$.
It is a contradiction.
Theorem 2.10. Let L be an n-dimensional nilpotent Lie algebra with $s(L)=5$ and $\operatorname{dim} L^{2}=3$. Then L is isomorphic to one of the Lie algebras $L_{6,23}, L_{6,25}, 37 B, 37 C$ or $37 D$.

Proof. First assume that $\operatorname{dim} Z(L) \geq 5$, or $\operatorname{dim} Z(L)=3$ and $Z(L) \neq L^{2}$, or $\operatorname{dim} Z(L)=2$ and $Z(L) \not \subset L^{2}$. We show that in these cases, there is no such Lie algebra L of dimension n with $s(L)=5$.

Let I be a central ideal of L of dimension one such that $L^{2} \cap I=0$. Since $\operatorname{dim}(L / I)^{2}=3$, by using [15, Theorem 3.1], we have

$$
\operatorname{dim} \mathcal{M}(L / I) \leq \frac{1}{2} n(n-5)+1
$$

If the equality holds, then

$$
\frac{1}{2}(n-2)(n-3)+1-s(L / I)=\operatorname{dim} \mathcal{M}(L / I)=\frac{1}{2} n(n-5)+1
$$

Therefore, $s(L / I)=3$ and by using [22, Theorem 3.2], there is no Lie algebra satisfying in $\operatorname{dim}(L / I)^{2}=3$. Thus [15, Corollary 2.3] and our assumption implies

$$
\operatorname{dim} \mathcal{M}(L)=\frac{1}{2}(n-1)(n-2)-4 \leq \frac{1}{2} n(n-5)+(n-4),
$$

which is a contradiction. Therefore we may assume that $\operatorname{dim} Z(L)=4$, or $\operatorname{dim} Z(L)=3$ and $L^{2}=Z(L)$, or $\operatorname{dim} Z(L)=2$ and $Z(L) \subset L^{2}$, or $\operatorname{dim} Z(L)=1$.

If $\operatorname{dim} Z(L)=4$, then there is a central ideal of L of dimension one such that $L^{2} \cap I=0$. Since $\operatorname{dim}(L / I)^{2}=3$, by using [15, Theorem 3.1], we have

$$
\operatorname{dim} \mathcal{M}(L / I) \leq \frac{1}{2} n(n-5)+1
$$

If the equality holds, then

$$
\frac{1}{2}(n-2)(n-3)+1-s(L / I)=\operatorname{dim} \mathcal{M}(L / I)=\frac{1}{2} n(n-5)+1
$$

Therefore $s(L / I)=3$ and by using Table $4, L / I \cong L_{6,26}$. Since $\operatorname{dim} Z(L)=4$ and $\operatorname{dim} L=7$, we have $L \cong L_{6,26} \oplus A(1)$ by using Lemma 2.6. Now let $\operatorname{dim} \mathcal{M}(L) \leq \frac{1}{2} n(n-5)$. Thus [15, corollary 2.3] and our assumption imply

$$
\operatorname{dim} \mathcal{M}(L)=\frac{1}{2}(n-1)(n-2)-4 \leq \frac{1}{2} n(n-5)+(n-4),
$$

which is a contradiction.
If $\operatorname{dim} Z(L)=3$ and $L^{2}=Z(L)$, then L is isomorphic to one of the Lie algebras $37 B, 37 C$ or $37 D$ by using Lemmas 2.4 and 2.8 .

Assume that $\operatorname{dim} Z(L)=2$ and $Z(L) \subset L^{2}$. Then $\operatorname{dim}(L / Z(L))^{2}=1$. Since $L / Z(L)$ capable, by using [14, Theorem 3.5] and [13, Lemma 3.3], we have $L / Z(L) \cong H(1) \oplus A(n-5)$. Hence L is nilpotent of class 3 . Therefore, by using [22, Theorem 2.6] for $c=3$, we have

$$
\operatorname{dim} L^{3}+\frac{1}{2}(n-1)(n-2)-3 \leq \operatorname{dim} \mathcal{M}\left(L / L^{3}\right)+\operatorname{dim}\left(L / Z_{2}(L) \otimes L^{3}\right)
$$

Now since $1 \leq \operatorname{dim} L^{3} \leq 2$, we can obtain that $n \leq 7$. Hence Lemma 2.5 implies that $L \cong L_{6,23}$ or $L \cong L_{6,25}$.

Finally, assume that $\operatorname{dim} Z(L)=1$. Then $\operatorname{dim}(L / Z(L))^{2}=2$. By using [15. Corollary 2.3], we have

$$
\frac{1}{2}(n-1)(n-2)-3 \leq \frac{1}{2}(n-2)(n-3)+1-s(L / Z(L))+n-3 .
$$

Thus $s(L / Z(L)) \leq 3$.
If $s(L / Z(L))=0$, then $L \cong H(1) \oplus A(n-4)$ by [15, Theorem 3.1]. This case cannot occur, since $\operatorname{dim}(L / Z(L))^{2}=2$.

If $s(L / Z(L))=1$, then [13, Theorem 3.9] implies that $L \cong L(4,5,2,4)$. Therefore, $n=6$.

If $s(L / Z(L))=2$, then $L / Z(L)$ is isomorphic to one of the Lie algebras $L(3,4,1,4), L(4,5,2,4) \oplus A(1)$ or $H(m) \oplus A(n-2 m-1)(m \geq 2)$ by using [13, Theorem 4.5]. In the case $L(3,4,1,4)$ or $L(4,5,2,4) \oplus A(1)$, we have $n=5$ or 7 .

In the case $L / Z(L) \cong H(m) \oplus A(n-2 m-1)(m \geq 2)$, then we have a contradiction, since $\operatorname{dim}(L / Z(L))^{2}=2$.

If $s(L / Z(L))=3, L / Z(L)$ is isomorphic to one of the Lie algebras $L(4,5,1,6), L(5,6,2,7), L^{\prime}(5,6,2,7), L(7,6,2,7), L^{\prime}(7,6,2,7)$ or $L(3,4,1,4) \oplus$ $A(1)$ by [22, Main Theorem] and Lemma 2.9 .

Hence $n=5,6$ or 7 when $\operatorname{dim} Z(L)=1$. But there is no such Lie algebra by Lemma 2.7. This completes proof. \square

Theorem 2.11. Let L be a non-abelian n-dimensional nilpotent Lie algebra. Then $s(L)=5$ if and only if L is isomorphic to one of the Lie algebras $L(4,5,2,4) \oplus A(4), L(3,4,1,4) \oplus A(3), L(4,5,1,6) \oplus A(2), L_{6,22}(\varepsilon) \oplus A(2)$, $L_{6,26} \oplus A(1), L_{6,10}, L_{6,23}, L_{6,25}, 37 B, 37 C$ or $37 D$.

Proof. By using Lemma 2.1, Theorems 2.3 and 2.10, we can obtain the result.

Acknowledgments. We thank the editor for the patience and the referee for useful comments.

REFERENCES

[1] F. Bagarello and F.G. Russo, A description of pseudo-bosons in terms of nilpotent Lie algebras. J. Geom. Phys. 125 (2018), 1-11.
[2] F. Bagarello and F.G. Russo, On the presence of families of pseudo-bosons in nilpotent Lie algebras of arbitrary corank. J. Geom. Phys. 137 (2019), 124-131.
[3] F. Bagarello and F.G. Russo, Realization of Lie algebras of high dimension via pseudobosonic operators. J. Lie Theory $\mathbf{3 0}$ (2020), 4, 925-938.
[4] P. Batten, Multipliers and covers of Lie algebras. PhD Thesis, North Carolina State University. ProQuest LLC, Ann Arbor, MI, 1993.
[5] P. Batten, K. Moneyhun, and E. Stitzinger, On characterizing nilpotent Lie algebras by their multipliers. Comm. Algebra 24 (1996), 14, 4319-4330.
[6] L.R. Bosko, On Schur multipliers of Lie algebras and groups of maximal class. Internat. J. Algebra Comput. 20 (2010), 6, 807-821.
[7] W.A. De Graaf, Classification of 6 -dimensional nilpotent Lie algebras over fields of characteristic not 2. J. Algebra. 309 (2006), 2, 640-653.
[8] P. Hardy, and E. Stitzinger, On characterizing nilpotent Lie algebras by their multipliers, $t(L)=3,4,5,6$. Comm. Algebra 26 (1998), 11, 3527-3539.
[9] P. Hardy, On characterizing nilpotent Lie algebras by their multipliers. III. Comm. Algebra 33 (2005), 11, 4205-4210.
[10] M.P. Gong, Classification of nilpotent Lie algebras of dimension 7 (over algebraically closed fields and R). Ph.D. Thesis, University of Waterloo, Canada. ProQuest LLC, Ann Arbor, MI, 1998.
[11] K. Moneyhun, Isoclinisms in Lie algebras. Algebras Groups Geom. 11 (1994), 1, 9-22.
[12] V.V. Morozov, Classification of nilpotent Lie algebras of sixth order. (Russian) Izv. Vyssh. Uchebn. Zaved. Mat. 1958 (1958), 4(5), 161-171.
[13] P. Niroomand, On dimension of the Schur multiplier of nilpotent Lie algebras. Cent. Eur. J. Math. 9 (2011), 1, 57-64.
[14] P. Niroomand, M. Parvizi, and F.G. Russo, Some criteria for detecting capable Lie algebras. J. Algebra 384 (2013), 36-44.
[15] P. Niroomand and F.G. Russo, A note on the Schur multiplier of a nilpotent Lie algebra. Comm. Algebra 39 (2013), 4, 1293-1297.
[16] P. Niroomand, F. Johari, and M. Parvizi, On the capability and Schur multiplier of nilpotent Lie algebra of class two. Proc. Amer. Math. Soc. 144 (2016), 10, 4157-4168.
[17] P. Niroomand, F. Johari, and M. Parvizi, Capable Lie algebras with the derived subalgebra of dimension two over an arbitrary field. Linear Multilinear Algebra 67 (2019), 3, 542554.
[18] P. Niroomand and F. Johari, Some results on the Schur multiplier of nilpotent Lie algebras. J. Algebra 534 (2019), 15, 34-50.
[19] J. Patera and H. Zassenhaus, Solvable Lie algebras of dimension ≤ 4 over perfect fields. Linear Algebra Appl. 142 (1990), 1-17.
[20] P. Rai, On the dimension of the Schur multiplier of nilpotent Lie algebras. Comm. Algebra 47 (2019), 10, 3982-3986. arXiv:1705.03208.
[21] A.R. Salemkar, V. Alamian, and H. Mohammadzadeh, Some properties of the Schur multiplier and covers of Lie algebras. Comm. Algebra 36 (2008), 2, 697-707.
[22] F. Saeedi, H. Arabyani, and P. Niroomand, On dimension of Schur multiplier of nilpotent Lie algebras II. Asian-Eur. J. Math. 10 (2016), 4, 1750076.
[23] A. Shamsaki and P. Niroomand. On characterizing nilpotent Lie algebra by their multiplier, $s(L)=4$. Rend. Circ. Mat. Palermo (2), 69 (2020), 1, 259-272.
[24] A. Shamsaki and P. Niroomand, On the Schur multipliers of Lie algebras of maximal class. Internat. J. Algebra Comput. 29 (2019), 5, 795-901.

Received December 25, 2019

> Damghan University
> School of Mathematics and Computer Science Damghan, Iran
> Shamsaki.Afsaneh@yahoo.com
> niroomand@du.ac.ir, p_niroomand@yahoo.com

