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It is known that the dimension of the Schur multiplier of a non-abelian nilpotent
Lie algebra L of dimension n is equal to 1

2
(n − 1)(n − 2) + 1 − s(L) for some

s(L) ≥ 0. The structure of all nilpotent Lie algebras has been given for s(L) ≤ 4
in several papers. Here, we are going to give the structure of all non-abelian
nilpotent Lie algebras for s(L) = 5.
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1. INTRODUCTION AND MOTIVATION

Let L be a finite dimensional nilpotent Lie algebra such that L ∼= F/R
for a free Lie algebra F . Then by [4], the Schur multiplier M(L) of L is
isomorphic to R ∩ F 2/[R,F ]. By a result of Moneyhun in [11], there exists
a non-negative integer t(L) such that dimM(L) = 1

2n(n − 1) − t(L). It is a
classical question to determine the structure of L by looking at the dimension
of its Schur multiplier. The answer to this problem was given for t(L) ≤ 8 in
[5, 8, 9] and by putting some conditions on L for t(L) ≤ 16 in [6] by several
authors.

From [13], when L is a non-abelian nilpotent Lie algebra, the dimension
of the Shur multiplier of L is equal to 1

2(n − 1)(n − 2) + 1 − s(L) for some
s(L) ≥ 0. It not only improves the bound of Moneyhun but also let us ask the
same natural question about the characterization of Lie algebras in term of size
s(L). The answer to this question was given by several papers in [15, 22, 23]
for s(L) ≤ 4 and for s(L) ≤ 15 when conditions are put on L in [24].

It is not easy to characterize the nilpotent Lie algebras for s(L) ≥ 4 by
using the only methods of previous articles [13, 22, 23]. Thanks to a result of
[18] and the classification of indecomposable Lie algebras of Gong [10], here we
are able to characterize the structure of all nilpotent Lie algebras L for s(L) =
5. It is important to know that the classifications of Gong were originally
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studied in mathematical physics in the papers of Patera, Zassenhaus [19] and
Morozov [12], but they are recently reconsidered by Bagarello and Russo in
[1, 2, 3]. This emphasizes that the invariant s(L) turns out to be very useful
in many contexts of theoretical physics.

Throughout the paper, we may assume that L is a Lie algebra over an
algebraically closed field of characteristic not equal to 2 and A(n) and H(m)
are used to denote the abelian Lie algebra of dimension n and the Heisenberg
Lie algebra of dimension 2m+ 1, respectively.

For the sake of convenience for the reader, some notations and terminol-
ogy from [7, 8, 9, 10] are listed below.

L3,2
∼= H(1) with a basis {x1, x2, x3} and the multiplication [x1, x2] =

x3,
L4,3

∼= L(3, 4, 1, 4) with a basis {x1, ..., x4} and the multiplication [x1, x2] =
x3, [x1, x3] = x4,

L5,5
∼= L(4, 5, 1, 6) with a basis {x1, ..., x5} and the multiplication [x1, x2] =

x3, [x1, x3] = x5, [x2, x4] = x5,
L5,6

∼= L′(7, 5, 1, 7) with a basis {x1, ..., x5} and the multiplication [x1, x2] =
x3, [x1, x3] = x4, [x1, x4] = [x2, x3] = x5,

L5,7
∼= L(7, 5, 1, 7) with a basis {x1, ..., x5} and the multiplication [x1, x2] =

x3, [x1, x3] = x4, [x1, x4] = x5,
L5,8

∼= L(4, 5, 2, 4) with a basis {x1, ..., x5} and the multiplication [x1, x2] =
x4, [x1, x3] = x5,

L5,9
∼= L(7, 5, 2, 7) with a basis {x1, ..., x5} and the multiplication [x1, x2] =

x3, [x1, x3] = x4, [x2, x3] = x5,
L6,10 with a basis {x1, ..., x6} and the multiplication [x1, x2] =

x3, [x1, x3] = x6, [x4, x5] = x6,
L6,22(ε) with a basis {x1, ..., x6} and the multiplication [x1, x2] =

x5, [x1, x3] = x6, [x2, x4] = εx6, [x3, x4] = x5, ε ∈ F,
27B with a basis {x1, ..., x7} and the multiplication [x1, x2] =

[x3, x4] = x6, [x1, x5] = [x2, x3] = x7,
27A with a basis {x1, ..., x7} and the multiplication [x1, x2] =

x6, [x1, x4] = x7, [x3, x5] = x7,
L3 = 157 with a basis {x1, ..., x7} and the multiplication [x1, x2] =

x3, [x1, x3] = [x2, x4] = [x5, x6] = x7

37B with a basis {x1, ..., x7} and the multiplication [x1, x2] =
x5, [x2, x3] = x6, [x3, x4] = x7,

37C with a basis {x1, ..., x7} and the multiplication [x1, x2] =
[x3, x4] = x5, [x2, x3] = x6, [x2, x4] = x7,

37D with a basis {x1, ..., x7} and the multiplication [x1, x2] =
[x3, x4] = x5, [x1, x3] = x6, [x2, x4] = x7.

We state some results without proof and refer the reader to see [14, 15,
20, 23]. We recall that the Lie algebras 27B and 27A in [10] are expressed by
different notations L1 and L2 in the following proposition, respectively.
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Proposition 1.1 (See [16, Proposition 2.10]). The Schur multiplier of
Lie algebras L6,22(ε), L5,8, L1 and L2 are abelian Lie algebras of dimension
8, 6, 9 and 10, respectively.

A Lie algebra L is called capable provided that L ∼= H/Z(H) for a Lie
algebra H. From [21, Definition 1.4], Z∗(L) is used to the denote the epicenter
of L. The importance of Z∗(L) is due to the fact that L is capable if and only
if Z∗(L) = 0. Another notion having relation to the capability is the concept
of the exterior center of a Lie algebra Z∧(L) which is introduced in [14]. It is
known that from [14, Lemma 3.1]), Z∗(L) = Z∧(L).

Lemma 1.2 (See [23, Corollary 2.3]). Let L be a non-capable nilpotent
Lie algebra of dimension n such that dimL2 ≥ 2. Then

n− 3 < s(L).

Let ⊗mod be used to denote the operator of usual tensor product of Lie
algebras. Then

Theorem 1.3 (See [18, Theorem 2.1]). Let L be a finite dimensional
nilpotent Lie algebra non-abelian Lie algebra of class two. Then

0 → ker g → L2 ⊗mod L
ab g−→ M(L) → M(Lab) → L2 → 0

is exact, where

g : x⊗ (z + L2) ∈ L2 ⊗mod L
ab 7→ [x, z] + [R,F ] ∈ M(L) = R ∩ F 2/[R,F ],

π(x+R) = x and π(z +R) = z. Moreover, the subalgebra

K = ⟨[x, y]⊗ (z + L2) + [z, x]⊗ (y + L2) + [y, z]⊗ (x+ L2) | x, y, z ∈ L⟩
is contained in ker g.

2. MAIN RESULTS

We begin with the following lemma that is easily proven.

Lemma 2.1. There is no n-dimensional nilpotent Lie algebra with s(L) =
5, when

(i) dimL2 ≥ 4;

(ii) dimL2 = 1.

Proof. (i) Let L be a nilpotent Lie algebra such that m = dimL2 ≥ 4
and s(L) = 5. [15, Theorem 3.1] and our assumption implies that

1

2
(n−1)(n−2)−4 = dimM(L) ≤ 1

2
(n+m−2)(n−m−1)+1 ≤ 1

2
(n+2)(n−5)+1.
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This is a contradiction.

(ii) By contrary. Let L be a Lie algebra such that dimL2 = 1 and
s(L) = 5. Then by using [13, Lemma 3.3], L ∼= H(m) ⊕ A(n − 2m − 1) for
some m ≥ 1. Looking at [22, Corollary 2.5] shows that s(L) = 0 or s(L) = 2,
when m = 1 or m ≥ 2, respectively. It is a contradiction. Hence, the result
follows.

By using Lemma 2.1, we may assume that a nilpotent Lie algebras L with
s(L) = 5 has 2 ≤ dimL2 ≤ 3. First assume that dimL2 = 2.

Lemma 2.2. Let L be an n-dimensional non-capable nilpotent Lie algebra
of dimension at most 7 and dimL2 = 2. Then L is isomorphic to one of the
Lie algebras L6,10, L2 or L3. Moreover, s(L6,10) = 5 and s(L2) = s(L3) = 6.

Proof. The proof is similar to [23, Theorem 2.6].

Theorem 2.3. Let L be an n-dimensional nilpotent Lie algebra with
s(L) = 5 and dimL2 = 2. Then L is isomorphic to one of the Lie alge-
bras L(4, 5, 2, 4)⊕A(4), L(3, 4, 1, 4)⊕A(3), L(4, 5, 1, 6)⊕A(2), L6,22(ε)⊕A(2)
or L6,10.

Proof. Since dimL2 = 2, L is nilpotent of class two or three. Let L be a
Lie algebra of nilpotency class two. If L is a capable Lie algebra, then it should
be isomorphic to one of the Lie algebras L6,22(ε)⊕A, L5,8 ⊕A or L1 ⊕A, for
an abelian Lie algebra A by using [16, Corollary 2.13].

Case (i) Let L ∼= L6,22(ε)⊕A. Proposition 1.1 implies dimM(L6,22(ε)) =
8. Since 5 = s(L) = 1

2(n − 1)(n − 2) + 1 − dimM(L) and dimM(L) =
8 + 1

2(n − 6)(n + 1) by using [5, Theorem 1] and [11, Lemma 23], we have
n = 8. Hence L ∼= L6,22(ε)⊕A(2).

Case (ii) Let now L ∼= L5,8 ⊕ A. We know from Proposition 1.1 that
dimM(L5,8) = 6. Since 5 = s(L) = 1

2(n − 1)(n − 2) + 1 − dimM(L) and
dimM(L) = 6 + 1

2(n − 5)n by using [5, Theorem 1] and [11, Lemma 23], we
have n = 9. Therefore L ∼= L5,8 ⊕A(4) ∼= L(4, 5, 2, 4)⊕A(4).

Case (iii) Let L ∼= L1⊕A. We know dimM(L1) = 9 by using Proposition
1.1. Since 5 = s(L) = 1

2(n − 1)(n − 2) + 1 − dimM(L) and dimM(L) =
9 + 1

2(n − 7)(n + 2) by using [5, Theorem 1] and [11, Lemma 23], we have
n = 5, which is contradiction. Thus L cannot be isomorphic to L1 ⊕A.

Now let L be a Lie algebra of nilpotency class 3. If L is a capable Lie
algebra, then it should be isomorphic to one of the Lie algebras L4,3⊕A(n−4)
or L5,5 ⊕A(n− 5) by using [17, Theorem 5.5].
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Case (i). Let L ∼= L4,3 ⊕ A(n − 4). Since dimM(L4,3) = 2 by using [8,
Section 2], we have dimM(L) = 2 + 1

2(n − 4)(n − 1) by using [5, Theorem 1]
and [11, Lemma 23]. Since 5 = s(L) = 1

2(n − 1)(n − 2) + 1 − dimM(L) and
dimM(L) = 2 + 1

2(n − 4)(n − 1), we have n = 7. Hence L ∼= L4,3 ⊕ A(3) ∼=
L(3, 4, 1, 4)⊕A(3).

Case (ii). Suppose L ∼= L5,5 ⊕ A(n − 5). [8, Section 3] shows that
dimM(L5,5) = 4. Now [5, Theorem 1] and [11, Lemma 23] imply that
dimM(L) = 4+ 1

2n(n− 5). Since 5 = s(L) = 1
2(n− 1)(n− 2) + 1− dimM(L)

and dimM(L) = 4 + 1
2n(n− 5), we have n = 7. Therefore L ∼= L5,5 ⊕ A(2) ∼=

L(4, 5, 1, 6)⊕A(2).

If L is a non-capable Lie algebra of nilpotency class 2 or 3, then by using
Lemma 1.2, we have n ≤ 7. Therefore, L ∼= L6,10 by using Lemma 2.2. This
completes the proof.

We now consider the case that dimL2 = 3. By looking all nilpotent Lie
algebras listed in [7], we may choose all n-dimensional nilpotent Lie algebras
L such that dimL2 = 3 for n = 5 or 6 in the Table 1.

Table 1

Name Nonzero multiplication

L5,6 [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = [x2, x3] = x5

L5,7 [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5

L5,9 [x1, x2] = x3, [x1, x3] = x4, [x2, x3] = x5

L6,6 [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = [x2, x3] = x5

L6,7 [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5

L6,9 [x1, x2] = x3, [x1, x3] = x4, [x2, x3] = x5

L6,11 [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = [x2, x3] = [x2, x5] = x6

L6,12 [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = [x2, x5] = x6

L6,13 [x1, x2] = x3, [x1, x3] = [x2, x4] = x5, [x1, x5] = [x3, x4] = x6

L6,19(ϵ) [x1, x2] = x4, [x1, x3] = x5, [x1, x5] = [x2, x4] = x6, [x3, x5] = ϵx6

L6,20 [x1, x2] = x4, [x1, x3] = x5, [x1, x5] = [x2, x4] = x6

L6,23 [x1, x2] = x3, [x1, x3] = [x2, x4] = x5, [x1, x4] = x6

L6,24(ϵ) [x1, x2] = x3, [x1, x3] = [x2, x4] = x5, [x1, x4] = εx6, [x2, x3] = x6

L6,25 [x1, x2] = x3, [x1, x3] = x5, [x1, x4] = x6

L6,26 [x1, x2] = x4, [x1, x3] = x5, [x2, x3] = x6
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Assume L is nilpotent Lie algebra of dimension 7 such that dimL2 = 3.
By looking at the classification of all nilpotent Lie algebras in [10], L must be
isomorphic to one of the Lie algebras listed in Tables 2 and 3.

Table 2 – 7-dimensional indecomposable nilpotent Lie algebras
Name Nonzero multiplication

37A [x1, x2] = x5, [x2, x3] = x6, [x2, x4] = x7

37B [x1, x2] = x5, [x2, x3] = x6, [x3, x4] = x7

37C [x1, x2] = [x3, x4] = x5, [x2, x3] = x6, [x2, x4] = x7

37D [x1, x2] = [x3, x4] = x5, [x1, x3] = x6, [x2, x4] = x7

257A [x1, x2] = x3, [x1, x3] = [x2, x4] = x6, [x1, x5] = x7

257B [x1, x2] = x3, [x1, x3] = x6, [x1, x4] = [x2, x5] = x7

257C [x1, x2] = x3, [x1, x3] = [x2, x4] = x6, [x2, x5] = x7

257D [x1, x2] = x3, [x1, x3] = [x2, x4] = x6, [x1, x4] = [x2, x5] = x7

257E [x1, x2] = x3, [x1, x3] = [x4, x5] = x6, [x2, x4] = x7

257F [x1, x2] = x3, [x2, x3] = [x4, x5] = x6, [x2, x4] = x7

257G [x1, x2] = x3, [x1, x3] = [x4, x5] = x6, [x1, x5] = [x2, x4] = x7

257H [x1, x2] = x3, [x1, x3] = [x2, x4] = x6, [x4, x5] = x7

257I [x1, x2] = x3, [x1, x3] = [x1, x4] = x6, [x1, x5] = [x2, x3] = x7

257J [x1, x2] = x3, [x1, x3] = [x2, x4] = x6, [x1, x5] = [x2, x3] = x7

257K [x1, x2] = x3, [x1, x3] = x6, [x2, x3] = [x4, x5] = x7

257L [x1, x2] = x3, [x1, x3] = [x2, x4] = x6, [x2, x3] = [x4, x5] = x7

147A [x1, x2] = x4, [x1, x3] = x5, [x1, x6] = [x2, x5] = [x3, x4] = x7

147B [x1, x2] = x4, [x1, x3] = x5, [x1, x4] = [x2, x6] = [x3, x5] = x7

1457A [x1, xi] = xi+1 i = 2, 3, [x1, x4] = [x5, x6] = x7

1457B [x1, xi] = xi+1 i = 2, 3, [x1, x4] = [x2, x3] = [x5, x6] = x7

137A [x1, x2] = x5, [x1, x5] = [x3, x6] = x7, [x3, x4] = x6

137B [x1, x2] = x5, [x3, x4] = x6, [x1, x5] = [x2, x4] = [x3, x6] = x7

137C [x1, x2] = x5, [x1, x4] = [x2, x3] = x6, [x1, x6] = x7, [x3, x5] = −x7

137D [x1, x2]=x5, [x1, x4]=[x2, x3]= x6, [x1, x6] = [x2, x4] = x7, [x3, x5] = −x7

1357A [x1, x2]=x4, [x1, x4]=[x2, x3]= x5, [x1, x5] = [x2, x6] = x7, [x3, x4] = −x7

1357B [x1, x2]=x4, [x1, x4]=[x2, x3]= x5, [x1, x5] = [x3, x6] = x7, [x3, x4] = −x7

1357C [x1, x2]=x4, [x1, x4]=[x2, x3]= x5, [x1, x5] = [x2, x4] = x7, [x3, x4] = −x7
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Table 3 – 7-dimensional decomposable nilpotent Lie algebras
Name Name

L4,3 ⊕H(1) L6,19(ϵ)⊕A(1)
L5,6 ⊕A(2) L6,20 ⊕A(1)
L5,7 ⊕A(2) L6,23 ⊕A(1)
L5,9 ⊕A(2) L6,24(ϵ)⊕A(1)
L6,11 ⊕A(1) L6,25 ⊕A(1)
L6,12 ⊕A(1) L6,26 ⊕A(1)
L6,13 ⊕A(1)

We need the following lemma from [23, Lemma 2.7] for the proof of the
Main Theorem.

Lemma 2.4. Let L be an n-dimensional nilpotent Lie algebra such that
n = 5, 6 or 7, dimL2 = dimZ(L) = 3 and Z(L) = L2. Then the structure and
the Schur multiplier of L are given in the following table.

Table 4

Name dimM(L) s(L) Name dimM(L) s(L)

L6,26 8 3 37C 11 5

37A 12 4 37D 11 5

37B 11 5

Lemma 2.5. Let L be a nilpotent Lie algebra of dimension at most 7 such
that dimL2 = 3, dimZ(L) = 2 and Z(L) ⊂ L2. Then the structure and the
Schur multiplier of L are given in the following table.

Table 5
Name dimM(L) s(L) Name dimM(L) s(L)

L5,9 3 4 257E 8 8

L6,23 6 5 257F 9 7

L6,24(ϵ) 5 6 257G 8 8

L6,25 6 5 257H 8 8

257A 9 7 257I 8 8

257B 8 8 257J 8 8

257C 9 7 257K 6 10

257D 8 8 257L 6 10

Proof. The proof is similar to [23, Lemma 2.5].
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Lemma 2.6. Let L be an n-dimensional nilpotent Lie algebra such that
n = 7, dimL2 = 3 and dimZ(L) = 4. Then the structure and the Schur
multiplier of L are given in the following table.

Table 6

Name dimM(L) s(L)

L5,9 ⊕A(2) 8 8

L6,26 ⊕A(1) 11 5

Proof. Since dimZ(L) = 4, L is isomorphic to L5,9⊕A(2) or L6,26⊕A(1)
by searching in Tables 2 and 3. Let L ∼= L6,26 ⊕ A(1). Since dimM(L6,26) =
8 by using Table 4, we have dimM(L) = 11 by using [5, Theorem 1] and
[11, Lemma 23]. Hence s(L) = 5. Also by using similar method, we can see
dimM(L5,9 ⊕A(2)) = 8 and s(L) = 8.

Lemma 2.7 ([23, Lemma 2.9]). Let L be an n-dimensional nilpotent Lie
algebra such that n = 5, 6 or 7, dimL2 = 3 and dimZ(L) = 1. Then the
structure and the Schur multiplier of L are given in the following table.

Table 7

Name dimM(L) s(L) Name dimM(L) s(L)

L5,6 3 4 1457A 6 10

L5,7 3 4 1457B 6 10

L6,11 5 6 137A 7 9

L6,12 5 6 137B 7 9

L6,13 4 7 137C 7 9

L6,19(ϵ) 5 6 137D 7 9

L6,20 5 6 1357A 7 9

147A 8 8 1357B 6 10

147B 8 8 1357C 6 10

Recall that a Lie algebra L is called generalized Heisenberg of rank n if
L2 = Z(L) and dimL2 = n.

Lemma 2.8. Let L be an n-dimensional generalized Heisenberg of rank 3
with s(L) = 5, then n ≤ 7.

Proof. By Theorem 1.3, we have dimker g = dimM(Lab) − dimL2 +
dimLab ⊗mod L2 − dimM(L). Since dimM(L) = 1

2(n − 1)(n − 2) − 4 and
dimLab = n− 3, we have dimker g = n− 3.
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By contrary, let n ≥ 8. Then d = dimLab = n− 3 ≥ 5. Since dimL2 = 3,
we can choose a basis {x1 + L2, ..., xd + L2} for Lab such that [x1, x2], [x2, x3]
and [x3, x4] are non-trivial in L2. Thus

Lab ⊗mod L
2 ∼=

d⊕
i=1

(⟨xi + L2)⟩ ⊗mod L
2).

Hence, all elements of

{[x1, x2]⊗ xi +L2 ⊕ [xi, x1]⊗ x2 +L2 ⊕ [x2, xi]⊗ x1 +L2, | 3 ≤ i ≤ d, i ̸= 1, 2}
and

{[x2, x3]⊗xi+L2⊕ [xi, x3]⊗x2+L2⊕ [x3, xi]⊗x2+L2, | 3 ≤ i ≤ d, i ̸= 1, 2, 3}
{[x3, x4]⊗xi+L2⊕ [xi, x3]⊗x4+L2⊕ [x4, xi]⊗x3+L2, | 3 ≤ i ≤ d, i ̸= 2, 3, 4}
are linearly independent and so 2(n−6)+n−5 ≤ ker g. That is a contradiction
for n ≥ 8. Therefore, the assumption is false and the result follows.

Let c(L) be used to show the nilpotency class of L. Then

Lemma 2.9. There is no nilpotent Lie algebra L with dimL2 = 3,
dimZ(L) = 1 and s(L) = 5 such that L/Z(L) ∼= L5,8 ⊕A(2).

Proof. By contrary, let L be a nilpotent Lie algebra L with dimL2 = 3,
dimZ(L) = 1 and s(L) = 5 such that L/Z(L) ∼= L5,8 ⊕A(2). Then dimL = 8
and cl(L) = 3. Since cl(L) = 3 and dimZ(L) = 1, we have L3 = Z(L). On
the other hand, dimM(L) = dimM(L/Z(L)) + (dimL/L2 − 1) dimZ(L) −
dimkerλ3 and dimkerλ3 ≥ 2 by using proof [20, Theorem 1.1]. Thus

dimM(L) ≤ dimM(L/Z(L)) + (dimL/L2 − 1) dimZ(L)− 2.
It is a contradiction.

Theorem 2.10. Let L be an n-dimensional nilpotent Lie algebra with
s(L) = 5 and dimL2 = 3. Then L is isomorphic to one of the Lie algebras
L6,23, L6,25, 37B, 37C or 37D.

Proof. First assume that dimZ(L) ≥ 5, or dimZ(L) = 3 and Z(L) ̸= L2,
or dimZ(L) = 2 and Z(L) ̸⊂ L2. We show that in these cases, there is no such
Lie algebra L of dimension n with s(L) = 5.

Let I be a central ideal of L of dimension one such that L2∩ I = 0. Since
dim(L/I)2 = 3, by using [15, Theorem 3.1], we have

dimM(L/I) ≤ 1

2
n(n− 5) + 1.

If the equality holds, then

1

2
(n− 2)(n− 3) + 1− s(L/I) = dimM(L/I) =

1

2
n(n− 5) + 1.
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Therefore, s(L/I) = 3 and by using [22, Theorem 3.2], there is no Lie algebra
satisfying in dim(L/I)2 = 3. Thus [15, Corollary 2.3] and our assumption
implies

dimM(L) =
1

2
(n− 1)(n− 2)− 4 ≤ 1

2
n(n− 5) + (n− 4),

which is a contradiction. Therefore we may assume that dimZ(L) = 4, or
dimZ(L)= 3 and L2= Z(L), or dimZ(L)= 2 and Z(L)⊂ L2, or dimZ(L) = 1.

If dimZ(L) = 4, then there is a central ideal of L of dimension one such
that L2 ∩ I = 0. Since dim(L/I)2 = 3, by using [15, Theorem 3.1], we have

dimM(L/I) ≤ 1

2
n(n− 5) + 1.

If the equality holds, then

1

2
(n− 2)(n− 3) + 1− s(L/I) = dimM(L/I) =

1

2
n(n− 5) + 1.

Therefore s(L/I) = 3 and by using Table 4, L/I ∼= L6,26. Since dimZ(L) = 4
and dimL = 7, we have L ∼= L6,26 ⊕ A(1) by using Lemma 2.6. Now let
dimM(L) ≤ 1

2n(n− 5). Thus [15, corollary 2.3] and our assumption imply

dimM(L) =
1

2
(n− 1)(n− 2)− 4 ≤ 1

2
n(n− 5) + (n− 4),

which is a contradiction.

If dimZ(L) = 3 and L2 = Z(L), then L is isomorphic to one of the Lie
algebras 37B, 37C or 37D by using Lemmas 2.4 and 2.8.

Assume that dimZ(L) = 2 and Z(L) ⊂ L2. Then dim(L/Z(L))2 = 1.
Since L/Z(L) capable, by using [14, Theorem 3.5] and [13, Lemma 3.3], we
have L/Z(L) ∼= H(1) ⊕ A(n − 5). Hence L is nilpotent of class 3. Therefore,
by using [22, Theorem 2.6] for c = 3, we have

dimL3 +
1

2
(n− 1)(n− 2)− 3 ≤ dimM(L/L3) + dim(L/Z2(L)⊗ L3).

Now since 1 ≤ dimL3 ≤ 2, we can obtain that n ≤ 7. Hence Lemma 2.5
implies that L ∼= L6,23 or L ∼= L6,25.

Finally, assume that dimZ(L) = 1. Then dim(L/Z(L))2 = 2. By using
[15, Corollary 2.3], we have

1

2
(n− 1)(n− 2)− 3 ≤ 1

2
(n− 2)(n− 3) + 1− s(L/Z(L)) + n− 3.

Thus s(L/Z(L)) ≤ 3.

If s(L/Z(L)) = 0, then L ∼= H(1)⊕A(n− 4) by [15, Theorem 3.1]. This
case cannot occur, since dim(L/Z(L))2 = 2.
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If s(L/Z(L)) = 1, then [13, Theorem 3.9] implies that L ∼= L(4, 5, 2, 4).
Therefore, n = 6.

If s(L/Z(L)) = 2, then L/Z(L) is isomorphic to one of the Lie algebras
L(3, 4, 1, 4), L(4, 5, 2, 4) ⊕A(1) or H(m)⊕A(n− 2m− 1)(m ≥ 2) by using [13,
Theorem 4.5]. In the case L(3, 4, 1, 4) or L(4, 5, 2, 4)⊕A(1), we have n=5 or 7.

In the case L/Z(L) ∼= H(m) ⊕ A(n − 2m − 1)(m ≥ 2), then we have a
contradiction, since dim(L/Z(L))2 = 2.

If s(L/Z(L)) = 3, L/Z(L) is isomorphic to one of the Lie algebras
L(4, 5, 1, 6), L(5, 6, 2, 7), L′(5, 6, 2, 7), L(7, 6, 2, 7), L′(7, 6, 2, 7) or L(3, 4, 1, 4)⊕
A(1) by [22, Main Theorem] and Lemma 2.9.

Hence n = 5, 6 or 7 when dimZ(L) = 1. But there is no such Lie algebra
by Lemma 2.7. This completes proof.

Theorem 2.11. Let L be a non-abelian n-dimensional nilpotent Lie al-
gebra. Then s(L) = 5 if and only if L is isomorphic to one of the Lie algebras
L(4, 5, 2, 4) ⊕ A(4), L(3, 4, 1, 4) ⊕ A(3), L(4, 5, 1, 6) ⊕ A(2), L6,22(ε) ⊕ A(2),
L6,26 ⊕A(1), L6,10, L6,23, L6,25, 37B, 37C or 37D.

Proof. By using Lemma 2.1, Theorems 2.3 and 2.10, we can obtain the
result.
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