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We consider an overdetermined eigenvalue problem related to the MEMS oper-
ator given by Lτ := ∆2 − τ∆ on a smooth bounded domain Ω ⊂ RN , N ≥ 2.
We give radial solutions on balls. Moreover, we establish a symmetry result
with respect to operator Lτ , that is, under some hypotheses, we show that if a
solution does exist to the overdetermined eigenvalue problem, then the domain
Ω must be a ball.
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1. INTRODUCTION

In his speech delivered in 1959 and entitled “There’s Plenty of Room at
the Bottom”, Feynman described the technology of the future as a “small-scale”
technology, which will concern, among other things, condensed information
storage, miniature computers, infinitesimal machines, powerful microscopes,
etc. Later on, he described the mechanisms of miniature machines using ideas
and techniques ranging from electrostatic actuation to quantum computation
at the atomic-electron levels. Feynman was, thus, the precursor of a con-
temporary technology known as the so-called microelectromechanical systems
(MEMS) and the so-called nanoelectromechanical systems (NEMS), and this
constitutes a major advance since the resonant gate transistor produced by
Nathanson et al. in 1967.

The modelling, optimization and design of MEMS and NEMS machines
suggest an intensive use of mathematical analysis and numerical simulation
(see [9] and the references therein).

In almost every kind of MEMS and NEMS systems, there are electrostatic
actuation-based devices in routine operation. The electrostatic actuation is
based on an electrostatic-controlled tunable capacitor and is widely used in
micromirrors, accelerometers, switches, microresonators, etc.
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Physically speaking, consider two thin parallel plates electrically charged
and imagine one of the plates stretches a small vertical distance. By continuum
mechanics, the simplest elastic force depends on the Laplace or bi-Laplace of
the deformation variable. If we set u(x) (x ∈ Ω a bounded domain in R2) is
the plate deformation variable, then in presence of elastic deformation charac-
terized by u ̸= 0, it is well-known that the elastic energy collects contributions
from two sectors, i.e. the stretching energy sector given by

P =

∫
Ω

T

2
|∇u|2dx,

where T > 0 is the tension constant, and the bending energy sector given by

Q =

∫
Ω

D

2
|∆u|2dx,

where D = 2h3Y/3(1 − ν2), with h is the plate thickness, Y is the Young
modulus and ν is the Poisson ratio.

Therefore, the total energy E = P + Q + W, where W =
∫
ΩG(u)dx is

the electric potential (see, for example, [9] for more details about W ), can be
represented as

E(u) =

∫
Ω

{
D

2
|∆u|2 + T

2
|∇u|2 +G(u)

}
dx,

so that its Euler-Lagrange equation is

D∆2u− T∆u = −G′(u), x ∈ Ω.

We see then that the modelling of the electrostatic actuation for MEMS and
NEMS devices involves the fourth order operator of the form

Lτ := ∆2 − τ∆

(with τ = T
D > 0 when avoiding the zero plate thickness limit D = 0).

Now, considering the MEMS operator (or NEMS operator) Lτ , our inter-
est in this paper is to study the overdetermined eigenvalue problem related to
Lτ , given by

(P )

Lτu = ∆2u− τ∆u = λu+ µ in Ω,

u = a,
∂u

∂ν
= b, ∆u = c on ∂Ω,

where Ω is a bounded open connected domain in the Euclidean space RN and
∂

∂ν
is the outward normal derivative operator on the boundary ∂Ω.
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Let us recall some basic known results concerning overdetermined eigen-
value problems.

For the problem

(1)

∆2u = −1 in Ω,

u =
∂u

∂ν
= 0, ∆u = c on ∂Ω,

Bennett [2] showed that if (1) admits a solution u ∈ C4(Ω̄) and Ω is a bounded
domain in RN with C4+ε boundary ∂Ω, then Ω must be an open ball of radius
R = [|c|(N2 + 2N)]1/2 and u is radially symmetric given by

u = − 1

2N

{
N + 2

4
(Nc)2 +

Nc

2
r2 +

1

4(N + 2)
r4
}
.

Actually, Bennett’s result is analogous to that of Serrin [13] and Wein-
berger [14] for the overdetermined torsion problem, namely,

(2)

∆u = −1 in Ω,

u = 0,
∂u

∂ν
= b on ∂Ω.

Serrin [13] proved that for a bounded domain Ω whose boundary is of class
C2, if there exists a function u ∈ C2(Ω̄) satisfying problem (2) with b < 0, then
Ω must be a ball of radius R = N |b| and u is radially symmetric given by

u =
(Nb)2 − r2

2N
.

Serrin used the Alexandrov [1] moving plane technique and the Hopf max-
imum principles [7, 8], while Weinberger’s argument is much more elementary.
It also uses the maximum principle but relies on Green’s theorem to establish
certain identities allowing to solve problem (2).

Bennett [2] used Weinberger’s argument, by modifying it, to establish his
result announced above for the fourth order problem (1). Precisely, he used a
maximum principle for fourth order elliptic equations and several applications
of Green’s theorem. Unfortunately, Bennet’s argument does not extend to
more general equations. Using the method of moving planes of Serrin and
assuming in addition that u ≥ 0 in Ω, Dalmasso [4, 5] was able to treat more
general biharmonic equations and systems.

Consider now the problem

(3)


∆2u = λu+ µ in Ω,

u =
∂u

∂ν
= 0,

∂2u

∂ν2
= c on ∂Ω.
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When µ ̸= 0, Dalmasso [6] gives a symmetry result for the problem (3) in
dimension N = 2 : let Ω be a smooth bounded domain in R2, with ∂Ω ∈ C6,γ

for some γ ∈ (0, 1] and such that Ω is ε close in C4 sense to unit open ball B
in R2. Suppose 0 < λ ≤ ε < ε0. If there exits a solution u ∈ C4,γ(Ω̄) satisfying
(3) then Ω is a ball.

When µ = 0, Dalmasso [6] gives again a symmetry result for the problem
(3) in dimension N = 2 : let Ω be a smooth bounded domain in R2, with
∂Ω ∈ C6,γ for some γ ∈ (0, 1] and such that Ω is ε close in C4 sense to unit
open ball B in R2, then there is a positive eigenfunction u for the first Dirichlet

eigenvalue λ
(2)
1 of ∆2 in Ω, which is simple. It is then proved that the domain

Ω must be a ball in R2 and u is radially symmetric, when λ = λ
(2)
1 .

For more results on this issue, we can also see [3], [12] and the references
therein. In [12], we find a survey on the three main methods (Serrin’s method,
Weinberger’s method and the duality method) used in this field.

Coming back to the MEMS operator Lτ = ∆2 − τ∆ (with τ > 0) and
to the overdetermined problem (P ), our aim in this paper is to carry on the
previous results.

Our first result deals with radial solutions of the problem (P ) when the
domain Ω is a ball in RN . Those radial solutions are expressed by the mean of
Bessel functions.

We assume that τ > 0 and λ > 0, and we set

(4) η :=

√
τ2 + 4λ− τ

2
> 0 and θ :=

√
η > 0.

Theorem 1.1. Let N ≥ 2 and Ω = B(0, 1) the unit ball in RN . Let
β := N−2

2 and consider the Bessel function of the first kind of order β denoted
by Jβ. Let η and θ given by (4). Then, we have the following.

(i) Suppose µ = 0, a = c = 0, b ̸= 0 and θ satisfies Jβ(θ) = 0. Then, there
exists a radial solution to problem (P ), given by

u(x) = v(r) =
b

θJ
′
β(θ)

r−βJβ(θr), ∀r = |x| ∈ (0, 1].

Moreover, we have ∂(∆u)
∂ν = −ηb on ∂B.

(ii) Suppose µ = 0, a ̸= 0, b = 0, c = −ηa and θ satisfies θJ
′
β(θ) −

βJβ(θ) = 0. Then, there exists a radial solution to problem (P ), given by

u(x) = v(r) =
a

Jβ(θ)
r−βJβ(θr), ∀r = |x| ∈ (0, 1].

Moreover, we have ∂(∆u)
∂ν = 0 on ∂B.
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(iii) Suppose µ ̸= 0, a = b = 0, c = −ηµ
λ and θ satisfies θJ

′
β(θ)−βJβ(θ) =

0. Then, there exists a radial solution to problem (P ), given by

u(x) = v(r) =
µ

λ

[
1

Jβ(θ)
r−βJβ(θr)− 1

]
, ∀r = |x| ∈ (0, 1].

Moreover, we have ∂(∆u)
∂ν = 0 on ∂B.

Our second result is a symmetry result for problem (P ), that is, existence
of solution to problem (P ) implies that necessarily the domain Ω must be a ball
in RN . We establish such a result under conditions required for the boundary
parameters a, b and c, in both cases µ = 0 and µ ̸= 0.

We set

(5) λτ := η1(η1 + τ) > 0,

where η1 is the first eigenvalue of the Laplacian under Dirichlet boundary
condition. We have the following theorem.

Theorem 1.2. Let Ω ⊂ RN (N ≥ 2) be a smooth bounded domain with
∂Ω ∈ C4,γ for some γ ∈ (0, 1]. Suppose that there exists a solution u in C4,γ(Ω̄)
to problem (P ). Then, we have the following.

(i) If µ = 0, c = −ηa, ∂(∆u)
∂ν = −ηb on ∂Ω and either λ = λτ or ab > 0,

then Ω must be a ball.
(ii) If µ ̸= 0, a = b = 0, c = −ηµ

λ , ∂(∆u)
∂ν = 0 on ∂Ω and λ = λτ , then Ω

must be a ball.

In Section 2, we prove Theorem 1.1. In Section 3, we prove Theorem 1.2
using results due to Dalmasso [6] and to Chamberland, Gladwell and Willms
[3], which we recall in the Appendix at the end of the paper.

2. RADIAL SOLUTIONS OF (P) ON BALLS

In this section, we prove Theorem 1.1. We assume that the domain Ω is
a ball in RN with N ≥ 2 and for sake of simplicity, we consider the unit ball
B(0, 1). As mentioned in the Introduction, radial solutions for problem (P) are
constructed with the use of Bessel functions.

We recall that the Bessel functions are canonical solutions y(r) of the
differential Bessel equation

(6) r2y′′(r) + ry′(r) + (r2 − α2)y(r) = 0,

for any real or complex number α.
For β = N−2

2 (N ≥ 2) (is an integer or half-integer), we consider the
Bessel functions of the first kind Jβ.
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Now, writing y(r) = Jβ(θr) and taking α = β in the equation (6), we
have that Jβ(θr) satisfies the equation

(7) J
′′
β (θr) +

1

θr
J

′
β(θr) +

(
1− β2

θ2r2

)
Jβ(θr) = 0.

Proof of Theorem 1.1. Let θ > 0 given by (4) and consider the Bessel
function Jβ(θr) satisfying equation (7).

Proof of (i) : Let b ̸= 0 and suppose that θ satisfies Jβ(θ) = 0. Consider
the radial function

(8) u(x) = v(r) :=
b

θJ
′
β(θ)

r−βJβ(θr), ∀r = |x| ∈ (0, 1].

We have

v′(r) = − bβ

θJ
′
β(θ)

r−β−1Jβ(θr) +
b

J
′
β(θ)

r−βJ
′
β(θr).

Using (7), we have

v
′′
(r) = (2β+1)r−1

[
bβ

θJ
′
β(θ)

r−β−1Jβ(θr)−
b

J
′
β(θ)

r−βJ
′
β(θr)

]
− θb r−β

J
′
β(θ)

Jβ(θr)

= −(2β + 1)r−1v′(r)− θ2v(r) = −(N − 1)r−1v′(r)− θ2v(r).

Then

∆u(x) =
N − 1

r
v′(r) + v′′(r) = −θ2v(r) = −θ2u(x),

and so
∆2u(x) = ∆(∆u) = −θ2∆u(x) = θ4u(x).

Therefore, we obtain

Lτu(x) = ∆2u(x)− τ∆u(x) = (θ4 + τθ2)u(x).

As by (4), we have λ = θ4 + τθ2, then u(x) = v(r) given by (8) is a solution of

the equation
Lτu = λu on B(0, 1).

Moreover, on ∂B, we have

u(x) = v(r)
∣∣∣
r=1

=
b

θJ
′
β(θ)

Jβ(θ) = 0,

∂u

∂ν
(x) = ∇u(x) · ν⃗(x) = 1

r
v′(r) x⃗ · ν⃗(x)

∣∣∣
r=1

= − bβ

θJ
′
β(θ)

Jβ(θ)+
b

J
′
β(θ)

J
′
β(θ) = b,
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∆u(x) = −θ2u(x) = −θ2
b

θJ
′
β(θ)

r−βJβ(θr)
∣∣∣
r=1

= −θ
b

J
′
β(θ)

Jβ(θ) = 0,

∂

∂ν

(
∆u(x)

)
= −θ2

∂u(x)

∂ν
= − θ2b = −ηb.

Proof of (ii) : Let a ̸= 0 and suppose that θ satisfies θJ
′
β(θ)−βJβ(θ) = 0.

Consider the radial function

(9) u(x) = v(r) :=
a

Jβ(θ)
r−βJβ(θr), ∀r = |x| ∈ (0, 1].

We have

v
′
(r) = − βa

Jβ(θ)
r−β−1Jβ(θr) +

θa

Jβ(θ)
r−βJ

′
β(θr).

Using (7), we obtain

v
′′
(r) = (2β + 1)r−1

[
βa

Jβ(θ)
r−β−1Jβ(θr)−

θa

Jβ(θ)
r−βJ

′
β(θr)

]
− θ2ar−β

Jβ(θ)
Jβ(θr)

= −(2β + 1)r−1v′(r)− θ2v(r) = −(N − 1)r−1v′(r)− θ2v(r).

Therefore,

∆u(x) =
N − 1

r
v′(r) + v′′(r) = −θ2v(r) = −θ2u(x),

and we have

∆2u(x) = −θ2∆u(x) = θ4u(x),

then

Lτu(x) = ∆2u(x)− τ∆u(x) = (θ4 + τθ2)u(x).

As by (4), we have λ = θ4 + τθ2, then u(x) = v(r) given by (9) is a solution of
the equation

Lτu = λu on B(0, 1).

Moreover, on ∂B, we have

u(x) = v(r)
∣∣∣
r=1

=
a

Jβ(θ)
Jβ(θ) = a,

∂u

∂ν
(x) = ∇u(x) · ν⃗(x) = 1

r
v′(r) x⃗ · ν⃗(x)

∣∣∣
r=1

=
( a

Jβ(θ)

)(
θ J

′
β(θ)− β Jβ(θ)

)
= 0,

∆u(x) = −θ2u(x) = −θ2
a

Jβ(θ)
r−βJβ(θr)

∣∣∣
r=1

= − a θ2

Jβ(θ)
Jβ(θ) = −aθ2 = −aη,
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∂

∂ν

(
∆u(x)

)
= −θ2

∂u(x)

∂ν
= 0.

Proof of (iii): Let µ ̸= 0 and θ satisfies θJ
′
β(θ) − βJβ(θ) = 0. Consider

the radial function

(10) u(x) = v(r) :=
µ

λ

[
1

Jβ(θ)
r−βJβ(θr)− 1

]
, ∀r = |x| ∈ (0, 1].

We have

v
′
(r) =

µ

λ

[
−β

Jβ(θ)
r−β−1Jβ(θr) +

θ

Jβ(θ)
r−βJ

′
β(θr)

]
.

Using (7), we obtain

v
′′
(r) = (2β + 1)r−1µ

λ

[
β

Jβ(θ)
r−β−1Jβ(θr)−

θ

Jβ(θ)
r−βJ

′
β(θr)

]
− θ2

µ

λ

1

Jβ(θ)
r−βJβ(θr)

= −(2β+1)r−1v′(r)− θ2
[
v(r)+

µ

λ

]
= −(N−1)r−1v′(r)− θ2

[
v(r)+

µ

λ

]
.

Thus

∆u(x) =
N − 1

r
v′(r) + v′′(r) = −θ2

[
v(r) +

µ

λ

]
= −θ2

[
u(x) +

µ

λ

]
,

so we have
∆2u(x) = −θ2∆u(x) = θ4

[
u(x) +

µ

λ

]
.

We are then led to

Lτu(x) = ∆2u(x)− τ∆u(x) = (θ4 + τθ2)
(
u(x) +

µ

λ

)
.

As by (4), we have λ = θ4 + τθ2, then u(x) = v(r) given by (10) is a solution
of the equation

Lτu = λu+ µ on B(0, 1).
Moreover, on ∂B, we have

u(x) = v(r)
∣∣∣
r=1

= 0,

∂u

∂ν
(x) = ∇u(x)·ν⃗(x) = 1

r
v′(r) x⃗·ν⃗(x)

∣∣∣
r=1

=
( µ

λJβ(θ)

)(
θ J

′
β(θ)−β Jβ(θ)

)
= 0,

∆u(x) = −θ2u(x)− θ2
µ

λ
= −ηµ

λ
,

∂

∂ν

(
∆u(x)

)
= −θ2

∂u(x)

∂ν
= 0.
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3. A SYMMETRY RESULT FOR PROBLEM (P)

In this section, we prove Theorem 1.2. We start by some technical lem-
mas.

Lemma 3.1. Let Ω be a smooth bounded domain in RN (N ≥ 2) with
a smooth boundary ∂Ω. Let u ∈ C4(Ω̄) be a solution of problem (P ) with
∂(∆u)
∂ν = d on ∂Ω. We have the following Pohozaev-type identity

(11)∫
Ω
(∆u)2dx+λ

∫
Ω
u2dx+

(N+2)

2
µ

∫
Ω
udx =

N |Ω|
2

[
λa2+τb2−c2+2µa−2bd

]
+

|∂Ω|
2

[
Ncb− (N − 2)(d− τb)a

]
+ c

N∑
i,j=1

∫
∂Ω

xiuxixjνjdσ.

If b = 0, then

(12)

∫
Ω
(∆u)2dx+ λ

∫
Ω
u2dx+

(N + 2)

2
µ

∫
Ω
udx =

1

2

[
λa2 + c2 + 2µa

]
N |Ω|

+
1

2

[
(2−N)ad

]
|∂Ω|,

where |Ω| is the N -dimensional volume of Ω, and |∂Ω| is the (N−1)-dimensional
surface area of ∂Ω.

Proof. We multiply equation Lτu = ∆2u − τ∆u = λu by x · ∇u and
integrate over Ω,

(13)

∫
Ω
∆2u(x·∇u)dx−τ

∫
Ω
∆u(x·∇u)dx = λ

∫
Ω
(x·∇u)udx+µ

∫
Ω
(x·∇u)dx.

Using integrations by parts and the boundary conditions, we have

(14)

∫
Ω
(x · ∇u)dx = Na|Ω| −N

∫
Ω
udx,

(15)

∫
Ω
(x · ∇u)udx =

Na2|Ω|
2

− N

2

∫
Ω
u2dx,

(16)

∫
Ω
∆u(x · ∇u)dx =

Nb2|Ω|
2

+
N − 2

2

∫
Ω
|∇u|2dx,
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and
(17)∫

Ω
∆2u(x · ∇u)dx =

N∑
i,j=1

∫
Ω
xiuxi(∆u)xjxjdx

=

N∑
i,j=1

∫
∂Ω

xiuxi(∆u)xjνjdσ −
N∑

i,j=1

∫
∂Ω

xiuxixj∆u νjdσ

−
∫
∂Ω

∂u

∂ν
∆udσ + 2

∫
Ω
(∆u)2dx+

N∑
i,j=1

∫
Ω
xiuxjxjxi∆udx

=
(4−N)

2

∫
Ω
(∆u)2dx− c

N∑
i,j=1

∫
∂Ω

xiuxixjνjdσ +
Nc2|Ω|

2

+ bdN |Ω| − bc|∂Ω|.
On the other hand, multiplying equation Lτu = lu by u, integrating by

parts and using the boundary conditions, we obtain

(18)

∫
Ω
(∆u)2dx+τ

∫
Ω
|∇u|2dx = (bc−ad+τab) |∂Ω|+λ

∫
Ω
u2dx+µ

∫
Ω
udx.

Finally, combining equalities (13)-(18), we obtain (11).

Suppose that b = 0.
Furthermore, thanks to the Dirichlet boundary conditions, we know that

(see, for example, [11])

∂2u

∂xixj
=

∂2u

∂ν2
νiνj on ∂Ω.

We have

(19)

N∑
i,j=1

∫
∂Ω

xiuxixj νjdσ = c

∫
∂Ω

x · ν dσ = cN |Ω|.

Then from (11) and (19), we deduce that (12).

We recall the following result (see, for example, Miranda [10]).

Remark 3.1 ([10]). Let Ω be a bounded smooth domain in RN (N ≥ 2),
with ∂Ω of class C2+k,γ for some k ≥ 0, γ ∈ (0, 1]. If u ∈ C2(Ω)∩C(Ω̄) satisfies{

−∆u = λu+ µ in Ω,

u = 0 on ∂Ω,

then u ∈ C2+k,γ(Ω̄).



11 On an overdetermined eigenvalue problem with MEMS operator 375

Using a result due to Dalmasso [6], Lemma 3.1 and Remark 3.1, we have
the following lemma.

Lemma 3.2. Let Ω be a bounded smooth domain in RN (N ≥ 2), with
∂Ω of class C4,γ for some γ ∈ (0, 1]. Let λ > 0, τ > 0 and η given by (4). The
following statements are equivalent.

(i) There exists u ̸≡ 0 in C4,γ(Ω̄) satisfying

(20) Lτu = λu in Ω,

(21) u = ∆u = 0,
∂u

∂ν
= b,

∂(∆u)

∂ν
= −bη on ∂Ω.

(ii) There exists u ̸≡ 0 in C2(Ω) ∩ C(Ω̄) satisfying

(22) −∆u = ηu in Ω,

(23) u = 0,
∂u

∂ν
= b on ∂Ω.

Proof. (ii)=⇒ (i): Let u ̸≡ 0 in C2(Ω) ∩ C(Ω̄) satisfying (22)-(23) with
η given by (4). Using Remark 3.1, we deduce that u in C4,γ(Ω̄). We have u
satisfies −∆u = ηu in Ω, then

Lτu = ∆2u− τ∆u = η(η + τ)u = λu in Ω.

As u = 0 and
∂u

∂ν
= b on ∂Ω, then ∆u = 0 and

∂(∆u)

∂ν
= −ηb on ∂Ω.

(i)=⇒ (ii): Suppose that there exists u ̸≡ 0 in C4,γ(Ω̄) satisfying (20)-
(21). In order to prove (ii), in view of Theorem 4.2, we just need to prove that
for all w ∈ C2,γ(Ω̄) satisfying

(24) −∆w = ηw in Ω,

we have ∫
∂Ω

wdσ = 0.

Let w ∈ C2,γ(Ω̄) satisfying (24). Multiplying (20) by w, integrating by
parts over Ω and using the boundary conditions (21), we have

(25)

λ

∫
Ω
uwdx =

∫
Ω
wLτudx =

∫
Ω
(∆2w)udx+ b

∫
∂Ω

∆wdσ − ηb

∫
∂Ω

wdσ

− τ

∫
Ω
u∆wdx− bτ

∫
∂Ω

wdσ.
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On the other hand, we have

(26) Lτw = ∆2w − τ∆w = η(η + τ)w = λw in Ω,

(27) ∆w = −ηw on ∂Ω.

Using (25),(26) and (27), we finally get

λ

∫
Ω
uwdx =

∫
Ω
uLτwdx−b(τ+2η)

∫
∂Ω

wdx = λ

∫
Ω
uwdx−b(τ+2η)

∫
∂Ω

wdx,

then

(28) b(τ + 2η)

∫
∂Ω

wdx = 0.

On the other hand, as u satisfies (20)-(21), then using the Pohozaev identity
(11) given by Lemma 3.1 with µ = a = c = 0 and d = −ηb, we obtain

(29)

∫
Ω
(∆u)2dx+ λ

∫
Ω
u2dx =

N

2
b2(τ + 2η)|Ω|.

As we have u ̸≡ 0 in Ω, λ > 0, η > 0, τ > 0, we deduce from (29) that b ̸= 0,
and so (28) gives ∫

∂Ω
wdx = 0.

Using a result due to Dalmasso [6] and Remark 3.1, we have the following
lemma.

Lemma 3.3. Let Ω be a bounded smooth domain in RN (N ≥ 2), with ∂Ω
of class C4,γ for some γ ∈ (0, 1]. Let a ̸= 0, b ∈ R, λ > 0, τ > 0 and η given
by (4). The following statements are equivalent.

(i) There exists u in C4,γ(Ω̄) satisfying

(30) Lτu = λu in Ω,

(31) u = a,
∂u

∂ν
= b, ∆u = −aη,

∂(∆u)

∂ν
= −bη on ∂Ω.

(ii) There exists u in C2(Ω) ∩ C(Ω̄) satisfying

(32) −∆u = ηu in Ω,

(33) u = a,
∂u

∂ν
= b on ∂Ω.
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Proof. (ii)=⇒ (i): Let u in C2(Ω)∩C(Ω̄) satisfying (32)-(33) with η given
by (4). Using Remark 3.1, we deduce that u in C4,γ(Ω̄). We have u satisfies
−∆u = ηu in Ω, then

Lτu = ∆2u− τ∆u = η(η + τ)u = λu in Ω.

As u = a and
∂u

∂ν
= b on ∂Ω, then ∆u = −aη and

∂(∆u)

∂ν
= −bη on ∂Ω.

(i)=⇒ (ii): Suppose that there exists u in C4,γ(Ω̄) satisfying (30)-(31).
In order to prove (ii), in view of Theorem 4.1, we just need to prove that
there exists a constant d such that

∫
Ωwdx = d

∫
∂Ωwdσ, for all w ∈ C2,γ(Ω̄)

satisfying

(34) −∆w = ηw in Ω.

Let w ∈ C2,γ(Ω̄) satisfying (34). Multiplying (30) by w, integrating by parts
over Ω and using the boundary conditions (31), we have

(35)

λ

∫
Ω
uwdx =

∫
Ω
wLτudx =

∫
Ω
(∆2w)udx+ b

∫
∂Ω

∆wdσ

− a

∫
∂Ω

∂∆w

∂ν
dσ − bη

∫
∂Ω

w + aη

∫
∂Ω

∂ w

∂ν
dσ

− τ

∫
Ω
u∆wdxdσ − τb

∫
∂Ω

wdσ + τa

∫
∂Ω

∂ w

∂ν
dσ.

Using w ∈ C2,γ(Ω̄) satisfying (34), we have

(36) Lτw = ∆2w − τ∆w = η(η + τ)w = λw in Ω,

(37) ∆w = −ηw on ∂Ω.

On the other hand, using the divergence theorem, (34) and (37), we have

(38)

∫
∂Ω

∂ w

∂ν
dσ =

∫
Ω
∆wdx = −η

∫
Ω
wdx.

(39)

∫
∂Ω

∂ (∆w)

∂ν
dσ =

∫
Ω
∆2wdx = η2

∫
Ω
wdx.

(40)

∫
∂Ω

∆wdσ = −η

∫
∂Ω

wdx.

Using (35)-(36) and (38)-(39)-(40), we finally get

λ

∫
Ω
uwdx = λ

∫
Ω
uwdx− b(2η + τ)

∫
∂Ω

wdσ − aη(2η + τ)

∫
Ω
wdx.
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Then

(41) −b(2η + τ)

∫
∂Ω

wdσ = aη(2η + τ)

∫
Ω
wdx.

As (2η + τ) ̸= 0. Then there exists a constant d = − b
aα such that

(42)

∫
Ω
wdx = d

∫
∂Ω

wdσ,

for all w ∈ C2,γ(Ω̄) satisfying −∆w = ηw in Ω.

Proof of Theorem 1.2 completed. (i) By Lemma 3.2 and Lemma 3.3, we
know that there exists u in C2(Ω) ∩ C(Ω̄) satisfying−∆u = ηu in Ω,

u = a,
∂u

∂ν
= b on ∂Ω,

with η given by (4). As λ = λτ = η1(η1 + τ), then η = η1 and using Propo-
sition 4.1 in the Appendix, we deduce that Ω is a ball. As ab > 0 and using
Proposition 4.1, we deduce that Ω is a ball.

(ii) Suppose there exists u ∈ C4,γ(Ω̄) solution of (P ) with a = b = 0, c =

−µη
λ and ∂(∆u)

∂ν = 0 on ∂Ω. Then v = u+ µ
λ ̸≡ 0 is in C4,γ(Ω̄) and satisfies

Lτv = λv in Ω,

v =
µ

λ
,

∂v

∂ν
= 0, ∆u = −η

µ

λ
,

∂(∆u)

∂ν
= 0 on ∂Ω.

Then by Lemma 3.3, we know that there exists v in C2(Ω) ∩ C(Ω̄) satisfying−∆v = ηv in Ω,

v =
µ

λ
,

∂v

∂ν
= 0 on ∂Ω,

with η given by (4). If λ = λτ = η1(η1+ τ), then η = η1 and using Proposition
4.1, we deduce that Ω is a ball.

4. APPENDIX

Let Ω ⊂ RN , N ≥ 2, be a smooth bounded domain with sufficiently
smooth boundary ∂Ω. Consider the following overdetermined boundary value
problem for the Laplacian

(P1)


−∆u = ηu in Ω,

u = a on ∂Ω,

∂u

∂ν
= b (const.) on ∂Ω,
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where η > 0, a, b ∈ R and ∂
∂ν is the outward normal derivative.

Proposition 4.1 ([3, Proposition 1]). Suppose u ∈ C2(Ω) ∩ C1(Ω) is a
non-constant solution of the overdetermined problem (P1), and that either

(i) ab > 0, or

(ii) η = η1.

Then the domain Ω, must be an N-dimensional ball.

Theorem 4.1 ([6, Theorem 1.1]). Let η > 0, a ̸= 0. Assume that
∂Ω ∈ C3,γ for some γ ∈ (0, 1]. Then the following statements are equivalent

(i) There exists u in C2,γ(Ω̄) satisfying (P1).
(ii) There exists a constant d such that∫

Ω
wdx = d

∫
∂Ω

wdσ,

for all w ∈ C2,γ(Ω̄) satisfying −∆w = ηw in Ω.
Moreover, b = 0 if and only if d = 0.

Theorem 4.2 ([6, Theorem 1.2]). Let η > 0, a = 0. Assume that ∂Ω ∈
C3,γ, for some γ ∈ (0, 1]. Then the following statements are equivalent

(i) There exists u ̸≡ 0 in C2,γ(Ω̄) satisfying (P1).
(ii) ∫

∂Ω
wdσ = 0,

for all w ∈ C2,γ(Ω̄) satisfying −∆w = ηw in Ω.

Lemma 4.1 ([6]). Let ∂Ω ∈ Ck for some k ≥ 1. If u ∈ Ck(Ω̄) is such that

u = const on ∂Ω,

∂u

∂ν
=

∂2u

∂ν2
= .... =

∂k−1u

∂νk−1
= 0 on ∂Ω, if k ≥ 2,

then
∂ku

∂xj1 ..∂xjk
=

∂ku

∂νk
νj1 ..νjk on ∂Ω

for j1, .., jk ∈ {1, ..., N}.
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