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Let R be a Prüfer domain of Krull dimension one. We prove the existence
of Gröbner bases for finitely generated submodules of finitely generated free
modules over R[X], where the term order is POT, or, “position over term”. In
order to do this, we first prove that there is a Gröbner basis for finitely generated
ideals in R[X], which is a special case of the main result. The proof is based
on the results from [3]. In addition to this we show, in the case of valuation
domains, that every Gröbner basis is actually a strong Gröbner basis.
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1. INTRODUCTION

The notion of Gröbner basis for modules of special type was discussed in
[1]. In particular, the authors consider submodules of k[X1, . . . , Xn]

m, where
k[X1, . . . , Xn] is the ring of polynomials in several indeterminates, k is a field
and m ≥ 1. They give a proof that there is a Gröbner basis for each finitely
generated submodule of k[X1, . . . , Xn]

m. This represents a generalization of the
theory of Gröbner basis for ideals in k[X1, . . . , Xn], with analogous notions and
constructions, like the notion of S-polynomials. When the ring of coefficients
of polynomials is not a field, in the case of ideals, as well as modules, not all
notions are easy to translate, for example, S-polynomials. This is because not
each leading coefficient of a polynomial will be divisible by another leading
coefficient. Results in the case when the base ring is a PID or a Dedekind
domain (see, e.g., [2]) are known, but not much is considered in non-noetherian
case. In that sense, a natural generalization of a Dedekind domain is actually
a Prüfer domain.

Valuation domains are yet another subclass of Prüfer domains, with the
conditions on divisibility which are very convenient for the purpose of consid-
eration of a Gröbner basis (see Definition 1.2 below). In [6], it is proved that
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there is a Gröbner basis for any finitely generated ideal in V [X], for a valuation
domain V of Krull dimension one. Actually, this can be deduced directly from
a result in [3], as we show in Theorem 2.5. In [6], the authors also state a corol-
lary where they claim that the same result can be proved over semihereditary
rings, using certain dynamical techniques. We shall briefly discuss this in the
final section of this paper.

As the main result of this paper, we prove that for each finitely generated
submodule of R[X]m, where R is a dimension one Prüfer domain, there is a
Gröbner basis, when we fix a specific term order on R[X]m (Theorem 3.2).
First, in Theorem 2.5 it is proved that each finitely generated ideal in R[X]
has a Gröbner basis (the case m = 1) using the result in [3] about Prüfer
domains.

Here, we suppose that rings are commutative, with unity and without
zero divisors.

There are many equivalent definitions of a Prüfer domain (see [4], [3]),
one of which is that it is a semihereditary domain. We state the one involving
valuation domains, so that we easily see that each valuation domain is also a
Prüfer domain, and therefore, the theory presented below holds for valuation
domains too.

Definition 1.1. A domain R is called a Prüfer domain if RP is a valuation
domain for each prime ideal P in R.

As a reminder, here we give a definition of a valuation domain.

Definition 1.2. A domain V is called a valuation domain if at least one
of the following relations is true: a | b or b | a, for all a, b ∈ V \ {0}.

2. GRÖBNER BASIS OF AN IDEAL IN A PRÜFER DOMAIN

Let us present some definitions needed in the following text. For more
details, see [3].

Definition 2.1. Let J be an ideal in R[X], where R is an integral domain,
and let In, n ≥ 0, be the ideals in R of leading coefficients of polynomials of
degree less than or equal to n in J . Also, let I = ∪∞

n=0In. The ideals In and I
are called the associated ideals to J .

Obviously, I0 ⊆ I1 ⊆ · · · ⊆ In ⊆ · · · ⊆ I.

Definition 2.2. An integral domain R satisfies KP property if for each
finitely generated ideal J in R[X] the associated ideals In, n ≥ 0 and I =
∪∞
n=0In are finitely generated. Also, R satisfiesK0P property if for each finitely

generated ideal J in R[X] the associated ideal I0 = J ∩R is finitely generated.
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The following result is given as Theorem 6.2.10. in [3].

Theorem 2.3. Let R be a Prüfer domain. The following statements are
equivalent:

a) R satisfies KP ;
b) R satisfies K0P ;
c) dim(R) ≤ 1.

To review some basic notions, let f = a0 + a1X + · · · + anX
n ∈ R[X],

where an ̸= 0. Then the leading term of f is denoted by LT(f) : = anX
n,

and the leading coefficient by LC(f) : = an. Also, for an ideal J ◁ R[X],
LT (J) : = {LT(f) | f ∈ J} and LT(J) : = ⟨LT (J)⟩. Let us recall a definition
of a Gröbner basis for an ideal in R[X] for a commutative ring R with identity
(see, e.g., [1]).

Definition 2.4. Let J be an ideal in R[X]. A subset G = {g1, . . . , gr} of
J is a Gröbner basis for J if LT(J) = ⟨LT(g1), . . . ,LT(gr)⟩.

Now we prove the existence of a Gröbner basis for finitely generated ideals
in the ring of polynomials in one indeterminate over one-dimensional Prüfer
domains.

Theorem 2.5. Let R be a Prüfer domain of Krull dimension one. If J
is a finitely generated ideal in R[X], then there exists a Gröbner basis G for J .

Proof. Let us denote by In and I the associated ideals of J . According to
Theorem 2.3, these are all finitely generated. Let I = ⟨c1, . . . , cs⟩. There are
f1, . . . , fs ∈ J such that LT(fi) = ciX

ki , for 1 ≤ i ≤ s. Let j ∈ {1, . . . , s} be
such that kj ≥ ki, for all i ∈ {1, . . . , s}. If we put n = kj , and denote by gi,n
the polynomials fiX

n−ki of degree n, then we see that I = In. Namely, if c ∈ I
is the leading coefficient of a degree l polynomial in J , and l > n, then c =
a1c1+ · · ·+ascs, for a1, . . . , as ∈ R. Therefore, polynomial a1g1,n+ · · ·+asgs,n
is a degree n polynomial whose leading coefficient is c, so c ∈ In.

Now, let Im = ⟨LC(g1,m), . . . ,LC(gsm,m)⟩ for 0 ≤ m ≤ n − 1, where
g1,m,..., gsm,m are degree m polynomials that belong to J . Let

G = {gj,m | 1 ≤ j ≤ sm, 0 ≤ m ≤ n− 1} ∪ {g1,n, . . . , gs,n}.
To prove that G is a Gröbner basis for J , let f ∈ J be a polynomial of

degree m. If m ≥ n, then LC(f) ∈ I and LC(f) = α1c1+ · · ·+αscs, for αi ∈ R.
So,

LT(f) = (α1c1 + · · ·+ αscs)X
m = α1X

m−nLT(g1,n) + · · ·+ αsX
m−nLT(gs,n).

If m < n, then LC(f) ∈ Im and

LC(f) = β1LC(g1,m) + · · ·+ βsmLC(gsm,m), βi ∈ R.
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Hence, LT(f) = β1LT(g1,m) + · · ·+ βsmLT(gsm,m).

It follows that in each case LT(f) ∈ ⟨LT(g) | g ∈ G⟩.

Let us remind the reader of the notion of a strong Gröbner basis.

Definition 2.6. Let J be an ideal in R[X]. A subset G = {g1, . . . , gr} of
J is a strong Gröbner basis for J if for any f ∈ J , there exists gi ∈ G such
that LT(gi) | LT(f).

It is clear that, if it exists, any strong Gröbner basis for J is also a Gröbner
basis. Let us prove that, in the case of valuation domains, these two notions
actually coincide.

Lemma 2.7. Let G = {g1, . . . , gr} be a Gröbner basis for an ideal J in
V [X], where V is a valuation domain. Then G is also a strong Gröbner basis
for J .

Proof. Let f ∈ J . Since G is a Gröbner basis, there exists polynomials
p1(X),..., pr(X) such that

LT(f) = p1(X)LT(g1) + · · ·+ pr(X)LT(gr).

Let pi(X) = b
(i)
0 + b

(i)
1 X + · · · + b

(i)
si X

si , LT(gi) = aiX
ni and LT(f) = aXn.

Hence

aXn =

r∑
i=1

si∑
j=0

aiX
nib

(i)
j Xj .

So, for some subset K ⊆ {1, . . . , r}, we have

aXn =
∑
k∈K

akX
nkb

(k)
n−nk

Xn−nk =

(∑
k∈K

akb
(k)
n−nk

)
Xn,

and therefore, a =
∑
k∈K

akb
(k)
n−nk

. Since V is a valuation domain, there is k0 ∈ K

such that ak0 | ak for all k ∈ K. Then we have that ak0X
nk0 | aXn and we are

done.

This allows us to conclude that the following theorem holds.

Theorem 2.8. Let V be a dimension one valuation domain. If J is a
finitely generated ideal in R[X], then there exists a strong Gröbner basis G for
J .
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3. SUBMODULES OF FINITELY GENERATED FREE
R[X]-MODULES

Following [1], let us review some notions concerning Gröbner bases for
modules of the specific type. Let R be a ring and M a finitely generated R[X]-
submodule of R[X]m, m ≥ 1. Each element of M can be represented using the
standard basis

e1 = (1, 0, . . . , 0), . . . , em = (0, . . . , 0, 1).

In module R[X]m elements of the form Xrei, r ≥ 0, are called monomials.
Also, we say that monomial Xrei divides monomial Xsej if i = j and r ≤ s,
and we write Xrei |Xsej . In that case, the quotient in this division is Xs−r.
Elements of the form αXrei, for α ∈ R, are called terms. Similarly, the term
αXrei divides βX

sej if α |β and Xrei |Xsej .
Next, by a term order on R[X]m we mean a total order < on monomials

which satisfies these conditions:
1) Xrei < XsXrei, for each monomial Xrei and for each s ≥ 1;
2) If Xrei < Xsej for monomials Xrei, X

sej , then XtXrei < XtXsej for
each t ≥ 0.

We can introduce different examples of term orders, but the one that will
be of interest here is POT, or “position over term”. POT is defined in the
following way:

Xrei < Xsej ⇔ i > j or i = j, r ≤ s.
It is easily checked that this is a term order on R[X]m.

When we fix a term order < on R[X]m, then each element f ∈ R[X]m

can be represented as

f = α1X
s1ek1 + α2X

s2ek2 + · · ·+ αlX
slekl ,

where αi ∈ R and Xsieki are monomials, such that

Xs1ek1 > Xs2ek2 > · · · > Xslekl .

Then, the leading term of f is denoted by LT(f) := α1X
s1ek1 and the leading

coefficient of f by LC(f) := α1. If M is a submodule of R[X]m, then LT (M) :
= {LT(f) | f ∈ M} and LT(M) := ⟨LT (M)⟩.

Definition 3.1. Let M be a finitely generated submodule of R[X]m, where
R is a ring. A subset G = {g1, . . . , gr} of M is a Gröbner basis for M if
LT(M) = ⟨LT(g1), . . . ,LT(gr)⟩.

Now, we present the main theorem regarding existence of the Gröbner
basis for finitely generated submodules and with the base ring a Prüfer domain
of dimension one.
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Theorem 3.2. Let M be a finitely generated submodule of R[X]m, where
R is a Prüfer domain of Krull dimension one and let us fix the POT term
order on R[X]m. Then, there is a Gröbner basis G for M .

Proof. Let M = ⟨(f11, f12, . . . , f1m), . . . , (fs1, . . . , fsm)⟩. If we set

I = {f ∈ R[X] | (f(X), f2(X), . . . , fm(X)) ∈ M, for some f2, . . . , fm ∈ R[X]},

then I is an ideal in R[X] that is finitely generated. Actually, I = ⟨f11, . . . , fs1⟩.
According to Theorem 2.5, there is a Gröbner basis for I. Let that be

{g11, . . . , gk1}. Since these polynomials belong to I, there are (m − 1)-tuples
(g12, . . . , g1m),. . . , (gk2, . . . , gkm) such that

(g11, g12, . . . , g1m), . . . , (gk1, gk2, . . . , gkm) ∈ M.

Now, let

M1 = {(f2(X), . . . , fm(X)) ∈ R[X]m−1 | (0, f2(X), . . . , fm(X)) ∈ M}.

To prove that M1 is a finitely generated R[X]-module, we first notice that,
by Corrollary 7.3.4. of [5], R[X] is a coherent domain, i.e., a coherent R[X]-
module. Then, R[X]m is also a coherent module. Since {0} × M1 is the
intersection ofM and submodule ⟨e2, . . . , em⟩ of R[X]m, which are both finitely
generated, it follows that {0} × M1 is also finitely generated, that is, M1 is
finitely generated (for the results on coherency, see, e.g., [5]).

We proceed by induction. M1 is a finitely generated submodule of
R[X]m−1, so there is a Gröbner basis G1 for M1. The Gröbner basis G for
M is given by

{(0, h2, . . . , hm) | (h2, . . . , hm) ∈ G1}
∪ {(g11, g12, . . . , g1m), . . . , (gk1, gk2, . . . , gkm)}.

The case m = 1 is contained in Theorem 2.5.
Namely, let f = (f1, . . . , fm) ∈ M . If f1 ̸= 0, then LT(f) = LT(f1)e1.

Since LT(f1) = p1LT(g11) + · · ·+ pkLT(gk1), for pi ∈ R[X], multiplying by e1
we get that

LT(f) = p1LT((g11, g12, . . . , g1m)) + · · ·+ pkLT((gk1, gk2, . . . , gkm)).

Therefore, LT(f) ∈ ⟨LT(g) | g ∈ G⟩.
If f1 = 0, then (f2, . . . , fm) ∈ M1 and consequently

LT((f2, . . . , fm)) ∈ ⟨LT(h) |h ∈ G1⟩.

It follows that

LT(f) = LT((0, f2, . . . , fm)) ∈ ⟨LT((0, h2, . . . , hm)) | (h2, . . . , hm) ∈ G1⟩.
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As before, in the case of valuation domains, the existing Gröbner basis is
actually strong. We give the definition first.

Definition 3.3. Let M be a finitely generated submodule of R[X]m. A
subset G = {g1, . . . , gr} of M is a strong Gröbner basis for M if for any f ∈ M ,
there exists gi ∈ G such that LT(gi) | LT(f).

As in the case of ideals in V [X], for a valuation domain V , these notions
are equivalent.

Lemma 3.4. Let G = {h1, . . . , hr} be a Gröbner basis for finitely gener-
ated submodule M in V [X]m, where V is a valuation domain. Then G is also
a strong Gröbner basis for M .

Proof. Let f = (f1, . . . , fm) ∈ M and let i = min{1 ≤ j ≤ m | fj ̸= 0}.
Since G is a Gröbner basis, we have that

LT(f) = p1LT((g11, . . . , g1m)) + · · ·+ prLT((gr1, . . . , grm)),

where hj = (gj1, . . . , gjm) and pj ∈ V [X], for 1 ≤ j ≤ r. Obviously, some of pj
may be zero and also, some of these summands may cancel out. In any case,
LT(f) = LT(fi)ei and there are s1, . . . , st ∈ {1, . . . , r} such that

LT(fi) = ps1LT(gs1i) + · · ·+ pstLT(gsti).

So, we are now in the same situation as in Lemma 2.7. Hence, there exists
l ∈ {s1, . . . , st} such that LT(gli) |LT(fi). Since LT(hl) = LT(gli)ei, we have
that LT(hl) | LT(f) and we are done.

From here, the following holds:

Theorem 3.5. Let M be a finitely generated submodule of V [X]m, where
V is a valuation domain of Krull dimension one and let us fix the POT term
order on V [X]m. Then, there is a strong Gröbner basis G for M . □

4. CONCLUDING REMARKS

The primary purpose of this short paper is a discussion of the existence of
Gröbner bases for finitely generated submodules of R[X]m where R is a Prüfer
domain. So, we deal only with polynomial rings in one indeterminate. In
particular, we generalize the result from the paper [6] from valuation domains to
Prüfer domains. The authors in that paper suggest an extension of their results
to Prüfer domains using dynamical techniques. These techniques involve using
convenient localizations of the ring of coefficients and in this way, one obtains
dynamical Gröbner bases. However, dynamical Gröbner bases of an ideal is a
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collection of Gröbner bases for the extension of this ideal in the polynomial
ring over several localizations of the ring of coefficients and these localizations
depend on the given ideal (for the precise definition of dynamical Gröbner
bases, see, e. g. [8]). Although these Gröbner bases are useful in, for example,
solving the ideal membership problem, they are not proper Gröbner bases over
the original ring of coefficients and we are interested in the existence of proper
Gröbner bases over Prüfer domains.

It is also a natural question to generalize this result from univariate to
multivariate case. In the general case of the arbitrary monomial order, the
answer to this question seems to be hard to obtain. However, in the paper
[7] the author makes that generalization for a valuation domain V , from the
polynomial ring V [X] to the polynomial ring V [X1, . . . , Xn] with the lexico-
graphical term order. In that paper, the existence of one polynomial whose
leading coefficient is equal to 1 allows the author to use the suitable change of
variables in order to get the polynomial whose leading term is just a power of
Xn and consequently, the problem is reduced to the case when the use of the
induction is possible.

In the case of Prüfer domains, as we see in Theorem 2.5, we get not one,
but the set of polynomials whose leading coefficients generate the ideal of all
leading coefficients. Thus, in the case of multiple indeterminates, it becomes
challenging to track all the ideals of coefficients in different multidegrees. One
can prove that, in the case of multiple indeterminates over a Prüfer domain,
the ideal of all leading coefficients is finitely generated, but this does not resolve
the problem of finding the Gröbner basis, since this involves the leading terms.
It remains open to see whether a different kind of a direct method or induction
could be applied.
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