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We study cyclic quotient singularities given by automorphisms of maximum order
on K3 surfaces. In particular, we describe fixed loci of such automorphisms, and
provide types of these singularities.

AMS 2020 Subject Classification: Primary 14B05; Secondary 14J28, 14J50.

Key words: singularity, K3 surface, automorphism.

1. INTRODUCTION

We will work over C, the field of complex numbers, throughout this pa-
per. Let G be a finite cyclic group acting on an algebraic surface S as an
automorphism and ϕ a fixed generator of G. It is well known that singularities
of S/G relates to properties of ϕ in this case. On the other hand, properties
of automorphisms gives not only local properties (e.g., singularities) but also
global properties of quotients surfaces S/G. For instance, a quotient surface of
a K3 surface by an automorphism which satisfies certain conditions (see also
[13]) gives an example of a log Enriques surface. Then the index of the log
Enriques surface relates to the order of the automorphism ([5], [15], [16]).

This paper is devoted to a study of singularities of quotient surfaces given
by automorphisms of K3 surfaces. The main result is the following.

Main Theorem. Let X be a K3 surface with an automorphism g of
maximum order 66. Then the following hold:

(1) The fixed loci of g, g2 and g3 consist of exactly 3 points, 5 points and 6
points, respectively.

(2) Each quotient surfaces X/〈g〉, X/〈g2〉 and X/〈g3〉 have one point of type
1
11(1, 5) and one point of type 1

11(1, 8) as singularities. In particular,
these surfaces are log Enriques surfaces of index 11.
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The proof of Main Theorem is given by Section 3 and Section 4.

Remark 1.1. Remaining automorphisms g6, g11, g22 and g33 are not the
subject of this paper, but are mentioned in Proposition 3.1 and Lemma 4.1.

For an algebraic surface S, if its canonical line bundle KS is trivial and
H1(S,OS) = 0 then it is called a K3 surface. Since KS is trivial, there exists a
nowhere vanishing holomorphic 2-form on S which is unique up to constants.
Let ϕ be an automorphism on S of finite order I. It is called symplectic,
respectively, (purely) non-symplectic, if and only if it satisfies ϕ∗ωS = ωS ,
respectively, ϕ∗ωS = ζIωS where ζI is a (primitive) I-th root of unity.

Let (x, y) be a local coordinate centered at a point of a K3 surface S. If
an automorphism ϕ acts on the points as mapping (x, y) to (αx, βy) then the
action of ϕ for ωS(= dx ∧ dy) is multiplication by αβ, hence ϕ∗ωS = αβωS .
Thus if ϕ is symplectic (resp., non-symplectic) then a group generated by ϕ
is a subgroup of SL(2,C) (resp., GL(2,C)). (See also Lemma 2.1 (2).) This
implies that it is important to focus on (non-)symplecticity in the study of
singularities.

Automorphisms of K3 surfaces were widely studied in the last years. In
this paper, we study cyclic quotient singularities given by automorphisms of
maximum order on K3 surfaces. The following results are known for such
automorphisms.

Theorem 1.2 ([7, Main Theorem and Lemma 4.2], [9, Theorem], [10,
Main Theorem 1 (1)]). The following hold:

(1) The maximum finite order of an automorphism on K3 surfaces is 66.

(2) An automorphism of order 66 is non-symplectic.

(3) A pair of a K3 surface and a non-symplectic automorphism of order 66
is isomorphic to Example 1.3.

Example 1.3 ([9, (3.0.1)]). Put

X : y2 = x3 + t(t11 − 1), g(x, y, t) = (ζ266x, ζ
3
66y, ζ

6
66t).

Then X is a K3 surface and g is a non-symplectic automorphism of order 66.
Note that the Jacobian elliptic fibration π : X → P

1 has 12 singular fibers of
type II over t = 0 and t11 = 1.

The Example 1.3 suggests that we may study the fixed locus directly, by
using the elliptic fibration and the action of the automorphism. We will give
two methods: one using Lefschetz’s formulas and the other by using the elliptic
fibration.
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2. PRELIMINARIES

In this section, we collect some basic results which will be frequently
applied in this article. For the details, see e.g. [11] and [2]. For a K3 surface
X, we denote by SX and TX the Néron-Severi lattice and the transcendental
lattice, respectively.

Lemma 2.1. Let f be a non-symplectic automorphism of order I on X.
Then

(1) The eigenvalues of f∗ | TX are the primitive I-th roots of unity, hence
f∗ | TX ⊗ C can be diagonalized as:



















ζIEq 0 · · · · · · · · · 0
...

. . .
...

... ζnI Eq
...

...
. . . 0

0 · · · · · · · · · 0 ζI−1
I Eq



















,

where Eq is the identity matrix of size q and 1 ≤ n ≤ I − 1 is co-prime
with I.

(2) Let P i,j be an isolated fixed point of f on X. Then f∗ can be written as
(

ζiI 0

0 ζjI

)

(i+ j ≡ 1 mod I)

under some appropriate local coordinates around P i,j.

(3) Let C be an irreducible curve in Xf and Q a point on C. Then f∗ can
be written as

(

1 0
0 ζI

)

under some appropriate local coordinates around Q. In particular, fixed
curves are non-singular.

Lemma 2.1 (1) implies that Φ(I) divides rkTX , where Φ is the Euler
function. Hence if I = 66 then rkTX = 20 and rkSX = 2. Lemma 2.1 (2)
and (3) imply that the fixed locus of f is either empty or the disjoint union of
non-singular curves and isolated points:

Xf = {P i1,j1
1 , . . . , P iM ,jM

M } ∐ C1 ∐ · · · ∐ CN ,

where P ik,jk
k is an isolated fixed point and Cl is a non-singular curve.

A fixed locus plays an essential role for studying singularities given by f .
In particular, local actions for isolated fixed points are very important.
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Proposition 2.2 (Lefschetz formulae). Let f be a non-symplectic auto-
morphism of order I on X. The fixed locus of f satisfies the following:

(1)
∑4

k=0(−1)ktr(f∗|Hk(X,R)) = χ(Xf ),

(2)
∑2

k=0 tr(f
∗|Hk(X,OX)) =

∑M
i+j=I+1 a(P

i,j) +
∑N

l=1 b(Cl),

where χ(Xf ) is the Euler characteristic of Xf , a(P i,j) = 1/((1 − ζiI)(1 − ζjI ))
and b(Cl) = (1− g(Cl))/(1− ζI)− ζIC

2
l /(1− ζI)

2.

(1) and (2) are called the topological Lefschetz formula and the holomor-
phic Lefschetz formula, respectively. See also [3, page 542] and [4, page 567]
for details. We frequently study the local action of a non-symplectic automor-
phism by using Proposition 2.2. The following Remark is important too.

Remark 2.3. For positive integers m and n, let f be an automorphism
of order mn and Pα,β be an isolated fixed point of f . If fn(Pα,β) = Pα′,β′

,
hence Pα′,β′

is an isolated fixed point of fn, then we have α ≡ α′ and β ≡ β′

mod m.

3. FIXED LOCI OF AUTOMORPHISMS

Put fI = g66/I , so fI is an automorphism of order I on X. First, we
shall study fixed loci of f22, f33 and g via Proposition 2.2 (Lefschetz formulae).
Next, we check over the fixed locus of g by a direct calculation of Example 1.3.

We remark that fI acts trivially on the Néron-Severi lattice SX because
g acts trivially on SX by [10, Lemma (2.4)]. Cases I = 2, 3, 6 and 11 then are
well- known. We refer to [12, Theorem 4.2.2], [1, Theorem 2.2], [14, Theorem
1.1], [2, Theorem 7.3] and [6, Theorem 4.1].

Proposition 3.1. The following hold:

(1) The fixed locus of f2 consists of one smooth curve of genus 10 and one
rational curve.

(2) The fixed locus of f3 consists of one smooth curve of genus 5 and one
rational curve.

(3) The fixed locus of f6 consists of 12 isolated points and one rational curve,
hence it is of the form Xf6 = {P 3,4 × 12} ∐ P

1.

(4) The fixed locus of f11 consists of 2 isolated points and one smooth curve
of genus 1, hence it is of the form Xf11 = {P 2,10, P 5,7} ∐ C(1).
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3.1. The case of I = 22

Lemma 3.2. The fixed locus of f22 consists of 6 isolated points.

Proof. If Xf22 contains a smooth curve then it belongs to both Xf2 and
Xf11 . But it contradicts Proposition 3.1 (1) and (4). Thus, the Euler charac-
teristic of Xf22 is equal to the number of isolated fixed points.

By Proposition 2.2 (1) and Lemma 2.1 (1), we have

χ(Xf22) =
4

∑

k=0

(−1)ktr(f∗

22|H
k(X,R))

= 1− 0 + tr(f∗

22|SX) + tr(f∗

22|TX)− 0 + 1

= 4 + tr(f∗

22|TX)

= 4 + (ζ22 + ζ322 + ζ522 + ζ722 + ζ922 + ζ1322 + ζ1522 + ζ1722 + ζ1922 + ζ2122 )× 2

= 4− ((1 + ζ222 + ζ422 + · · ·+ ζ2022 ) + ζ1122 )× 2

= 4− (0 + (−1))× 2

= 6.

To study details of local actions on isolated fixed points, we apply Propo-
sition 2.2 (2) for Xf22 .

Proposition 3.3. The fixed locus of f22 is of the form

Xf22 = {P 5,18, P 10,13, P 11,12, P 11,12, P 11,12, P 11,12}.

Proof. Let mi,j be the number of isolated fixed points of type P i,j . Since
Xf22 does not have a smooth curve by Lemma 3.2, we have

2
∑

k=0

tr(f∗|Hk(X,OX)) =
M
∑

i+j=23

mi,j

(1− ζi22)(1− ζj22)
.

Using the Serre duality H2(X,OX) ≃ H0(X,OX(KX))∨, we calculate
the left-hand side as 1 + ζ2122 . Since isolated points contained in Xf11 are only
P 2,10 and P 5,7, we have m2,21 + m10,13 ≤ 1, m5,18 + m7,16 ≤ 1 . . . (♦) and
m3,20 = m4,19 = m6,17 = m8,15 = m9,14 = 0.

Thus Proposition 2.2 (2) implies

1 + ζ2122 =
m2,21

(1− ζ222)(1− ζ2122 )
+

m5,18

(1− ζ522)(1− ζ1822 )
+

m7,16

(1− ζ722)(1− ζ1622 )

+
m10,13

(1− ζ1022 )(1− ζ1322 )
+

m11,12

(1− ζ1122 )(1− ζ1222 )
.
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It induces the following equations:










4m2,21 −m5,18 +m7,16 + 2m10,13 = 1,

5m2,21 +m5,18 + 3m7,16 +m10,13 = 2,

6m2,21 + 2m5,18 + 2m7,16 − 2m10,13 +m11,12 = 4.

We have m7,16 = m10,13 = 1 and m11,12 = 4 from these and (♦).

3.2. The case of I = 33

Lemma 3.4. The fixed locus of f33 consists of 5 isolated points.

Proof. If Xf33 contains a smooth curve then it belongs to both Xf3 and
Xf11 . But it contradicts Proposition 3.1 (2) and (4). Thus, the Euler charac-
teristic of Xf33 is equal to the number of isolated fixed points.

By Proposition 2.2 (1) and Lemma 2.1 (1), we have

χ(Xf33) =
4

∑

k=0

(−1)ktr(f∗

33|H
k(X,R))

= 4 + tr(f∗

33|TX)

= 4 + (ζ33 + ζ233 + ζ433 + ζ533 + ζ733 + ζ833 + ζ1033 + ζ1333 + ζ1433 + ζ1633

+ ζ1733 + ζ1933 + ζ2033 + ζ2333 + ζ2533 + ζ2633 + ζ2833 + ζ2933 + ζ3133 + ζ3233 )

= 4− ((1 + ζ333 + ζ633 + · · ·+ ζ3033 ) + (ζ1133 + ζ2233 ))

= 5.

Proposition 3.5. The fixed locus of f33 is of the form

Xf33 = {P 7,27, P 12,22, P 12,22, P 12,22, P 13,21}.

Proof. It is essentially the same as Proposition 3.3. Let mi,j be the num-
ber of isolated fixed points of type P i,j . Note that Xf3 does not have iso-
lated fixed points, and Xf11 has just one P 2,10 and one P 5,7. Then we have
m10,24 + m13,21 ≤ 1, m7,27 + m16,18 ≤ 1 and other mi,j are 0 except m12,22.
Thus these and Proposition 2.2 (2):

1 + ζ3233 =
m7,27

(1− ζ733)(1− ζ2733 )
+

m10,24

(1− ζ1033 )(1− ζ2433 )
+

m12,22

(1− ζ1233 )(1− ζ2233 )

+
m13,21

(1− ζ1333 )(1− ζ2133 )
+

m16,18

(1− ζ1633 )(1− ζ1833 )

indicates m7,27 = m13,21 = 1, m12,22 = 3 and m10,24 = m16,18 = 0.
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3.3. The case of I = 66

This is the case we want to know. We study the fixed locus of g = f66.
But techniques are same as above.

Lemma 3.6. The fixed locus of g consists of 3 isolated points.

Proof. It follows from Proposition 3.2 and Proposition 3.4 that Xg does
not contain a smooth curve. Thus, the Euler characteristic of Xg is equal to
the number of isolated fixed points.

By Lemma 2.1 (1), we have

tr(g∗|TX) = ζ66 + ζ566 + ζ766 + ζ1366 + ζ1766 + ζ1966 + ζ2366 + ζ2566 + ζ2966 + ζ3166

+ ζ3566 + ζ3766 + ζ4166 + ζ4366 + ζ4766 + ζ4966 + ζ5366 + ζ5966 + ζ6166 + ζ6566

= −((1+ ζ266 + ζ466 +· · ·+ ζ6466 ) + (ζ366 + ζ966 +· · ·+ ζ6466 ) + (ζ1166 + ζ5566 ))

= 0− (ζ22 + ζ322 + · · ·+ ζ2122 )− (ζ6 + ζ56 ))

= −1.

We apply Proposition 2.2 (1) for Xg:

χ(Xg) =
4

∑

k=0

(−1)ktr(g∗|Hk(X,R)) = 4 + tr(g∗|TX) = 4− 1 = 3.

Therefore, Xg consists of 3 isolated points.

Proposition 3.7. The fixed locus of g is of the form

Xg = {P 12,55, P 13,54, P 27,40}.

Proof. Let mi,j be the number of isolated fixed points of type P i,j . It is
easy to see that m12,55 ≤ 3, m13,54 ≤ 1, m27,40 ≤ 1 and other mi,j are 0 by
Proposition 3.3 and Proposition 3.5.

Then Proposition 2.2 (2):

1 + ζ6566 =
m12,55

(1− ζ1266 )(1− ζ5566 )
+

m13,54

(1− ζ1366 )(1− ζ5466 )
+

m27,40

(1− ζ2766 )(1− ζ4066 )

gives m12,55 = m13,54 = m27,40 = 1.

3.4. Another observation

We treat Example 1.3 directly. We consider elliptic fibration π : X → P
1.

By replacing a primitive 66-th root of unity (we take ζ5366 instead of ζ66), we
may assume g(x, y, t) = (ζ4066x, ζ

27
66y, ζ

54
66 t).
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X

P
1

0 ∞

π

Figure 1 – The elliptic fiberation of Example 1.3.

Since the automorphism g acts on the base of π with order 11, g induces
an automorphism of order 6 on fibers π−1(0) and π−1(∞). Hence g has fixed
points on these fibers.

Since g also acts on the 0-section (the dotted line of Figure 1) of π, two
fixed points of g are contained in it. Note that an automorphism of order 6
on an elliptic curve has exactly one fixed point. Thus π−1(∞) has just one
fixed point of g, since it is a smooth elliptic curve. On the other hand, π−1(0)
has two fixed points of g. Because g induces an automorphism on P

1 which is
obtained by blow-ups of the cuspidal curve π−1(0), it has exactly two isolated
fixed points.

Thus there exist three fixed points of g, hence the cusp of π−1(0) and
intersection points of the 0-section of π and π−1(0) and π−1(∞).

Proposition 3.8. Fixed points P 13,54 and P 27,40 lie on π−1(0), and
P 12,55 is on π−1(∞).

Proof. First we see a fixed point at the cusp of π−1(0), hence (x, y, t) =
(0, 0, 0). Since (x, y) is a local coordinate centered at the point and the auto-
morphism g maps (x, y) to (ζ4066x, ζ

27
66y), the fixed point of g is P 27,40.

Next, we study the intersection point of the 0-section of π and π−1(0), that
is the infinite point of π−1(0). We may take a local coordinate (x/y, t) centered
at the point. Since the automorphism g maps (x/y, t) to (ζ1366x/y, ζ

54
66 t), the

point is P 13,54.

Finally, we study the intersection point of the 0-section of π and π−1(∞).
Set x/t4 = x1, y/t

6 = y1, t = t−1
1 (See also [9, §3]). Then we may take a local

coordinate (x1/y1, t1) centered at the point and the automorphism g maps
(x1/y1, t1) to (ζ5566x1/y1, ζ

12
66 t1). This implies the point is P 12,55.

Remark 3.9. Let [x : y : z] be a homogeneous coordinate of P2. Then X
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is given by the following equations in P
2 × C:

{

zy2 = x3 + t(t11 − 1)z3,

z1y
2
1 = x31 + (1− t111 )z31 .

Note that the action of g at t = ∞ (t1 = 0) is

([x1 : y1 : z1], t1) 7→ ([ζ2266x1 : ζ
33
66y1 : z1], ζ

12
66 t1).

It is easy to see

Xg2 = {([x : y : z], t) = ([0 : 0 : 1], 0), ([0 : 1 : 0], 0)}

∐ {([x1 : y1 : z1], t1) = ([0 : 1 : 0], 0), ([0 : 1 : 1], 0), ([0 : 1 : −1], 0)}

and

Xg3 = {([x : y : z], t) = ([0 : 0 : 1], 0), ([0 : 1 : 0], 0)}

∐ {([x1 :y1 :z1], t1)=([0 :1 : 0], 0), ([1 :0 :ζ6], 0), ([1 :0 :−1], 0), ([1 :0 :ζ56 ], 0)}.

In the same way as above, we can recheck Proposition 3.3 and Proposition 3.5.

4. QUOTIENT SINGULARITIES

Let G66 be an abelian group generated by g. Similarly, we put G22 :=
〈f22〉 and G33 := 〈f33〉. Then G66, G22 and G33 which are abelian groups
of order 66, of order 22 and of order 33 act on X as automorphism groups,
respectively. In this section, we study quotient surfaces X/G66, X/G22 and
X/G33. For the details about general theory of quotient singularities, see e.g.
[8, Chapter 2].

Lemma 4.1. Set G2 := 〈f2〉, G3 := 〈f3〉 and G6 := 〈f6〉. The quotient
surfaces X/G2, X/G3 and X/G6 are smooth.

Proof. Note that fixed loci of f2 and f3 do not include isolated points by
Proposition 3.1 (1) and (2). This means that G2 and G3 are quasi-reflection
groups, hence X/G2 and X/G3 are smooth.

By Proposition 3.1 (3), fixed locus Xf6 has 12 isolated fixed points of type
P 3,4. It is sufficient for us to see the action on neighborhoods of such points.
Since G2 and G3 are quasi-reflection subgroups of G6, quotient singularity
C
2/G6 = (C2/G2)/(G6/G2) is isomorphic to C

2/G3 which is smooth. Thus
X/G6 is smooth.

Proposition 4.2. Each quotient surfaces X/G66, X/G22 and X/G33

have one point of type 1
11(1, 5) and one point of type 1

11(1, 8) as singularities.
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Proof. Put G11 := 〈f11〉. Since G6 is quasi-reflection subgroup of G66,
C
2/G66 = (C2/G6)/(G66/G6) is isomorphic to C

2/G11. Hence X/G66 has the
same singularities as X/G11.

By Proposition 3.1 (4), X/G11 has one singular point of 1
11(2, 10) and

one singular point of type 1
11(5, 7). We remark that a singular point of type

1
11(2, 10) can be identified with 1

11(1, 5) and a singular point of type 1
11(5, 7)

can be identified with 1
11(1, 8) by by replacing a primitive 11-th root of unity.

Similarly, since G2 and G3 are also quasi-reflection subgroups of G22 and
G33 respectively, singularities of X/G22 and X/G33 are same as X/G11.

Let Z be a normal algebraic surface with at worst log terminal singu-
larities, Z is called log Enriques if the irregularity dimH1(Z,OZ) = 0 and a
positive multiple IKZ of a canonical Weil divisor KZ is linearly equivalent to
zero. The smallest integer I > 0 satisfying IKZ ∼ 0 is called the index of Z.

Corollary 4.3. Quotient surfaces X/G66, X/G22 and X/G33 are log
Enriques surfaces of index 11.

Proof. By Proposition 4.2, it is enough to see thatX/G11 is a log Enriques
surface of index 11. It follows from Lemma 1.7 and its proof of [13].
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