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In this paper, we obtain the characterizations of Morrey Triebel-Lizorkin spaces
by two families of operators. Applying the characterizations of Morrey Triebel-
Lizorkin spaces, it is proved that b is a Lipschitz function if and only if the
commutator [b, T ] is bounded from Morrey spaces to Morrey Triebel-Lizorkin
spaces, where T is singular integral operator or Riesz potential operator.
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1. INTRODUCTION

In this paper, for β > 0, the Lipschitz space Λ̇β is the space of functions
f such that

∥f∥Λ̇β
= sup

x,h∈Rn, h ̸=0

|f(x+ h)− f(x)|
|h|β

< ∞.

For a linear operator T and a locally integrable function b ∈ Λ̇β, define a
commutator operator by

[b, T ]f(x) = b(x)Tf(x)− T (bf)(x).

In 1978, Janson [9] proved that b ∈ Λ̇β if and only if the commutator
of Calderón-Zygmund singular integral operator T is bounded from Lp(Rn) to
Lq(Rn), where 1 < p < q < ∞ and 1/p − 1/q = β/n. In 1995, for 0 < β < 1
and 1 < p < ∞, Paluszynski [13] showed that

b ∈ Λ̇β ⇔ [b, T ] : Lp(Rn) → F β,∞
p (Rn). (1)

It is worth noting that the result of Paluszynski depends on the following
characterization of the Triebel-Lizorkin space F β,∞

p (Rn),

∥f∥
Fβ,∞
p (Rn)

≈
∥∥∥ sup

Q

1

|Q|1+β/n

∫
Q
|f − fQ|

∥∥∥
Lp(Rn)

, (2)
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where Q denotes a cube with sides parallel to the axes and fQ is the mean
value of f on cube Q. The equivalent relation of (2) is proved by Seeger in [20,
Theorem 1].

In this paper, replacing Triebel-Lizorkin spaces by Morrey Triebel-Lizorkin
spaces in (1) and (2), we prove that b belongs to Lipschitz space if and only if
the commutator [b, T ] of singular integral operator T is bounded from Morrey
spaces to Morrey Triebel-Lizorkin spaces. Meanwhile, we show that the com-
mutator of Riesz potential operator has corresponding result as well. To this
end, let us recall the definitions of Morrey spaces and Morrey Triebel-Lizorkin
spaces as follows.

The classical Morrey space was originally introduced by Morrey [12] in
1938 to study the local behavior of solutions to second order elliptic partial
differential equations. Now, we give the definition of Morrey spaces on Rn.

Definition 1.1. Let 1 ≤ p < ∞ and 0 ≤ λ < n. Define Morrey spaces
Mp,λ to be the collection of all locally integrable functions f on Rn such that

∥f∥Mp,λ(Rn) = sup
x∈Rn,r>0

r
−λ

p ∥f∥Lp(Br(x)) < ∞,

where Br(x) = B(x, r) = {y ∈ Rn : |x− y| < r} for x ∈ Rn and r > 0.

Let’s review the Fourier analytical approach to Triebel-Lizorkin spaces.
The set S denotes the usual Schwartz class of infinitely differentiable rapidly
decreasing complex-valued functions, S ′

is the dual of S. The Fourier transform
of a tempered distribution f is denoted by f̂ while its inverse transform is
denoted by f̌ . Let φ0, φ ∈ S(Rn) with φ0 ≥ 0 and satisfying

φ0(x) =

{
1, |x| ≤ 1;

0, |x| ≥ 2.

For any x ∈ Rn, if φ(x) = φ0(x) − φ0(2x) and φj(x) = φ(2−jx) with j ∈ N,
then we call {φj}j∈N0 a smooth dyadic resolution of unity. It follows that

∞∑
j=0

φj(x) = 1.

Definition 1.2. Let {φj}j∈N0 be a smooth dyadic resolution of unity, 0 <
β, q ≤ ∞, 0 < p < ∞. The set{

f ∈ S ′
(Rn) :

∥∥∥( ∞∑
j=0

|2jβ(φj ∗ f̂)∨|q
)1/q∥∥∥

Mp,λ(Rn)
< ∞

}
is called the Morrey Triebel-Lizorkin spaces and denoted by Eβ

pλq(R
n). The



3 Characterizations of commutators of singular integral operators 427

quasi-norm of f in this space is denoted by

∥f∥Eβ
pλq(Rn)

=
∥∥∥( ∞∑

j=0

|2jβ(φj ∗ f̂)∨|q
)1/q∥∥∥

Mp,λ(Rn)
.

For more research on Morrey spaces and Triebel-Lizorkin spaces, see [2, 6, 8,
12, 16, 17, 18, 20, 24, 25].

Remark 1.3. (i) For 1 ≤ p < ∞ and 0 ≤ λ < n, Mazzucato proves
E0
pλ2(Rn) = Mp,λ(Rn) in [11, Proposition 4.1].

(ii) By [8, Theorem 3.1], for any βi ∈ R, 0 < qi ≤ ∞ and 0 < λi ≤ pi < ∞
(i = 1, 2), if

λ0 ≤ λ1 and
p1
λ1

≤ p0
λ0

,

β0 −
n

λ0
> β1 −

n

λ1
,

or β0 −
n

λ0
= β1 −

n

λ1
and λ0 ̸= λ1,

or β0 = β1, λ0 = λ1 and q0 ≤ q1,
then

Eβ0

p0λ0q0
(Rn) ↪→ Eβ1

p1λ1q1
(Rn).

Thus, when q0 = ∞, β1 = 0 and q1 = 2, it is obvious that Eβ0

p0λ0∞(Rn) ↪→
E0
p0λ02

(Rn) = Mp1,λ1(Rn). This fact will be used in Section 3.

Based on Definition 1.1 and Definition 1.2, we can now give the following
characterization of Morrey Triebel-Lizorkin space Eβ

pλ∞(Rn).

Theorem 1.4. Let 0 < β < 1 and 1 < λ ≤ p < ∞, then

∥f∥Eβ
pλ∞(Rn)

≈
∥∥∥ sup

Q

1

|Q|1+β/n

∫
Q
|f − fQ|

∥∥∥
Mp,λ(Rn)

.

The above theorem will be proved in next section.
From now on, it is assumed that the singular integral operator we are

working with

Tf(x) = p · v ·
∫
Rn

K(x− y)f(y)dy

is regular, which means that the kernel satisfies∣∣K(x)
∣∣ ≤ C

∣∣x∣∣−n
, x ̸= 0 (3)

and∣∣K(x− y)−K(x′− y)
∣∣+ ∣∣K(y−x)−K(y−x′)

∣∣ ≤ c1

( |x− x′|
|x− y|

)ε
|x− y|−n (4)

whenever 0 < ε ≤ 1 and 2|x− x′| < |x− y|. Note that Difazio and Ragusa [7]
studied the boundedness of the singular integral operator in Morrey spaces.
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Theorem 1.5. Let 0 < β < 1 and 1 < λ ≤ p < ∞. Then, the following
conditions are equivalent:

(i) b ∈ Λ̇β;

(ii)
[
b, T

]
is a bounded operator from Mp,λ(Rn) to Eβ

pλ∞(Rn).

For 0 < α < n, the Riesz potential operator Iα is defined by

Iαf(x) =

∫
Rn

f(y)

|x− y|n−α
dy.

Spanne (published by Peetre [14]) and Adams [1] studied the boundedness of
Riesz potential operator in Morrey spaces. In 2006, Shirai [21] showed that
b ∈ Λ̇β(Rn) if and only if the commutator [b, Iα] is bounded from Mp,λ(Rn) to
Mq,λ(Rn) or from Mp,λ(Rn) to Mq,µ(Rn) for some appropriate indices p, q, λ, µ,
and β. Inspired by the above conclusions, we give the following theorem for
Riesz potential operator.

Theorem 1.6. Let 0 < α, 0 < β < 1 and 1 < p < q < ∞. Then, the
following conditions are equivalent:

(i) b ∈ Λ̇β;

(ii)
[
b, Iα

]
is a bounded operator from Mp,λ(Rn) to Eβ

qµ∞(Rn) with 1/p−1/q =
α/n < 1, 0 < λ < n− αp and λ/p = µ/q;

(iii)
[
b, Iα

]
is a bounded operator from Mp,λ(Rn) to Eβ

qλ∞(Rn) with 1 < λ < ∞
and 1/p− 1/q = α/(n− λ) < n/(n− λ).

Note that the proofs of Theorem 1.5 and Theorem 1.6 are postponed until
Section 3.

Throughout the whole article, we denote by Rn the n-dimensional real
Euclidean space, N = {1, 2, · · ·} and N0 = N∪{0}. Use C as a generic positive
constant, and denote simply by A ≲ B if there exists a constant C > 0 such
that A ≤ CB. Further, A ≈ B means that A ≲ B and B ≲ A.

2. THE CHARACTERIZATIONS OF MORREY
TRIEBEL-LIZORKIN SPACES

In this section, using two families of operators, we discuss the charac-
terizations of Morrey Triebel-Lizorkin spaces Eβ

pλq(R
n) in Theorem 2.5, which

implies Theorem 1.4.
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To show the characterizations of Eβ
pλq(R

n), we need the property of Pee-

tre maximal operator on Eβ
pλq(R

n) and the boundedness of Hardy-Littlewood
maximal operator on sequences function spaces. To this end, let us recall the
following Peetre maximal operator, introduced in [15].

Definition 2.1. Given a sequence of functions {Ψj}j ⊂ S(Rn), a tempered
distribution f ∈ S ′

(Rn) and a positive number a > 0, the Peetre’s maximal
functions are defined as

(Ψ∗
jf)a(x) = sup

y∈Rn

|Ψj ∗ f(y)|
1 + |2j(x− y)|a

for all x ∈ Rn and j ∈ N0.

The proof of the following lemma may be found in [19, Theorem 4.1].

Lemma 2.2. Let 0 < λ ≤ p < ∞, 0 < q ≤ ∞ and β ∈ R. If f ∈ Eβ
pλq(R

n),
then

∥f∥Eβ
pλq(Rn)

∼

∥∥∥∥∥∥∥
 ∞∑

j=0

(
2jβ(Ψ∗

jf)a

)q

1/q
∥∥∥∥∥∥∥
Mp,λ(Rn)

∼

∥∥∥∥∥∥∥
 ∞∑

j=0

(
2jβ(Ψj ∗ f)

)q

1/q
∥∥∥∥∥∥∥
Mp,λ(Rn)

.

For the case q = ∞, the above facts have the usual modification and replace
integrations by sup-norms.

For any f ∈ L1
loc(Rn), the standard Hardy-Littlewood maximal operator

is defined by

Mf(x) = sup
r>0

r−n

∫
Br(x)

|f(y)|dy.

Chiarenza and Frasca [3] showed that the operator M is bounded on Mp,λ(Rn)
with 1 < p < ∞ and 0 ≤ λ < n.

The boundedness of Hardy-Littlewood maximal operator on vector-valued
function spaces is given as follows.

Lemma 2.3. If 1 < λ ≤ p < ∞ and 1 < q ≤ ∞, then there is a constant
C such that for all sequences {fj}∞j=0 of locally integrable functions,∥∥∥( ∞∑

j=0

(
Mfj

)q)1/q∥∥∥
Mp,λ(Rn)

≤ C
∥∥∥( ∞∑

j=0

f q
j

)1/q∥∥∥
Mp,λ(Rn)

.

Now, we recall two families of operators.
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Definition 2.4. Let β > 0, 1 < q ≤ ∞, 1 ≤ r < ∞ and m ∈ N. Assume
that Qx(t) = Q(x, t) denotes a cube centered at x, with side length t, sides
parallel to the axes.

(i) Consider the family of operators Sβ
q,r,m, defined by

Sβ
q,r,mf(x) =

(∫ ∞

0

( 1

|Q0(t)|

∫
Q0(t)

|∆m
h f(x)|rdh

)q/r dt

t1+βq

)1/q
,

where ∆m
h is difference operator, that is

∆1
hf(x) = ∆hf(x) = f(x+ h)− f(x),

∆m+1
h f(x) = ∆k

hf(x+ h)−∆k
hf(x), m ≥ 1.

(ii) For a fixed cube Q = Qx(t), we define the oscillation

oscmr (f,Q) = oscmr (f, x, t) = inf
P∈Pm

( 1

|Q|

∫
Q
|f(y)− P (y)|rdy

)1/r
,

where Pm denotes the space of all polynomials on Rn of degree up to
order m. Further, we define the family of operators

Dβ
q,r,mf(x) =

(∫ ∞

0

(
oscm−1

r (f, x, t)
)q dt

t1+βq

)1/q
.

For q = ∞ or r = ∞, we have the usual modifications and replace inte-
grations by sup-norms. Some properties of the above two families of operators
can be found in [4] and [5].

From now on, we assume that ν is the trace of a matrix (see [20, p. 391]).
Note that the following theorem implies Theorem 1.4 in the case q = ∞.

Theorem 2.5. Let 1 < λ ≤ p < ∞, 1 < q ≤ ∞, r ≥ 1, m ∈ N and ν ∈ R.
If there exists a positive constant a0 such that m > β/a0 and

β > σp,q,r = max
{
0, ν(

1

p
− 1

r
), ν(

1

q
− 1

r
)
}
,

then
∥f∥Eβ

pλq(Rn)
∼ ∥Sβ

q,r,mf∥Mp,λ(Rn) ∼ ∥Dβ
q,r,mf∥Mp,λ(Rn).

Proof. The proof follows the ideas in [20]. Firstly, by Sβ
q,r,mf ≲ Dβ

q,r,mf,

we can deduce that ∥Sβ
q,r,mf∥Mp,λ(Rn) ≲ ∥Dβ

q,r,mf∥Mp,λ(Rn). In addition, accord-
ing to the argument of Triebel [23], it is obvious that

∥f∥Eβ
pλq(Rn)

≲ ∥Sβ
q,r,mf∥Mp,λ(Rn).

Thus, we only need to verify

∥Dβ
q,r,mf∥Mp,λ(Rn) ≲ ∥f∥Eβ

pλq(Rn)
.
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By the proof of [20, Theorem 1], for 0 < τ < min(1, q, p), it follows that

∥Dβ
q,r,mf∥Mp,λ(Rn) ≲ ∥Dβ

q,τ,mf∥Mp,λ(Rn). Now we decompose

f = f0,t + f1,t and f0,t =
∑
2kt≥1

Ψk ∗ f,

where Ψk is as in Definition 2.1. Then

Dβ
q,τ,mf(x)

=
(∫ ∞

0

(
oscm−1

τ (f, x, t)
)q dt

t1+βq

)1/q

≤
(∫ ∞

0

(
oscm−1

τ (f0,t, x, t)
)q dt

t1+βq

)1/q
+
(∫ ∞

0

(
oscm−1

τ (f1,t, x, t)
)q dt

t1+βq

)1/q

=: I + II.

To estimate I, based on oscm−1
τ (f0,t, x, t) ≤

(
M(f τ

0,t)
)1/τ

with τ < q, we
use Lemma 2.3 and Lemma 2.2 to derive∥∥I∥∥

Mp,λ(Rn)
≲

∥∥∥(∫ ∞

0

( ∑
2kt≥1

Ψk ∗ f
)q dt

t1+βq

)1/q∥∥∥
Mp,λ(Rn)

≲
∥∥∥(∑

k

2kβq|Ψk ∗ f |q
)1/q∥∥∥

Mp,λ(Rn)

≲ ∥f∥Eβ
pλq(Rn)

.

To estimate II, for a > 0, we have

oscm−1
τ (f1,t, x, t) ≲

(∫
Qx(t)

|
∑
2kt≤1

(2kt)ma0(Ψ∗
kf)a(z)|τdz

)1/τ
,

where Qx(t) is a cube with x as its center and t as its edge. Due to m > β/a0,
it follows that

∥II∥Mp,λ(Rn) ≲
∥∥∥(∫ ∞

0
|
∑
2kt≤1

(2kt)ma0−β2kβ(Ψ∗
kf)a|q

dt

t

)1/q∥∥∥
Mp,λ(Rn)

≲
∥∥∥(∑

k

2kβq(Ψ∗
kf)

q
a

)1/q∥∥∥
Mp,λ(Rn)

≲ ∥f∥Eβ
pλq(Rn)

,

where the last estimate follows by choosing a > νmin{p, q} in Lemma 2.2.
This ends the proof of Theorem 2.5.
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3. PROOFS OF THEOREM 1.5 AND THEOREM 1.6

In this section, by means of some lemmas, we give the proofs of Theorem
1.5 and Theorem 1.6.

Lemma 3.1. Let 0 < β < 1 and 1 < q ≤ ∞. Then

∥f∥Λ̇β
≈ sup

Q

1

|Q|1+β/n

∫
Q
|f − fQ| ≈ sup

Q

1

|Q|β/n
( 1

|Q|

∫
Q
|f − fQ|q

)1/q
.

For q = ∞, the formula should be interpreted appropriately.

The proof of the Lemma 3.1 may be found in [5, p. 14, p. 38] and [10].

Proof of Theorem 1.5. Let 0 < β < 1 and 1
p − 1

q = β
n . Fix a cube

Q = Q(xQ, t) and assume that x ∈ Q. For f ∈ Lp(Rn), we write f0 = fχ2Q

and f∞ = f − f0.

(i)⇒(ii): According to
[
b, T

]
f =

[
b− bQ, T

]
f , we have

1

|Q|1+β/n

∫
Q

∣∣∣[b, T ]f −
([
b, T

]
f
)
Q

∣∣∣
=

1

|Q|1+β/n

∫
Q

∣∣∣[b− bQ, T
]
f −

([
b− bQ, T

]
f
)
Q

∣∣∣
≲

1

|Q|1+β/n

∫
Q

∣∣∣[b− bQ, T
]
f − T

(
(b− bQ)f

∞)
(xQ)

∣∣∣
≲

1

|Q|1+β/n

∫
Q

∣∣∣(b− bQ)Tf
∣∣∣

+
1

|Q|1+β/n

∫
Q

∣∣∣T ((b− bQ)f)− T
(
(b− bQ)f

∞)
(xQ)

∣∣∣
≲

1

|Q|1+β/n

∫
Q

∣∣∣(b− bQ)Tf
∣∣∣

+
1

|Q|1+β/n

∫
Q

∣∣∣T ((b− bQ)f
0)
∣∣∣

+
1

|Q|β/n
sup
y∈Q

∣∣∣T ((b− bQ
)
f∞)

(y)− T
(
(b− bQ)f

∞)
(xQ)

∣∣∣
=: D1 +D2 +D3.

Firstly, to estimate D1, we utilize Lemma 3.1 to derive

1

|Q|1+β/n

∫
Q

∣∣∣(b− bQ)Tf
∣∣∣ ≲

1

|Q|β/n
sup
y∈Q

|b(y)− bQ|
( 1

|Q|

∫
Q

∣∣Tf ∣∣)
≲ ∥b∥Λ̇β

M
(
Tf

)
(x),
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which allows us to obtain that D1 ≲ ∥b∥Λ̇β
M

(
Tf

)
(x).

To estimate D2, for 0 < t < p, the boundedness of T implies that

D2 =
1

|Q|1+β/n

∫
Q

∣∣∣T ((b− bQ)f
0)
∣∣∣

≲
1

|Q|1+β/n

(∫
Q

∣∣∣T ((b− bQ)f
0
)∣∣∣t)1/t∣∣Q∣∣1−1/t

≲ |Q|−β/n−1/t
(∫

Q
|(b− bQ)f

0|t
)1/t

≲ |Q|−β/n sup
y∈Q

|b(y)− bQ|
( 1

|Q|

∫
Q
|f |t

)1/t

≲ ∥b∥Λ̇β

(
M(|f |t)

)1/t
(x).

In view of D3, we need the following well-known fact:

|bQ∗ − bQ| ≲ C∥b∥Λ̇β
|Q|β/n for Q∗ ⊂ Q.

From this and Lemma 3.1, it follows that∣∣∣T ((b− bQ)f
∞)

(y)− T
(
(b− bQ)f

∞)
(xQ)

∣∣∣
=

∣∣∣ ∫
Rn

(
K(y − z)−K(xQ − z)

)
(b(z)− bQ)f

∞(z)dz
∣∣∣

≲
∫
(2Q)c

|y − xQ|
|xQ − z|n+1

|b(z)− bQ||f(z)|dz

≲
∞∑

m=2

∫
2mQ\2m−1Q

2−m|2mQ|−1(|b(z)− b2kQ|+ |b2kQ − bQ|)|f(z)|dz

≲
∞∑

m=2

2−m|2mQ|β/n∥b∥Λ̇β
M(f)(x) +

∞∑
m=2

2−m|2mQ|β/n∥b∥Λ̇β
M(f)(x)

≲ ∥b∥Λ̇β
|Q|β/n

∞∑
m=2

2−m+βmM(f)(x)

≲ ∥b∥Λ̇β
|Q|β/nM(f)(x),

which implies that D3 ≲ ∥b∥Λ̇β
M(f)(x).

Summarizing all the estimates of D1 through D3, we obtain that

1

|Q|1+β/n

∫
Q

∣∣∣[b, T ]f −
([
b, T

]
f
)
Q

∣∣∣
≲ ∥b∥Λ̇β

(
M

(
Tf

)
(x) +

(
M(|f |t)

)1/t
(x) +Mf(x)

)
.
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Further, taking the supremum over all Q such that x ∈ Q, and the norm of
Mp,λ(Rn) on the both sides of the inequality above. By Theorem 1.4 and the
boundedness of M , we conclude that∥∥∥[b, T ]f∥∥∥

Eβ
pλ∞(Rn)

≲ ∥b∥Λ̇β

(∥∥M(
Tf

)∥∥
Mp,λ(Rn)

+
∥∥(M(|f |t)

)1/t∥∥
Mp,λ(Rn)

+
∥∥Mf

∥∥
Mp,λ(Rn)

)
≲ ∥b∥Λ̇β

∥f∥Mp,λ(Rn).

(ii)⇒(i): Note that K(y − z) is a homogeneous kernel of degree −n on
some ball. Choose z0 ∈ Rn, Q

(
z0, δ

√
n
)
⊂ Rn and take |z0| >

√
n, δ < 1

small such that Q̄
⋂
{0} = ∅. Thus, we can express 1

K(x−y) as an absolutely
convergent Fourier series on the ball, of the form

1

K(x− y)
=

∞∑
m=0

amei⟨νm,(x−y)⟩, (5)

where above and in what follows, for the specific vectors νm ∈ Rn,

∞∑
m=0

|am| < ∞.

For x0 ∈ Rn and t > 1, define Q = Q(x0, t) and Q0 = Q(x0 + z0t, t). Let
x ∈ Q, y ∈ Q0 with (y − x)/t ∈ Q

(
z0, δ

√
n
)
. Take on s(x) = sgn(b(x)− bQ0).

By (5) and Remark 1.3, we see that

1

|Q|1+β/n

∫
Q
|(b(x)− bQ)|dx

≲
1

|Q|1+β/n

∫
Q

∣∣b(x)− bQ0

∣∣dx
≲

1

|Q|1+β/n

1

|Q0|

∫
Q
s(x)

(∫
Q0

(
b(x)− b(y)

)
dy

)
dx

≈ 1

t2n+β

∫
Q
s(x)

(∫
Q0

(
b(x)− b(y)

)K(x− y)

K(x− y)
dy

)
dx

≈ 1

tn+β

∞∑
m=0

am

∫
Q
s(x)

(∫
Q0

(
b(x)− b(y)

)
K(x− y)ei⟨νm,(y−x)/t⟩dy

)
dx

≲
1

tn+β

∞∑
m=0

|am|
∫
Rn

([
b, T

](
χQ0ei⟨νm,·/t⟩)(x))(χQ(x)e

−i⟨νm,x/t⟩s(x)
)
dx

≲
1

tn+β

∞∑
m=0

|am|
∥∥∥[b, T ](χQ0ei⟨νm,·/t⟩)∥∥∥

Mq,λ(Rn)

∥∥χQ

∥∥
Mq′,λ(Rn)
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≲
1

tn+β

∞∑
m=0

|am|
∥∥∥[b, T ](χQ0ei⟨νm,·/t⟩)∥∥∥

Eβ
pλ∞(Rn)

∥∥χQ

∥∥
Mq′,λ(Rn)

≲
1

tn+β

∞∑
m=0

|am|
∥∥[b, T ]∥∥

Mp,λ(Rn)→Eβ
pλ∞(Rn)

∥χQ0∥Mp,λ(Rn)

∥∥χQ

∥∥
Mq′,λ(Rn)

≲
∥∥[b, T ]∥∥

Mp,λ(Rn)→Eβ
pλ∞(Rn)

,

which implies that (ii)⇒(i) holds. This ends the proof of Theorem 1.5.

We now turn to the commutator of Riesz potential operator for the
above problem. Referring to the proof in [5, pp. 71-72], replacing Lp(Rn)
by Mp,λ(Rn), we can obtain the following lemma.

Lemma 3.2. Let 1 < λ ≤ p < q < ∞ and 1/p− 1/q = α/n. Suppose that,
for each cube Q, there exists a function hQ defined on Q. Then, for 0 ≤ γ,∥∥∥ sup

Q

1

|Q|1+γ/n

∫
Q
|hQ|

∥∥∥
Mq,λ(Rn)

≤ C
∥∥∥ sup

Q

1

|Q|1+γ/n+α/n

∫
Q
|hQ|

∥∥∥
Mp,λ(Rn)

,

where the constant C depends only on p, q, α and n.

Lemma 3.3 (Adams [1]). Let 0 < α < n, 1 < p < n
α , 0 < λ < n−αp and

1
p − 1

q = α
n−λ . Then the operator Iα is bounded from Mp,λ(Rn) to Mq,λ(Rn).

Lemma 3.4 (Spanne, but published by Peetre [14]). Let 0 < α < n,
1 < p < n

α and 0 < λ < n− αp. Assume that 1
p − 1

q = α
n and λ

p = µ
q . Then the

operator Iα is bounded from Mp,λ(Rn) to Mq,µ(Rn).

Proof of Theorem 1.6. Let 0 < β < 1, 1
p − 1

q = α
n and 1

p − 1
r = α+β

n

with 1
p > α+β

n . Fix xQ as the center of a cube Q. Let g ∈ Lp(Rn). Define

g0 = gχ2Q and g∞ = g − g0.

(i)⇒(ii): From Theorem 1.4 and Lemma 3.2, it follows that

∥[b, Iα](g)∥Eβ
pµ∞(Rn)

≲
∥∥∥ sup

Q∋·

1

|Q|1+β/n

∫
Q

∣∣[b, Iα](g)− (
[b, Iα](g)

)
Q

∣∣∥∥∥
Mq,µ(Rn)

≲
∥∥∥ sup

Q∋·

1

|Q|1+β/n

∫
Q

∣∣[b− bQ, Iα](g)− Iα
(
(b− bQ)g

∞)
(xQ)

∣∣∥∥∥
Mq,µ(Rn)

≲
∥∥∥ sup

Q∋·

1

|Q|1+β/n

∫
Q

∣∣(b− bQ)Iα(g)
∣∣∥∥∥

Mq,µ(Rn)

+
∥∥∥ sup

Q∋·

1

|Q|1+(α+β)/n
sup
y∈Q

∣∣Iα((b− bQ)g
0
)
(y)

∣∣∥∥∥
Mp,µ(Rn)
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+

∥∥∥∥∥supQ∋·

1

|Q|
α+β
n

sup
y∈Q

∣∣Iα((b− bQ)g
∞)

(y)− Iα
(
(b− bQ)g

∞)
(xQ)

∣∣∥∥∥∥∥
Mp,µ(Rn)

=: E1 + E2 + E3.

Firstly, we estimate E1. For each x ∈ Q, by Lemma 3.1, it follows that

1

|Q|β/n
1

|Q|

∫
Q

∣∣(b− bQ)Iα(g)
∣∣ ≲

1

|Q|β/n
sup
y∈Q

|(b(y)− bQ)|
( 1

|Q|

∫
Q
|Iα(g)|

)
≲ ∥b∥Λ̇β

M
(
Iα(g)

)
(x).

Thus, the boundedness of M and Lemma 3.4 imply that

E1 ≲ ∥b∥Λ̇β

∥∥Iα(g)∥∥Mq,µ(Rn)
≲ ∥b∥Λ̇β

∥g∥Mp,λ(Rn).

To estimate E2, choose r (1 < r < p) and r̄ such that 1/r − 1/r̄ = α/n.
Such r̄ exists, by r < p < n/α, we deduce that

1

|Q|1+(α+β)/n

∫
Q

∣∣Iα((b− bQ)g
0)
∣∣

≲
1

|Q|1+(α+β)/n

∥∥Iα((b− bQ)g
0)
∥∥
Lr̄(Rn)

|Q|1/r̄
′

≲ |Q|−1−(α+β)/n+1−1/r̄∥(b− bQ)g
0∥Lr(Rn)

≲ ∥b∥Λ̇β

(
M(|g|r)

)1/r
,

which implies E2 ≲ ∥b∥Λ̇β
∥g∥Mp,µ(Rn) ≲ ∥b∥Λ̇β

∥g∥Mp,λ(Rn).

To estimate E3, referring to the estimates of D3, we see that

1

|Q|α/n+β/n

∣∣∣Iα((b− bQ)g
∞)

(y)− Iα
(
(b− bQ)g

∞)
(xQ)

∣∣∣
≲

1

|Q|α/n+β/n

∫
(2Q)c

|y − xQ||b(z)− bQ||g(z)|
|xQ − z|n+1−α

dz

≲
1

|Q|α/n+β/n

∞∑
k=2

∫
2kQ\2k−1Q

2−k|2kQ|−1+α/n|g(z)||b(z)− bQ|dz

≲
∞∑
k=2

2−k+kα+kβ 1

|2kQ|β/n
1

|2kQ|

∫
2kQ

|b(z)− b2kQ||g(z)|dz

+
∞∑
k=2

2−k+kα 1

|Q|β/n
|2kQ|β/n∥b∥Λ̇β

1

|2kQ|

∫
2kQ

|g(z)|dz

≲ ∥b∥Λ̇β
M(g)(x).
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So,
E3 ≲ ∥b∥Λ̇β

∥g∥Mp,µ(Rn) ≲ ∥b∥Λ̇β
∥g∥Mp,λ(Rn).

This allows us to obtain that (i)⇒(ii) holds.

(ii)⇒(iii): According to Remark 1.3, we have the following inequality

∥[b, Iα
]
f∥Eβ

qλ∞(Rn)
≲ ∥[b, Iα

]
f∥Eβ

pµ∞(Rn)
≲ ∥f∥Mp,λ(Rn).

(iii)⇒(i): We know that 1
(|x−y|)n−α is a homogeneous kernel of degree

−n + α. Choose x0 ∈ Rn, t > 0, let Q = Q(x0, t) and Q0 = Q(x0 + z1t, t). By
(5), we can get that for any x ∈ Q and y ∈ Q0,

1

|x− y|n−α
=

∞∑
m=0

amei⟨νm,x−y⟩.

Applying the above formula and Remark 1.3, we deduce that

1

|Q|1+β/n

∫
Q
|(b(x)− bQ)|dx

≲
1

|Q|1+β/n

1

|Q0|

∫
Q
s(x)

(∫
Q0

(
b(x)− b(y)

)
dy

)
dx

≈ 1

t2n+β

∫
Q
s(x)

(∫
Q0

(
b(x)− b(y)

) |x− y|n−α

|x− y|n−α
dy

)
dx

≈ 1

tn+β+α

∞∑
m=0

am

∫
Q
s(x)

(∫
Q0

(
b(x)− b(y)

)
|x− y|n−αei⟨νm,(y−x)/t⟩dy

)
dx

≲
1

tn+β+α

∞∑
m=0

|am|
∫
Rn

([
b, Iα

](
χQ0ei⟨νm,·/t⟩)(x))(χQ(x)e

−i⟨νm,x/t⟩s(x)
)
dx

≲
1

tn+β+α

∞∑
m=0

|am|
∥∥∥[b, Iα](χQ0ei⟨νm,·/t⟩)∥∥∥

Mr,λ(Rn)
∥χQ∥Mr′,λ(Rn)

≲
1

tn+β+α

∞∑
m=0

|am|
∥∥∥[b, Iα](χQ0ei⟨νm,·/t⟩)∥∥∥

Eβ
qλ∞(Rn)

∥χQ∥Mr′,λ(Rn)

≲
1

tn+β+α

∞∑
m=0

|am|
∥∥[b, Iα]∥∥Mp,λ(Rn)→Eβ

qλ∞(Rn)
∥χQ0∥Mp,λ(Rn)∥χQ∥Mr′,λ(Rn)

≲
∥∥[b, Iα]∥∥Mp,λ(Rn)→Eβ

qλ∞(Rn)
.

Thus, by the fact that
[
b, Iα

]
is a bounded operator fromMp,λ(Rn) to Eβ

qλ∞(Rn),
we conclude that (iii)⇒(i) holds. This ends the proof of Theorem 1.6.
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