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In the first part of the paper, we present a theorem of type “partition of unity”,
and three of its consequences, i.e., for algebras, linear subspaces and convex
cones. In the second part, some theorems of localizability (or density) in a
weighted space are presented. We mention that the weighted spaces are classes
of continuous scalar functions on a locally compact space (for example, the space
of function with compact support, the space of bounded functions, the space
of functions vanishing at infinity, the space of functions rapidly decreasing at
infinity).
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1. INTRODUCTION

Let X be a Hausdorff locally compact space and let F be a subset of
continuous functions on X with values in the interval [0,1]. The set F induces
on X the following equivalence relation:

x ∼F y ⇔ f(x) = f(y), ∀f ∈ F .

For any x ∈ X, we denote by [x]F the set:

[x]F = {y ∈ X; f(y) = f(x)}, ∀f ∈ F .

Obviously, [x]F is a closed subset of X and any element f ∈ F is constant on
this set. In fact, [x]F is the maximal set containing x with this property and
for any x, y ∈ X we have [x]F = [y]F or [x]F ∩ [y]F = ∅. We denote by X/ ∼F
the space of all equivalence classes, i.e.:

X/ ∼F= {[x]F ; x ∈ X}.
Further, we denote by βX the Stone-Čech compactification of the locally com-
pact space X, i.e., the compact space (uniquely determined up to a topological
isomorphism) such that X is a dense subset of βX.
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The topology of X coincides with the trace topology of βX on X and any
bounded continuous function on X may be extended to a unique continuous
function on βX. If for any f ∈ Cb(X) (i.e., f is a continuous bounded function
on X) we shall denote by βf the continuous extension of f to βX then the
map β : Cb(X) → C(βX) is an isomorphism between two Banach algebras.

The family βF = {βf ; f ∈ F} induces on βX the following equivalence
relation:

u ∼βF v ⇔ (βf)(u) = (βf)(v), ∀f ∈ F .

We denote by Z the quotient space βX/ ∼βF and by π : βX → Z the
canonical mapping. For any f ∈ F , the function f̃ : Z → K is given by
f̃(z) = (βf)(y) if z = π(y). Clearly, the function f̃ is well definite. If denote
by F̃ = {f̃}f∈F then F̃ ⊂ C(Z).

A generalization of the results of this paper are possible by the generaliza-
tion of the concept of maximal set of constancy with respect to a subalgebra,
a vector subspace or a convex subcone of a weighted space, by the concept
of antisymmetric set with respect to the above mathematical structures of a
weighted space. This fact assumes a generalization of Lemma de Branges from
the spaces of continuous functions on a compact space to a weighted spaces.

2. A GENERAL THEOREM OF TYPE “PARTITION OF
UNITY”

Theorem 2.1. Let F⊂C(X, [0, 1]) with the property that F̃=C(Z, [0, 1]).
Suppose in addition that for any x ∈ X there exists a compact subset Kx ⊂ X
such that [x]F ∩Kx = ∅. Then there exists a finite set {[x1]F , [x2]F , . . . , [xn]F}
of equivalence classes and there exists a finite number of functions

f1, f2, . . . , fn ∈ F
with the properties:

fi
∣∣
Kxi

= 0, i = 1, n,

n∑
i=1

fi = 1.

Proof. We remark that for any x ∈ X we have [x]F = π(x) ∩ X and if
y ∈ βX is such that π(y) ∩X ̸= ∅ then π(y) ∩X = [x]F for any x ∈ π(y) ∩X.
Hence π may be seen as an injection from {[x]F ; x ∈ X} into Z, namely:

π([x]F ) = π(y), ∀y ∈ [x]F .

In fact, we have a bijection between the space {[x]F ; x ∈ X} and the subspace
π(X) of Z. Since the set [x]F = π(y) ∩ X and the compact subset Kx are
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disjoint it follows that π(x) does not belong to the compact subset π(Kx) of

π(X). This implies that
⋂
x∈X

π(Kx) = ∅. Since π(Kx) is compact we deduce

that there exists a finite subset {x1, . . . , xn} ⊂ X such that

n⋂
i=1

π(Kxi) = ∅ and

therefore the compact space Z is covered by a finite family of open subsets of
Z:

Z =
n⋃

i=1

(Z \π(Kxi)).

We consider now a partition

n∑
i=1

gi of the constant function 1, gi : Z → [0, 1],

gi vanishing outside Z \π(Kxi), gi continuous for any i = 1, n. Since F̃ =
C(Z, [0, 1]) it follows that there exists fi ∈ F such that gi = f̃i, ∀i = 1, n.
Clearly f̃i ◦ π = βfi and that for any x ∈ X, we have:

fi(x) = (βfi)(x) = (f̃i ◦ π)(x) = gi[π(x)] ≥ 0;

fi
∣∣
Kxi

= gi
∣∣
π[Kxi ]

= 0 and
n∑

i=1

fi(x) =
n∑

i=1

gi[π(x)] = 1.

Corollary 2.2. (L. Nachbin [1, Lemma 1]) Let X be a Hausdorff locally
compact space and let A ⊂ Cb(X) be a closed subalgebra which contains the
constant functions (selfadjoint in the complex case). We suppose in addition
that for any x ∈ X there exists a compact subset Kx ⊂ X such that [x]A ∩
Kx = ∅. Then there exists a finite set {[x1]A, [x2]A, . . . , [xn]A} of equivalence
classes and there exists a finite set of functions {a1, a2, . . . , an} ⊂ A with the
properties:

ai ≥ 0, ai
∣∣
Kxi

= 0, i = 1, n,

n∑
i=1

ai = 1.

Proof. First, we remark that if we denote by A1 = {a ∈ A; 0 ≤ a ≤ 1}
then x ∼A y iff x ∼A1 y, i.e. a(x) = a(y), ∀a ∈ A iff b(x) = b(y), ∀b ∈ A1. It
is sufficient to show that b(x) = b(y), ∀b ∈ A1 implies a(x) = a(y), ∀a ∈ A.

Indeed, if a ∈ A+ then b =
a

||a||
∈ A1 and so a(x) = a(y). On the other hand,

we remark that A is a lattice since it is a closed subalgebra containing the
constant functions.

Therefore for any a ∈ A, we have a+ =
|a|+ a

2
∈ A+, a− =

|a| − a

2
∈ A+

and hence:
a(x) = a+(x)− a−(x) = a+(y)− a−(y) = a(y).
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Now the proof of the Corollary 2.2 follows from Theorem 2.1 for A ≡
A1 = {a ∈ A; 0 ≤ a ≤ 1}. Indeed, Ã is a closed subalgebra which contains the
constant functions and separates the points of the compact set Z. Therefore, by
Stone-Weierstrass theorem, we have Ã = C(Z). Obviously, Ã1 = C(Z, [0, 1]).

Definition 2.3. We shall say that a subset M ⊂ C(X, [0, 1]) has the prop-
erty (VN) if:

f · g + (1− f) · h ∈ M, ∀f, g, h ∈ M.

Corollary 2.4. Let X be a Hausdorff locally compact space and let
M ⊂ C(X, [0, 1]) be a closed subset with the property (VN) which contains
the constant functions 0, 1, and at least a constant function 0 < c < 1.

We suppose in addition that for any x ∈ X there exists a compact subset
Kx ⊂ X such that [x]M ∩Kx = ∅.

Then there exists a finite set {[x1]M, [x2]M, . . . , [xn]M} of equivalence
classes and there exists a finite set of functions m1,m2, . . . ,mn ∈ M with the
properties:

mi

∣∣
Kxi

= 0, i = 1, n,

n∑
i=1

mi = 1.

Proof. The proof follows from Theorem 2.1 for F ≡ M. Indeed, the set
M̃ is a closed subset of C(Z, [0, 1]) which separates the points of the compact
set Z = βX/ ∼βM and contains the constant functions 0, 1, and at least a
constant function 0 < c < 1. From [2, Theorem 4.18] it follows that M̃ =
C(Z, [0, 1]).

Corollary 2.5. Let X be a Hausdorff locally compact space and let C ⊂
C+
b (X) be a closed convex cone containing the constant functions 0, 1, and has

the property: for any u, v ∈ βX, π(u) ̸= π(u) there is some φ ∈ C(X, [0, 1])
such that φ · f + (1 − φ) · h ∈ C, ∀f, h ∈ C and (βφ)(u) ̸= (βφ)(v). Suppose
also that that for any x ∈ X there exists a compact subset Kx ⊂ X such
that [x]C ∩ Kx = ∅. Then there exists a finite number of equivalence classes
{[x1]C , [x2]C , . . . , [xn]C} and an equal number of functions h1, h2, . . . , hn ∈ C
with the properties:

hi
∣∣
Kxi

= 0, i = 1, n,

n∑
i=1

hi = 1.

Proof. The proof follows from Theorem 2.1 for F ≡ C1 = {h ∈ C; h ≤ 1}.
Indeed, C̃ is a closed convex cone in C+(Z) which contains the constant

functions 0, 1, separates the points of the compact set Z and has the property
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for any z1, z2 ∈ Z, z1 ̸= z2, there is a multiplier φ̃ ∈ C(Z, [0, 1]), i.e. φ̃ · f̃ +
(1− φ̃) · h̃ ∈ C̃, ∀f̃ , h̃ ∈ C̃ with the property φ̃(z1) = (βφ)(u) ̸= (βφ)(v) = φ̃(z2)
where z1 = π(u), z2 = π(v). From [3, Theorem 2, Corollary 1] it follows that
C̃ = C+(Z) and hence that

C̃1 = C(Z, [0, 1]).

3. SOME APPROXIMATION THEOREM IN WEIGHTED
SPACES

Definition 3.1. A family V of upper semicontinuous, non-negative func-
tions on the Hausdorff locally compact space X such that for any v1, v2 ∈ V
and any λ ∈ R, λ > 0 there exists w ∈ V such that:

vi(x) ≤ λ · w(x), ∀x ∈ X, i = 1, 2

is called Nachbin family. Any element of V will be called a weight.

We shall denote by CV0(X,R) or by CV0(X) the set of all continuous
functions f on X such that the function f · v vanishes at infinity for all v ∈ V.

Any weight v ∈ V generates a seminorm pv : CV0(X) → R+ defined by:

pv(f) = sup{v(x) · |f(x)|; x ∈ X}, ∀f ∈ CV0(X).

The locally convex topology defined by this family of seminorms is denoted by
ωV and it will be called the weighted topology on CV0(X). The space CV0(X)
endowed with the topology ωV is called weighted space.

If for any x ∈ X there exists a weight vx ∈ V such that vx(x) > 0, then
(CV0(X), ωV) is a Hausdorff locally convex space. Further, we suppose that
CV0(X) is Hausdorff.

Further, we mention some particular weighted spaces:
a) If V = {1} then CV0 (X) = C0 (X)-the space of continuous functions

vanishing at infinity and the weighted topology ωV coincide with the uniform
convergence topology.

b) If V = C+
0 (X) then CV0 (X) = Cb (X) – the space of continuous

bounded functions on X and the weighted topology ωV coincide with the strict
topology β.

c) Let X = Rn, and let Pn be the set of all polynomials defined on Rn

with values in K. If V = {|p| ;∀p ∈ Pn}, then CV0 (Rn) coincides with the
space of functions rapidly decreasing at infinity. It is not difficult to show that
CV0 (Rn) = CW0 (Rn) where:

W = {wk; wk : Rn → R+, k ∈ N} , wk (x) = (1 + ∥x∥)k .
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Definition 3.2. A linear subspace W of CV0(X) is called localizable with
respect to the family F of Cb(X) if:

W = f ∈ CV0(X); f
∣∣
[x]F

∈ W
∣∣
[x]F

, ∀x ∈ X}.

Remark 3.3. The linear subspace W ⊂ CV0(X) is dense in CV0(X) if the
following conditions are satisfied:

(a) W is localizable with respect to F ,
(b) F separates the points of X,
(c) for any x ∈ X there exists w ∈ W such that w(x) ̸= 0.

Theorem 3.4. Let F ⊂ C(X; [0, 1]) be a subset with the property B̃ =
C(Z, [0, 1]), where B = F is the closure of F in C(X; [0, 1]). If W ⊂ CV0(X)
is a linear subspace with the property F · W ⊂ W then W is localizable with
respect to F , i.e.

W = {f ∈ CV0(X); f
∣∣
[x]F

∈ W
∣∣
[x]F

, ∀x ∈ X}.

Proof. Since it is obvious that the set on the left of equality belongs to
the set on the right side of this, it is sufficient to prove the inverse inclusion.

Let g ∈ CV0(X) be such that g
∣∣
[x]F

∈ W
∣∣
[x]F

, ∀x ∈ X. We shall prove

that g ∈ W.
Let v ∈ V and ε > 0 be arbitrary and fixed. Then for any x ∈ X there

exists wx ∈ W such that:

v(y)|g(y)− wx(y)| < ε, ∀y ∈ [x]F .

If we denote by Kx = {y ∈ X; v(y)|g(y)− wx(y)| ≥ ε}, then Kx is a compact
set and:

[x]F ∩Kx = ∅, [x]F ∪Kx = X.
Since by hypothesis B = C(Z, [0, 1]) where B = F , from Theorem 2.1 it follows
that there exists a finite number [x1]F , [x2]F , . . . , [xn]F of equivalence classes
and there exists also a finite number of functions b1, b2, . . . , bn ∈ B with the
properties:

bi
∣∣
Kxi

= 0, i = 1, n,

n∑
i=1

bi = 1.

Further, for any i ∈ {1, 2, . . . , n} we have:

bi(y) · v(y) · |g(y)− wxi(y)| ≤ ε · bi(y), ∀y ∈ X. (1)

Indeed, if y ∈ [xi]F then we have v(y) · |g(y)−wxi(y)| < ε and if x /∈ [xi]F then
bi(y) = 0. From (1) it follows:

v(y) ·
n∑

i=1

bi(y) · |g(y)− wxi(y)| < ε ·
n∑

i=1

bi(y) = ε, ∀y ∈ X.
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Further, we have:

v(y) ·

∣∣∣∣∣g(y)−
n∑

i=1

bi(y) · wxi(y)

∣∣∣∣∣ = v(y) ·

∣∣∣∣∣
n∑

i=1

bi(y) · [g(y)− wxi(y)]

∣∣∣∣∣ ≤
≤ v(y) ·

n∑
i=1

bi(y) · |g(y)− wxi(y)| ≤ ε, ∀x ∈ X.

Since b1, b2, . . . , bn ∈ F , it follows that for any i ∈ {1, . . . , n} and any δ > 0
there is fi ∈ F , such that:

|bi(y)− fi(y)| < δ, ∀y ∈ X.

Since the functions v · wxi vanish at infinity it follows that these are bounded
on X and therefore there exist:

αi = sup{v(y) · |wxi |; y ∈ X}, i ∈ 1, n.

Further we have:

v(y) ·

∣∣∣∣∣
n∑

i=1

fi(y) · wxi(y)− g(y)

∣∣∣∣∣ ≤ v(y) ·

∣∣∣∣∣
n∑

i=1

fi(y) · wxi(y)−
n∑

i=1

bi(y) · wxi(y)

∣∣∣∣∣+
+v(y) ·

∣∣∣∣∣
n∑

i=1

bi(y) · wxi(y)− g(y)

∣∣∣∣∣ ≤
≤

n∑
i=1

|fi(y)− bi(y)| · v(y) · |wxi(y)] + ε ≤ δ ·
n∑

i=1

αi + ε.

If we suppose that:

δ <
ε∑n

i=1 αi
,

then:

v(y) ·

∣∣∣∣∣
n∑

i=1

fi(y) · wxi(y)− g(y)

∣∣∣∣∣ ≤ 2 · ε, ∀y ∈ X.

Finally, if we denote by w =

n∑
i=1

fi ·wxi , then w ∈ F ·W ⊂ W and so the proof

is finished.

Corollary 3.5. If we suppose in addition that F separates the points of
X and that for any x ∈ X there exists w ∈ W such that w(x) ̸= 0, then W is
dense in CV0(X), i.e.

W = CV0(X).

The proof follows from Theorem 3.4 and Remark 3.3.
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Theorem 3.6 (Nachbin). Let A be a subalgebra of Cb(X) containing the
constant function 1, self-adjoint in the complex case, and let W ⊂ CV0(X) be
a linear subspace such that A · W ⊂ W. Then W is localizable with respect to
A, i.e.

W = {f ∈ CV0(X); f
∣∣
[x]A

∈ W
∣∣
[x]A

, ∀x ∈ X}.

The proof follows from Theorem 3.4 and Corollary 2.2 for F = A1 = {a ∈
A; 0 ≤ a ≤ 1}.

Corollary 3.7. If we suppose in addition that A separates the points of
X and that for any x ∈ X there exists a w ∈ W such that w(x) ̸= 0, then W
is dense in CV0(X), i.e.

W = CV0(X).

Theorem 3.8. Let M ⊂ C(X; [0, 1]) be a subset with (VN) property
which contains the constant functions 0, 1 and at least a constant function
0 < c < 1. If W ⊂ CV0(X) is a linear subspace with the property M·W ⊂ W,
then W is localizable with respect to M, i.e.

W = {f ∈ CV0(X); f
∣∣
[x]M

∈ W
∣∣
[x]M

, ∀x ∈ X}.

The proof follows from Theorem 3.4 and Corollary 2.4 for F = M.

Corollary 3.9. If we suppose in addition that M separates the points
of X and that for any x ∈ X there exists a w ∈ W such that w(x) ̸= 0, then
W is dense in CV0(X), i.e.

W = CV0(X).

Theorem 3.10. Let X be a Hausdorff locally compact space and let C ⊂
C+
b (X) be a convex cone containing the constant functions 0, 1 and has the

property for any u, v ∈ βX, π(u) ̸= π(u) there is a multiplier φ ∈ C(X, [0, 1])
(i.e. φ · f + (1 − φ) · h ∈ C, ∀f, h ∈ C) and (βφ)(u) ̸= (βφ)(v) and let
W ⊂ CV0(X) be a linear subspace such that C ·W ⊂ W. Then W is localizable
with respect to C, i.e.

W = {f ∈ CV0(X); f
∣∣
[x]C

∈ W
∣∣
[x]C

, ∀x ∈ X}.

The proof follows from Theorem 3.4 and Corollary 2.5 for F = C1 = {h ∈
C; h ≤ 1}.

Corollary 3.11. Let C ⊂ C+
b (X) and W ⊂ CV0(X) be as in Theorem

3.10. If we suppose in addition that C separates the points of X and for any
x ∈ X there exists w ∈ W such that w(x) ̸= 0, then W is dense in CV0(X),
i.e.

W = CV0(X).

The assertion follows from Theorem 3.10 and Remark 3.3.
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