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1. INTRODUCTION

All groups considered in this paper will be finite.
A subgroup of a group G which permutes with each subgroup of G is

called a quasinormal subgroup of G. We say, following Kegel [13], that a
subgroup of G is S-quasinormal in G if it permutes with each Sylow subgroup
of G.

In 2017, Ezzat et al. [11], introduced the following definition: let F be
a class of groups. A subgroup H of a group G is Fhq-supplemented in G if
G has a quasinormal subgroup N such that HN is a Hall subgroup of G and
(H∩N)HG/HG ≤ ZF(G/HG), where HG is the core of H in G and ZF(G/HG)
is the F-hypercenter of G/HG. A 2-group is called quaternion-free if it has no
section isomorphic to the quaternion group of order 8. If P is a p-group, we
denote Ω(P ) = Ω1(P ) if p > 2 and Ω(P ) = ⟨Ω1(P ), Ω2(P )⟩ if p = 2, where
Ωi(P ) =

〈
x ∈ P | |x| = pi

〉
. We define D(G) = ∩{H | H ◁ G and G/H is

nilpotent} and call it the nilpotent residual of G.

Many authors have examined the structure of a finite group G under the
assumption that certain subgroups of G of prime power orders are well-situated
in G.

Itô [14] proved that a group G of odd order is nilpotent provided that
each subgroup of G of prime order lies in the center of G. A sharpened form
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of Itô’s result is the following statement ([12], p. 435): if, for an odd prime p,
each subgroup of G of order p lies in the center of G, then G is p-nilpotent and
that if each subgroup of G of order 2 and 4 lie in the center of G, then G is
2-nilpotent.

Buckley [7], proved that a group G of odd order is supersolvable if each
subgroup of G of prime order is normal in G.

Asaad et al. [6] proved that: let P be a Sylow p-subgroup of a finite
group G and put expΩ(P ) = pep(ep ≥ 1). If each member of the family
{H | H ≤ Ω(P ), H ′ = 1, expH = pep , p ranging through each prime dividing
the order of G} is normal in G, then G is supersolvable. Also, Asaad et al.
[5] continued to study the influence of abelian subgroups of largest possible
exponent of prime power order (they call such subgroups ALPE-subgroups) on
the structure of G. Shomrani and Ezzat [2] proved that: let G be a group.
If, for each Sylow subgroup P of G, the ALPE-subgroups of Ω(G′ ∩ P ) are
quasinormal in G, then G is supersolvable. Ezzat et al. [11] proved that if the
maximal subgroups of the Sylow subgroups of a group G are Uhq-supplemented
in G, then G ∈ U, where U is the class of supersolvable groups. Recently, Ezzat
et al. [10] proved that: if the cyclic subgroups of prime order or order 4 of a
group G are Uhq-supplemented in G, then G ∈ U.

In the present paper, we prove the following three theorems:

Theorem 1. Let p be the smallest prime dividing the order of a group
G and let P be a Sylow p-subgroup of G. Fix an ALPE-subgroup A(P ) of
Ω1(D(G) ∩ P ) having maximal order. If p = 2, suppose P is quaternion-free.
Then the following statements are equivalent:

(a) G is p-nilpotent.

(b) the ALPE-subgroups of A(P ) are S-quasinormal in G.

(c) Ω1(D(G) ∩ P ) ≤ Z(P ) and the ALPE-subgroups of A(P ) are
S-quasinormal in NG(P ).

The argument which established Theorem 1 can easily be adapted to yield
the following three corollaries.

Corollary 1. Let p be the smallest prime dividing the order of a group
G and let P be a Sylow p-subgroup of G. Fix an ALPE-subgroup A(P ) of
Ω(D(G) ∩ P ) having maximal order. If the ALPE-subgroups of A(P ) are S-
quasinormal in G. Then G is p-nilpotent.

Corollary 2 (Shomrani and Ezzat Mohamed [2; Lemma 3.1]). Let p
be the smallest prime dividing the order of a group G and let P be a Sylow
p-subgroup of G. If the ALPE-subgroups of Ω(G′ ∩ P ) are quasinormal in G.
Then G is p-nilpotent.
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Corollary 3. Let P be a Sylow 2-subgroup of a group G. If P is
quaternion-free and Ω1(P ) ≤ Z(G). Then G is p-nilpotent.

The following examples show that the quaternion-free and the condition
involvnig Z(P ) hypothesis are necessary in Theorem 1.

Example 1. Take G = SL(2, 3). Then the Sylow 2-subgroup P of G is
the quaternion group of order 8 and D(G) = P and Ω1(D(G) ∩ P ) is a cyclic
subgroup of order 2 lies in Z(P ). Clearly, G is not 2-nilpotent.

Example 2. Take G = S4, the symmetric group of degree four. Then the
Sylow 2-subgroup P of G is the dihedral group

〈
a, b | a4 = b2 = 1, bab−1 = a−1

〉
of order 8, and D(G) = A4 is the alternating group of degree four. Hence
NG(P ) = P and Ω1(D(G) ∩ P ) is not contained in Z(P ). Clearly, G is not
2-nilpotent.

Theorem 2. Let G be a quaternion-free group. For each Sylow subgroup
P of G, fix an ALPE-subgroup A(P ) of Ω1(D(G) ∩ P ) having maximal order.
Then G is supersolvable if one of the following conditions holds:

(a) the ALPE-subgroups of A(P ) are S-quasinormal in G.

(b) Ω1(D(G) ∩ P ) ≤ Z(P ) and the ALPE-subgroups of A(P ) are
S-quasinormal in NG(P ).

Also, the argument which established Theorem 2 can easily be adapted
to yield the following three corollaries.

Corollary 4. Let G be a group. For each Sylow subgroup P of G, fix
an ALPE-subgroup A(P ) of Ω(D(G)∩P ) having maximal order. If the ALPE-
subgroups of A(P ) are S-quasinormal in G, then G is supersolvable.

Corollary 5 (Shomrani and Ezzat Mohamed [2; Theorem 3.3]). Let
G be a group. If, for each Sylow subgroup P of G, the ALPE-subgroups of
Ω(G′ ∩ P ) are quasinormal in G, then G is supersolvable.

Corollary 6 (Buckley [7]). Assume that G is a group of odd order and
that each subgroup of G of prime order is normal in G. Then G is supersolvable.

Theorem 2 is not true if we omit the condition Ω1(D(G)∩P ) ≤ Z(P ), the
symmetric group of degree four S4 is a counterexample. The following example
shows that the quaternion-free hypothesis is necessary in Theorem 2.

Example 3. Let Q be the quaternion group

< a, b|a4= 1, b2= a2, b−1ab = a−1>,

C9 be a cyclic group of order 9 with generator c and the action of C9 on Q is
given by ac = b, bc = ab. Let the group G be the semi-direct product of Q by
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C9. Then G is a group of even order in which each subgroup of prime order is
normal in G but G is not supersolvable (see Buckley, [7, Examples (iii)]).

Theorem 3. Let K be a normal subgroup of a quaternion-free group G
such that G/K is supersolvable. For each Sylow subgroup P of K, fix an ALPE-
subgroup A(P ) of Ω1(D(G)∩P ) having maximal order. Then G is supersolvable
if one of the following conditions holds:

(a) the ALPE-subgroups of A(P ) are S-quasinormal in G.

(b) Ω1(D(G) ∩ P ) ≤ Z(P ) and the ALPE-subgroups of A(P ) are
S-quasinormal in NG(P ).

The argument which established Theorem 3 can easily be adapted to yield
the following two corollaries.

Corollary 7. Let K be a normal subgroup of a group G such that G/K
is supersolvable. For each Sylow subgroup P of K, fix an ALPE-subgroup A(P )
of Ω(D(G) ∩ P ) having maximal order. If the ALPE-subgroups of A(P ) are
S-quasinormal in G, then G is supersolvable.

Corollary 8 (Shomrani and Ezzat Mohamed [2; Theorem 3.4]). Let K
be a normal subgroup of a group G such that G/K is supersolvable. If, for each
Sylow subgroup P of K, the ALPE-subgroups of Ω(G′ ∩P ) are quasinormal in
G, then G is supersolvable.

2. PRELIMINARIES

In this section, we collect some definitions and results that are needed in
the sequel.

Recall here that the quasicenter Q(G) of a group G is the subgroup gen-
erated by all elements x of G such that < x > is quasinormal in G. The
hyperquasicenter Q∞(G) is the largest term of the series

1 = Q0(G) ≤ Q1(G) = Q(G) ≤ Q2(G) ≤ ... ,

where Qi+1(G)/Qi(G) = Q(G/Qi(G)) for all i > 0.

We say that a normal subgroup H of G is supersolvably embedded in G, if
each chief factor of G which lies in H has prime order. It is easily verified that
if H, K are normal subgroups of G with both H, K supersolvably embedded
in G, then HK is supersolvably embedded in G. From this, a group G has a
unique maximal supersolvably embedded subgroup.

The hyperquasicenter Q∞(G) is the largest supersolvably embedded sub-
group of G (see Weinstein [15; p. 33]).
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The generalized center genz(G) of G is the subgroup generated by all
elements x of G such that < x > is S- quasinormal in G. The generalized
hypercenter genz∞(G) is the largest term of the series

1 = genz0(G) ≤ genz1(G) = genz(G) ≤ genz2(G) ≤ ... ,

where genzi+1(G)/genzi(G) = genz(G/genzi(G)) for all i > 0 . It is known
that Q∞(G) ≤ genz∞(G) (see Weinstein, [15; pp. 33–34]). Asaad and Ez-
zat Mohamed [4] gave a new characterization of genz∞(G) by introducing the
following definition: A normal subgroup H of a group G is a generalized su-
persolvably embedded (GSE) in G if there exists a series

1 = H0 ≤ H1 ≤ H2 ≤ ... ,

such that Hi is S-quasinormal in G and |Hi+1 : Hi| is a prime, where
0 ≤ i ≤ n − 1. It is easily verified that if H and K are normal GSE sub-
groups of G, then HK is GSE in G. From this, a group G has a unique
maximal generalized supersolvably embedded subgroup of G and it is denoted
by GSE(G). The generalized hypercenter genz∞(G) is the maximal general-
ized supersolvably embedded GSE(G) (see Asaad and Ezzat Mohamed, [4; p.
2243]).

Lemma 1. Let P be a normal p-subgroup of a group G. Fix an ALPE-
subgroup A(P ) of P having maximal order.

(a) If the ALPE-subgroups of A(P ) are normal in G, then P is supersolv-
ably embedded in G, i.e., P ≤ Q∞(G).

(b) If the ALPE-subgroups of A(P ) are S-quasinormal in G, then P is
GSE in G, i.e., P ≤ genz∞(G).

Proof. See [5; Theorem 3.1 and Theorem 3.2].

Lemma 2. Let P be a Sylow p-subgroup of G. If p = 2, suppose P is
quaternion-free. Then the following statements are equivalent:

(a) G is p-nilpotent.

(b) Ω1(D(G) ∩ P ) ≤ Z(NG(P )).

(c) NG(P ) is p-nilpotent and Ω1(D(G) ∩ P ∩ P x) ≤ Z(P ), for all
x ∈ G\NG(P ).

Proof. See [3; Theorem 1].

Lemma 3. (a) If H ≤ K ≤ G and H is S-quasinormal in G, then H is
S-quasinormal in K.

(b) If H is S-quasinormal in G, then H is subnormal in G.
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(c) Let H be a p-subgroup for some prime p. If H is S-quasinormal in
G, then Op(G) ≤ NG(H), where

Op(G) = ⟨Q | Q is a Sylow q-subgroup of G,with q ̸= p⟩ .
(d) Let H be a normal subgroup of G and K an S-quasinormal subgroup

of G. Then KH is an S-quasinormal subgroup of G and KH/H is an S-
quasinormal subgroup of G/H.

Proof. (a), (b): See [13].

(c) Let Q be any Sylow q-subgroup of G, with q ̸= p.
Since H is S-quasinormal in G, it follows that HQ is a subgroup of G.

By (a) and (b), H is subnormal in HQ, and since H is a p-subgroup of G, it
follows that H is normal in HQ for each Sylow q-subgroup Q of G, with q ̸= p.
Hence Op(G) ≤ NG(H).

(d) Is clear.

Lemma 4. Let H ◁ G such that H is GSE in G. If H ≤ K ≤ G, then
H is GSE in K.

Proof. Since H is GSE in G, it follows that there is a series

1 = H0 < H1 < ... < Hn = H

such that Hi is S-quasinormal in G and |Hi+1 : Hi| = prime for all 0 ≤ i ≤
n− 1. By Lemma 3, Hi is S-quasinormal in K for all 0 ≤ i ≤ n− 1. Hence H
is GSE in K.

Lemma 5. If K is a supersolvable subgroup of G, then genz∞(G)K is
supersolvable.

Proof. See [1; Theorem 2.9].

Lemma 6. Let G be a group. For each Sylow subgroup P of G, fix an
ALPE-subgroup A(P ) of Ω(P ) having maximal order. Write

A = ⟨A(P ) | P is a Sylow subgroup of G⟩
Then G is supersolvable if and only if A ≤ Q∞(G).

Proof. See [9; Corollary 3.3].

Lemma 7. (a) Let p be the smallest prime dividing the order of G and let
P be a Sylow p-subgroup of G. If Ω(P ) ≤ genz∞(G), then G is p-nilpotent.

(b) Let P be a normal p-subgroup of G such that G/P is supersolvable.
If Ω(P ) ≤ genz∞(G), then G is supersolvable.

Proof. (a) see [4; Lemma 3.8] and (b) see [4; Theorem 3.11].
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3. PROOFS

Proof of Theorem 1. If G is p-nilpotent, thenD(G) ≤ Op′ (G) andD(G)∩
P = 1. So (a) implies (b) and (c).

(b) =⇒ (a). Assume that the result is false and let G be a counterex-
ample of minimal order. Let H be any ALPE-subgroup of A(P ). By hypoth-
esis, H is an S-quasinormal subgroup of G. Then HQ ≤ G, for each Sy-
low q-subgroup Q of G with q ̸= p. Hence H is a normal subgroup of HQ.
Since A(P ) is abelian, it follows that H ◁ A(P )Q. Then by Lemma 1(a),
A(P ) is supersolvably embedded in A(P )Q and so A(P )Q is supersolvable.
Hence A(P )Q = A(P ) × Q. Thus Op(G) ≤ CG(A(P )). Since G/Op(G) is
a p-group, it follows that D(G) ≤ Op(G). Then A(P ) ≤ Z(D(G)) and so
A(P ) = Ω1(D(G) ∩ P ) by the maximality of A(P ). Then by Lemma 2, D(G)
is p-nilpotent. Hence D(G) = (D(G) ∩ P )K, where K is a normal p

′
-Hall

subgroup of D(G). Since K char D(G) and D(G) ◁ G, it follows that K is a
normal subgroup of G. If K = 1, then D(G) ≤ P and so P ◁ G. By Schur-
Zassenhaus theorem, G possesses a p

′
-Hall subgroup N such that G/P ∼= N .

Clearly, N is nilpotent and Ω1(D(G))N ≤ G. Since the ALPE-subgroups of
A(P ) = Ω1(D(G)) are S-quasinormal in G, it follows by Lemma 1(b), that
Ω1(D(G)) is GSE in G. Then by Lemma 4, Ω1(D(G)) is GSE in Ω1(D(G))N ,
i.e., Ω1(D(G)) ≤ genz∞(Ω1(D(G)N). By Lemma 5, Ω1(D(G))N is super-
solvable and so Ω1(D(G))N is p-nilpotent. Hence N ≤ CG(Ω1(D(G))) and
since Ω1(D(G)) ≤ Z(D(G)), it follows that Ω1(D(G)) ≤ Z(D(G)N). Then by
Lemma 2, D(G)N is p-nilpotent. HenceN charD(G)N and sinceD(G)N ◁ G,
it follows that N ◁ G, i.e., G is p-nilpotent; a contradiction. Thus we may
assume that K ̸= 1. Clearly, D(G/K) = D(G)/K. By hypothesis and Lemma
3(d), our hypothesis carries over to G/K. Then G/K is p-nilpotent, by the
minimality of G. Hence G is p-nilpotent; a final contradiction.

(c)=⇒ (a). Since Ω1(D(G) ∩ P ) ≤ Z(P ), it follows that Ω1(D(G) ∩
P ) is elementary abelian. So A(P ) = Ω1(D(G) ∩ P ) and since the ALPE-
subgroups of A(P ) are S-quasinormal in NG(P ), it follows that every subgroup
of Ω1(D(G) ∩ P ) is S-quasinormal in NG(P ). Clearly, D(NG(P )) ≤ D(G). So
Ω1(D(NG(P ))∩P ) ≤ Ω1(D(G)∩P ). Then every subgroup of Ω1(D(NG(P )∩P )
is S-quasinormal in NG(P ). Hence NG(P ) is p-nilpotent, by the statement (b)
=⇒ (a). Therefore G is p-nilpotent, by Lemma 2.

Proof of Theorem 2. (a) Suppose that the ALPE-subgroups of A(P ) are
S-quasinormal in G. Theorem 1 implies that G is r-nilpotent, where r is the
smallest prime dividing the order of G. Then G = RK, where R is a Sylow
r-subgroup of G and K is a normal r′-Hall subgroup of G. Since G/K ∼= R
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is nilpotent, it follows that D(G) ≤ K. Hence D(G) is a group of odd order.
Let H be any ALPE-subgroup of A(P ). By hypothesis H is S-quasinormal in
G. Then by Lemma 3(c), Op(G) ≤ NG(H), where A(P ) is a p-group. Since
D(G) ≤ Op(G), it follows that H ◁ D(G). So the ALPE-subgroups of A(P )
are normal in D(G). Then by Lemma 1(a), A(P ) ≤ Q∞(D(G)), for each
Sylow subgroup P of G. Hence by Lemma 6, D(G) is supersolvable. Thus
D(G) ∩ P ◁ D(G), where D(G) ∩ P is a Sylow p-subgroup of D(G) and p
is the largest prime dividing the order of D(G). Since D(G) ∩ P char D(G)
and D(G) ◁ G, it follows that D(G) ∩ P ◁ G. Clearly, D(G/D(G) ∩ P ) =
D(G)/D(G) ∩ P . By hypothesis and Lemma 3(d), our hypothesis carries over
to G/D(G) ∩ P . Then G/D(G) ∩ P is supersolvable, by the induction on the
order of G. Since Ω1(D(G) ∩ P ) char D(G) ∩ P and D(G) ∩ P ◁ G, it follows
that Ω1(D(G) ∩ P ) ◁ G. By hypothesis and Lemma 1(b), Ω1(D(G) ∩ P ) ≤
genz∞(G). Hence G is supersolvable, by Lemma 7(b).

(b) Suppose that Ω1(D(G) ∩ P ) ≤ Z(P ) and the ALPE-subgroups of
A(P ) are S-quasinormal in NG(P ). Theorem 1 implies that G is r-nilpotent,
where r is the smallest prime dividing the order of G. Then G = RK, where
R is a Sylow r-subgroup of G and K is a normal r′-Hall subgroup of G. Since
G/K ∼= R is nilpotent, it follows that D(G) ≤ K. Hence D(G) is a group
of odd order. Since Ω1(D(G) ∩ P ) ≤ Z(P ), it follows that Ω1(D(G) ∩ P )
is elementary abelian and so A(P ) = Ω1(D(G) ∩ P ). Then each subgroup
of Ω1(D(G) ∩ P ) is S-quasinormal in NG(P ), for each Sylow subgroup P
of G. Clearly, D(K) ≤ D(G). Then by Lemma 3(a), each subgroup of
Ω1(D(K) ∩ P ) is S-quasinormal in NG(P ) ∩ K = NK(P ), for each Sylow
subgroup P of K. Hence K is supersolvable by the induction on the or-
der of G. Then Q char K, where Q is a Sylow q-subgroup of K and q is
the largest prime dividing the order of K, and since K ◁ G, it follows that
Q ◁ G. Now consider the factor group G/Q. Put D(G/Q) = L/Q. Since
G/L ∼= (G/Q)/(L/Q) is nilpotent, it follows that D(G)Q ≤ L and since
(G/Q)/(D(G)Q/Q) ∼= G/D(G)Q is nilpotent, it follows that L ≤ D(G)Q.
Hence L = D(G)Q, i.e., D(G/Q) = D(G)Q/Q. For each Sylow subgroup P of
G, if (|P | , q) = 1, then |P ∩Q| = 1 and |D(G)P ∩Q| = |D(G) ∩Q|. So

|(D(G) ∩Q)(P ∩Q)| = |D(G) ∩Q| |P ∩Q|
|D(G) ∩Q ∩ P |

= |D(G) ∩Q| = |D(G)P ∩Q| .

Also, if (|P | , q) = q, then P = Q as Q ◁ G and so

|(D(G) ∩Q)(P ∩Q)| = |Q| = |D(G)P ∩Q| .
Hence, for each Sylow subgroup P of G, |(D(G) ∩Q)(P ∩Q)| = |D(G)P ∩Q|
and since (D(G) ∩Q)(P ∩Q) ≤ D(G)P ∩Q, it follows that

(D(G) ∩Q)(P ∩Q) = D(G)P ∩Q.
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Then by [8; Lemma 1.2, p. 2], D(G)Q ∩ PQ = (D(G) ∩ P )Q. Hence

Ω1(D(G/Q) ∩ PQ/Q) = Ω1(D(G)Q/Q ∩ PQ/Q) = Ω1((D(G)Q ∩ PQ)/Q)

= Ω1((D(G) ∩ P )Q/Q) = Ω1(D(G) ∩ P )Q/Q ≤ Z(P )Q/Q ≤ Z(PQ/Q).

Clearly, A(P )Q/Q is an ALPE-subgroup of Ω1(D(G/Q)∩PQ/Q) of max-
imal order. By hypothesis and Lemma 3(d), the ALPE-subgroups of A(P )Q/Q
are S-quasinormal in NG(P )Q/Q = NG/Q(PQ/Q). Then our hypothesis car-
ries over to G/Q. Hence G/Q is supersolvable by the induction on the order
of G. So G/D(G) ∩Q is supersolvable.

Since each subgroup H of A(Q) = Ω1(D(G) ∩ Q) is S-quasinormal in
NG(Q) = G, it follows by Lemma 3(c), that Oq(G) ≤ NG(H) and since
Ω1(D(G) ∩ Q) ≤ Z(Q), it follows that H ◁ G. Then by Lemma 1(a),
Ω1(D(G) ∩ Q) ≤ Q∞(G) and so Ω1(D(G) ∩ Q) ≤ genz∞(G). Hence G is
supersolvable, by Lemma 7(b).

Proof of Theorem 3. By Theorem 2, K is supersolvable. Then P char
K, where P is a Sylow p-subgroup of K and p is the largest prime dividing
the order of K, and since K ◁ G, it follows that P ◁ G. Since G/K is
supersolvable, it follows that G/D(G) ∩K is supersolvable. Then

(G/D(G) ∩ P )/(D(G) ∩K/D(G) ∩ P ) ∼= G/D(G) ∩K

is supersolvable. By hypothesis and Lemma 3(d), our hypothesis carries over to
G/D(G)∩P . Then G/D(G)∩P is supersolvable by the induction on the order
of G. Since Ω1(D(G)∩P ) char D(G)∩P , it follows that Ω1(D(G)∩P ) ◁ G. By
the hypothesis (a) and (b), the ALPE-subgroups of A(P ) are S-quasinormal
in G = NG(P ). Then by Lemma 1(b), Ω1(D(G) ∩ P ) ≤ genz∞(G). If p > 2,
then G is supersolvable, by Lemma 7(b). Thus, we may assume that p = 2. So
K = P is a 2-subgroup of G. Since G/P is supersolvable, it follows that G/P
is 2-nilpotent. Then G/P possesses a normal 2′-Hall subgroup LP/P , where L
is a 2′-Hall subgroup of G and so LP ◁ G. Since Ω1(D(G)∩P ) ◁ G, it follows
that Ω1(D(G) ∩ P )L ≤ G. Since Ω1(D(G) ∩ P ) ≤ genz∞(G), it follows by
Lemma 4, that Ω1(D(G)∩P ) ≤ genz∞(Ω1(D(G)∩P )L). Then by Lemma 7(a),
Ω1(D(G) ∩ P )L = Ω1(D(G) ∩ P )× L. Then L ≤ CG(Ω1(D(G) ∩ P )). So each
subgroup of Ω1(D(G) ∩ P ) is S-quasinormal in LP .

Since Ω1(D(LP )∩P ) ≤ Ω1(D(G)∩P ) and each subgroup of Ω1(D(G)∩P )
is S-quasinormal in LP , it follows by Theorem 1, that LP is 2-nilpotent. Then
L char LP and since LP ◁ G, it follows that L ◁ G. Hence D(G) ≤ L.
Therefore G ∼= G/D(G) ∩ P is supersolvable.
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