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In this paper, we mainly give some equivalent characterisations of Hopf co-
braces, show that the full subcategory HCB(A) of Hopf co-braces is equivalent
to the full subcategory C(A) of bijective 1-cocycles, and prove that the full
subcategory HCB(A) is also equivalent to the category M(A) of Hopf matched
pairs. Moreover, we construct many Hopf co-braces on polynomial Hopf algebras,
Long copaired Hopf algebras and Drinfel’d doubles of finite dimensional Hopf
algebras. And we also give a sufficient and necessary condition for a given
bicrossed coproduct A ▷◁ H to be a Hopf co-brace if A or H is a Hopf co-brace.
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1. INTRODUCTION AND PRELIMINARIES

Braces were introduced in [14] by Rump, which are a generalization of
Jacobson radical rings, to understand the structure behind non-degenerate in-
volutive set-theoretic solutions of Yang-Baxter equations. They provide a pow-
erful algebraic framework to work with set-theoretic solutions and have also
an advantage to discuss braided groups and sets imitating ring theory. More-
over, they have also connections with regular subgroups and orderable groups
[4], flat manifolds [15], Hopf-Galois extensions [3]. Through their connection
with Yang-Baxter equation and group theory, braces have attracted a lot of
attention and obtained a wide range of more influential results, for example
[1, 3, 7, 15].

In [2], the authors introduced the concept of Hopf braces and Hopf co-
braces. That is, a Hopf brace (or Hopf co-brace) is a kind of special Hopf
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algebra with two different multiplications (or comultiplications) connected with
antipode, which is of a new algebraic structure related to the Yang-Baxter
equation, and is also a generalization of braces and skew braces. As a basic
example of a Hopf brace, we may take the group algebra of a (classical or skew)
brace.

The bicrossed product first emerged in group theory, which is constructed
from a matched pair of groups, as a natural generalization of the semi-direct
product (see [6]). In [1], the author construct Hopf braces by bicrossed product.
Naturally, we consider construct Hopf co-braces by bicrossed coproduct, but
the difference is that we give sufficient and necessary conditions for constructing
Hopf co-braces. We could find that the Drinfel’d double D(H) of a finite
dimensional Hopf algebra H was a special type of this bicrossed product in
[12]. So we can construct a Hopf co-brace by the dual of Drinfel’d double of a
finite dimensional Hopf algebra as an application of bicrossed coproduct.

From [2], we know the finite dual of a cocommutative Hopf brace is a
commutative Hopf co-brace. But in the infinite case, it’s not necessarily true.
In this paper, we proved some results similar to Hopf brace for a infinite di-
mensional Hopf co-brace. In addition, we added many new examples of Hopf
co-braces and constructed Hopf co-braces on polynomial Hopf algebras, Long
copaired Hopf algebras.

The paper is organized as follows. In Section 2, we give many examples of
Hopf co-braces, and prove that the full subcategoryHCB(A) is equivalent to the
full subcategory C(A) of bijective 1-cocycles. We also obtain a solution of the
braid equation by a commutative Hopf co-brace. In Section 3, we mainly study
structures of commutative Hopf co-braces, build a correspondence between
Hopf co-braces and Hopf matched pairs, and prove that the full subcategory
HCB(A) is equivalent to the category M(A) of Hopf matched pairs (A,A).
In Section 4, we mainly give a sufficient and necessary condition for a given
bicrossed coproduct A ▷◁ H to be a Hopf co-brace if A or H is a Hopf co-
brace, and show that the dual of Drinfel’d double D(H) of a finite dimensional
cocommutative Hopf algebra H is a Hopf co-brace.

Throughout this paper, let k be a fixed field, and our considered objects be
all meant over k. And we freely use coalgebras and Hopf algebras terminology
introduced in [16] and [8].

2. HOPF CO-BRACE AND ITS CATEGORY

In this section, we recall the concept of Hopf co-braces, give many exam-
ples of Hopf co-braces on polynomial Hopf algebras and Long copaired Hopf
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algebras, and mainly prove that the full subcategory HCB(A) of Hopf cobraces
is equivalent to the full subcategory of the category C(A) of bijective 1-cocycles.

Definition 2.1 ([2]). Let (H,m, 1) be an algebra. A Hopf co-brace struc-
ture over H consists of the following data:

(1) a Hopf algebra structure (H,m, 1,∆, ε, S),
(2) a Hopf algebra structure (H,m, 1,∆′, ϵ, T ),
(3) satisfying the following compatibility:

h1′ ⊗ h2′1 ⊗ h2′2 = h11′S(h2)h31′ ⊗ h12′ ⊗ h32′ (2.1)

for any h ∈ H, where ∆(h) is denoted by h1 ⊗ h2 and ∆′(h) denoted by
h1′ ⊗ h2′ .

Remark 2.2. (1) When H is commutative, Definition 2.1 is the special-
ization in Vectop of [10, Definition 4.1]. In the general case, it is an immediate
dualization of [2, Definition 1.1].

(2) In any given Hopf co-brace (H,∆, ε; ∆′, ϵ), we obtain ε = ϵ.
(3) Let (H,∆, ε) be a Hopf algebra. Then, we easily know that

(H,∆, ε; ∆, ε)

is a Hopf co-brace.
(4) In what follows, we denote the Hopf co-brace in Definition 2.1 by

(H,∆,∆′).

Example 2.3. (1) Let (H,∆, ε) be a Hopf algebra. Then, (H,∆,∆coH)
and (H,∆coH ,∆) are Hopf co-braces.

(2) Let A = k[g, g−1, x] be a Hopf algebra in [11] with the coalgebra
structures:

∆(g) = g ⊗ g, ∆(x) = x⊗ 1 + 1⊗ x,

ε(g) = 1, ε(x) = 0,

and with the antipode: S(g) = g−1, S(x) = −x.
Moreover, (A,∆′, ε, T ) is a Hopf algebra with the following coalgebra

structures:

∆′(g) = g ⊗ g, ∆′(x) = x⊗ 1 + g ⊗ x,

ε(g) = 1, ε(x) = 0,

and with the antipode: T (g) = g−1, T (x) = −g−1x.
When h = x and h = g, we can verify that Equation (2.1) holds. Hence

(A,∆,∆′) is a Hopf co-brace.
(3) Let H be a Hopf algebra. If R = R′

i ⊗ R′′
i ∈ H ⊗H is a normalized

Harrison 2-cocycle in [13], that is, R is satisfied the following conditions:

r′iR
′
i1 ⊗ r′′i R

′
i2 ⊗R′′

i = R′
i ⊗ r′iR

′′
i1 ⊗ r′′i R

′′
i2,
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ε(R′
i)R

′′
i = 1 = R′

iε(R
′′
i ),

where r is a copy of R. Define a comultiplication on H as follows if R is
invertible with the inverse R−1 = R′−1

i ⊗R′′−1
i :

∆R(h) = R′
ih1R

′−1
i ⊗R′′

i h2R
′′−1
i

for any h ∈ H. Then, (H,∆R, S
R) is a Hopf algebra with the same counit,

where SR(x) = R′
iS(R

′′
i )S(x)S(R

′−1
i )R′′−1

i .
Let (H,R) be a Long copaired Hopf algebra in [17], that is, there is an

invertible element R = R′
i ⊗ R′′

i ∈ H ⊗ H such that the following conditions
are satisfied:

(LC1) R′
ix⊗R′′

i = xR′
i ⊗R′′

i , for any x ∈ H,

(LC2) ε(R′
i)R

′′
i = 1,

(LC3) R′
i1 ⊗R′

i2 ⊗R′′
i = R′

i ⊗ r′i ⊗ r′′i R
′′
i ,

(LC4) R′
iε(R

′′
i ) = 1,

(LC5) R′
i ⊗R′′

i1 ⊗R′′
i2 = R′

ir
′
i ⊗R′′

i ⊗ r′′i .

Suppose that (H,R) is a Long copaired Hopf algebra. Then, according
to Example 3.1 in [8], we know that R is a normalized Harrison 2-cocycle, so,
we obtain a new Hopf algebra (H,∆R, S

R), and hence (H,∆,∆R) is a Hopf
co-brace.

Indeed, we only need to check that the condition (2.1) is satisfied: for
any h ∈ H, where LHB stands for the left-hand side of (2.1) and RHB the
right-hand side of (2.1).

LHB = R′
ih1R

′−1
i ⊗ (R′′

i h2R
′′−1
i )1 ⊗ (R′′

i h2R
′′−1
i )2

= R′
ih1R

′−1
i ⊗R′′

i1h2R
′′−1
i1 ⊗R′′

i2h3R
′′−1
i2

(LC5)
= R′

ir
′
ih1R

′−1
i ⊗R′′

i h2R
′′−1
i1 ⊗ r′′i h3R

′′−1
i2

= R′
ir

′
ih1r

′−1
i R′−1

i ⊗R′′
i h2R

′′−1
i ⊗ r′′i h3r

′′−1
i ,

where R′−1
i ⊗R′′−1

i1 ⊗R′′−1
i2 = r′−1

i R′−1
i ⊗R′′−1

i ⊗ r′′−1
i (see[17, Theorem 3.2]).

RHB = R′
ih1R

′−1
i S(h3)r

′
ih4r

′−1
i ⊗R′′

i h2R
′′−1
i ⊗ r′′i h5r

′′−1
i

(LC1)
= R′

ih1R
′−1
i S(h3)h4r

′
ir

′−1
i ⊗R′′

i h2R
′′−1
i ⊗ r′′i h5r

′′−1
i

= R′
ih1R

′−1
i r′ir

′−1
i ⊗R′′

i h2R
′′−1
i ⊗ r′′i h3r

′′−1
i

= R′
ir

′
ih1r

′−1
i R′−1

i ⊗R′′
i h2R

′′−1
i ⊗ r′′i h3r

′′−1
i ,

where R′−1
i x ⊗ R′′−1

i = xR′−1
i ⊗ R′′−1

i (see [17, Theorem 3.2]), for any x ∈ H.
So, (2.1) is satisfied, and hence (H,∆,∆R) is a Hopf co-brace.

Let (H,∆,∆′) and (G,∆,∆′) be Hopf co-braces. A homomorphism of
Hopf co-braces f : (H,∆,∆′) → (G,∆,∆′) is a linear map f such that f :
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H∆ → G∆ and f : H∆′ → G∆′ are Hopf algebra homomorphism. It is easy to
see that Hopf co-braces form a category.

Fix a Hopf algebra (H,m, 1,∆, ε, S). LetHCB(H) be the full subcategory
of the category of Hopf co-braces with objects (H,∆,∆′). This means that the
objects ofHCB(H) are Hopf co-braces such that the first Hopf algebra structure
is that of H∆.

Lemma 2.4. Let (H,∆,∆′) be a Hopf co-brace. Then

S(h1)1′h2 ⊗ S(h1)2′ = S(h1)h21′ ⊗ S(h22′)

for any h ∈ H.

Proof. It is a dualization of [2, Lemma 1.7]. We leave all the details to
the reader.

Lemma 2.5. Let (H,∆,∆′) is a Hopf co-brace. Then, (H,∆) is a left
(H,∆′)-comodule coalgebra with

ρ(h) ≡ h(−1) ⊗ h(0) = S(h1)h21′ ⊗ h22′

for any h ∈ H.

Proof. It is a dualization of [2, Lemma 1.8]. We leave all the details to
the reader.

Remark 2.6. It follows from the Lemma 2.4 that

h1′ ⊗ h2′ = h1h2(−1) ⊗ h2(0),

h1 ⊗ h2 = h1′T (h2′(−1))⊗ h2′(0),

for any h ∈ H.

Definition 2.7. A Hopf co-brace (A,∆,∆′) is said to be commutative if
the underlying algebra A is commutative.

Lemma 2.8. Let (A,∆,∆′) be a commutative Hopf co-brace. Then the
following conclusions hold:

(1) A is a left A∆′-comodule algebra via

ρ(a) ≡ a(−1) ⊗ a(0) = S(a1)a21′ ⊗ a22′ ,

for any a ∈ A.
(2) A is a right A∆′-comodule algebra via

φ(a) ≡ a[0] ⊗ a[1] = T (a1′)(−1)a2′ ⊗ T (a1′)(0)a3′

= S(T (a1′)1)T (a1′)21′a2′ ⊗ T (a1′)22′a3′ ,

for any a ∈ A.
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(3) (id ⊗ S)ρ(a) = ρ(S(a)), for all a ∈ A. That is, a(−1) ⊗ S(a(0)) =
S(a)(−1) ⊗ S(a)(0).

Proof. (1) It is the second assertion in [10, Proposition 4.3].
(2) It is a special case of [10, Proposition 4.3].
(3) For any a ∈ A, by Lemma 2.4, we have

S(a)(−1) ⊗ S(a)(0) = a2S(a1)1′ ⊗ S(a1)2′ = S(a1)1′a2 ⊗ S(a1)2′

= S(a1)a21′ ⊗ S(a22′) = a(−1) ⊗ S(a(0)).

So, (3) is proved.

Proposition 2.9. Let (A,∆,∆′) be a commutative Hopf co-brace. Then,
the given map

c : A⊗A→ A⊗A, c(x⊗ y) = x(−1)y[0] ⊗ x(0)y[1],

is a solution of the braid equation.

Proof. It is established and proved in the proof of [10, Proposition 4.14].

Definition 2.10. Let H and A be Hopf algebras. Assume that A be an H-
comodule coalgebra. A bijective 1-cocycle is an algebra isomorphism π : A→ H
such that

π(a)1 ⊗ π(a)2 = π(a1)a2(−1) ⊗ π(a2(0)),
for any a ∈ A.

In fact, it is a dualization of [2, Definition 1.10].

Remark 2.11. (1) Any bijective 1-cocycle π satisfies εHπ = εA.

(2) Let π : A −→ H and η : B −→ K be two bijective 1-cocycles. A
morphism between these bijective 1-cocycles is a pair (f, g) of Hopf algebra
maps f : K −→ H, g : B −→ A, such that the following conditions are satisfied:

πg = fη,
g(b)(−1) ⊗ g(b)(0) = f(b(−1))⊗ g(b(0)),

for any b ∈ B. It is easy to see that bijective 1-cocycles form a category. Fix
a Hopf algebra A, we assume that C(A) is the full subcategory of the category
of bijective 1-cocycles with objects π : A −→ H.

Theorem 2.12. Let A be a Hopf algebra. Then, the full subcategory
HCB(A) of Hopf co-braces is equivalent to the full subcategory C(A) of bijective
1-cocycles.

Proof. It is a dualization of [2, Theorem 1.12]. We leave all the details to
the reader.
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3. HOPF CO-BRACE AND HOPF MATCHED PAIR

In this section, we mainly build a correspondence between Hopf co-braces
and Hopf matched pairs, and prove that the full subcategory HCB(A) is equiv-
alent to the categoryM(A).

In what follows, we give the dualization of the classical definition of
matched pair of Hopf algebras, and it is also the third case considered in [5,
Corollary 2.17], when the involved monoidal category is Vectop.

Definition 3.1. Let A and H be Hopf algebras. A Hopf matched pair is a
pair (A,H) with two coactions

H
φ−→ H ⊗A

ρ←− A

such that (A, ρ) is a left H-comodule algebra, (H,φ) a right A-comodule alge-
bra, and the following compatibilities hold:

(HM1) a(−1)εA(a(0)) = εA(a)1H , εH(h[0])h[1] = εH(h)1A,

(HM2) a(−1) ⊗ a(0)1 ⊗ a(0)2 = a1(−1)a2(−1)[0] ⊗ a1(0)a2(−1)[1] ⊗ a2(0),

(HM3) h[0]1 ⊗ h[0]2 ⊗ h[1] = h1[0] ⊗ h1[1](−1)h2[0] ⊗ h1[1](0)h2[1],

(HM4) h[0]a(−1) ⊗ h[1]a(0) = a(−1)h[0] ⊗ a(0)h[1],

for any a ∈ A, h ∈ H, where ρ(a) is denoted by a(−1) ⊗ a(0) and φ(h) denoted
by h[0] ⊗ h[1].

Example 3.2. (1) LetA = k[g, g−1, x] be a Hopf algebra as in Example 2.3,
and let H = k[X, a±, b±] a Hopf algebra in [11] with the following structures:

∆(a) = a⊗ a, ∆(b) = b⊗ b, ∆(X) = X ⊗ ab+ ab⊗X

ε(a) = ε(b) = 1, ε(X) = 0,

S(a) = a−1, S(b) = b−1, S(X) = −a−2b−2X.

Then, it is easy to get a Hopf matched pair (A,H, ρ, φ) with coactions as
follows:

ρ(g) = 1⊗ g, ρ(x) = a⊗ x,

φ(X) = X ⊗ g, φ(a) = a⊗ 1, φ(b) = b⊗ 1.

(2) Let H and A be Hopf algebras. An invertible element R = R′
i⊗R′′

i in
H ⊗A is called a weak R-matrix of H and A in [9] if the following conditions
are satisfied:

(WM1) (∆⊗ id)(R) = R′
i ⊗ r′i ⊗R′′

i r
′′
i ,

(WM2) (id⊗∆)(R) = R′
ir

′
i ⊗ r′′i ⊗R′′

i ,
where r = r′i ⊗ r′′i is a copy of R.
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Then, by Lemma 1.3 in [9], (H,A, ρ, φ) is a Hopf matched pair with the
coactions as follows:

ρ : H → A⊗H, ρ(h) = τ(R)(1⊗ h)τ(R−1),

φ : A→ A⊗H,φ(a) = τ(R)(a⊗ 1)τ(R−1),

where τ is the twisted map and R−1 the inverse of R.

Proposition 3.3. Let (A,∆,∆′) be a commutative Hopf co-brace. Then,
(A∆′ , A∆′) is a Hopf matched pair with coactions as follows:

ρ(a) ≡ a(−1) ⊗ a(0) = S(a1)a21′ ⊗ a22′ ,

φ(a) ≡ a[0] ⊗ a[1] = T (a1′)(−1)a2′ ⊗ T (a1′)(0)a3′

= S(T (a1′)1)T (a1′)21′a2′ ⊗ T (a1′)22′a3′ ,

for any a ∈ A.

Proof. It is a dualization of [2, Proposition 3.1]. We leave all the details
to the reader.

Proposition 3.4. Let (A,∆′) be a commutative Hopf algebra with an-
tipode T . Assume that (A,A) is a Hopf matched pair with coactions ρ and φ,
such that

a1′ ⊗ a2′ = a1′(−1)a2′[0] ⊗ a1′(0)a2′[1] (3.1)

holds. Then, (A,∆,∆′) is a commutative Hopf co-brace with

∆(a) ≡ a1 ⊗ a2 = a1′T (a2′(−1))⊗ a2′(0),

S(a) = a(−1)T (a(0)),

for all a ∈ A.

Proof. It is a dualization of [2, Proposition 3.2]. We leave all the details
to the reader.

Let (A,∆) be a commutative Hopf algebra with antipode S. LetM(A)
be the category with objects Hopf matched pairs (A,A) such that the condition
(3.1) is satisfied, and all morphisms Hopf algebra homomorphisms f : A → A
such that ρf(a) = (f ⊗ f)ρ(a), φf(a) = (f ⊗ f)φ(a), for all a ∈ A.

Theorem 3.5. Let (A,∆) be a commutative Hopf algebra with antipode
S. Then, the full subcategory HCB(A) of Hopf co-braces is equivalent to the
categoryM(A) of Hopf matched pairs.
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Proof. We have two functors as follows:

F : HCB(A) → M(A), F ((A,∆,∆′)) = (A,A),

F (f) = f,

where (A,A) is the Hopf matched pair as in Proposition 3.3.

G :M(A) → CB(A), G((A,A)) = (A,∆,∆′),

G(f) = f,

where (A,∆,∆′) is a Hopf co-brace as in Proposition 3.4.

By a direct calculation, we can show that HCB(A) is equivalent toM(A).

4. HOPF CO-BRACE ON BICROSSED COPRODUCT

In this section, we mainly construct Hopf co-braces on bicrossed coprod-
ucts.

Assume that (A,H, ρ, φ) is a Hopf matched pair in Definition 3.1, and
give A ⊗H the tensor algebra structure. Define a comultiplication on A ⊗H
as follows: for all a ∈ A, h ∈ H,

∆̃A⊗H(a⊗ h) = (a1 ⊗ a2(−1)h1[0])⊗ (a2(0)h1[1] ⊗ h2).

Then, by [9], A⊗H is a Hopf algebra, whose antipode is given by

S̃(a⊗ h) = SA(h[1])SA(a(0))⊗ SH(h[0])SH(a(−1)).

In what follows, we call the Hopf algebra a bicrossed coproduct of A and
H, and denote it by A ▷◁ H, whose comultiplication is denoted by ∆̃.

Proposition 4.1. Let (A,∆,∆′) be a Hopf co-brace, and H a commuta-
tive cocommutative Hopf algebra. If (A∆′ , H, ρ, φ) is a Hopf matched pair, and
the map ρ also makes A∆ into a left H-comodule coalgebra. Then, (A⊗H, ∆̂, ∆̃)
is a Hopf co-brace, if and only if

h[0] ⊗ h[1]1 ⊗ h[1]2 = h1[0]S(h2)h3[0] ⊗ h1[1] ⊗ h3[1], (4.1)

for all h ∈ H, where ∆̂ denotes the comultiplication of the usual tensor coal-
gebra of A∆ ⊗H, i.e. for all a ∈ A, h ∈ H,

∆̂A∆⊗H(a⊗ h) = (a1 ⊗ h1)⊗ (a2 ⊗ h2)

and ∆̃ is given by

∆̃A∆′⊗H(a⊗ h) = (a1′ ⊗ a2′(−1)h1[0])⊗ (a2′(0)h1[1] ⊗ h2).
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Proof. It is a dualization of [1, Theorem 2.1]. We leave all the details to
the reader.

Remark 4.2. (1) Let (A,∆,∆′) be a Hopf co-brace, and H a commutative
cocommutative Hopf algebra. Suppose that the right A∆′-comodule action of
H is trivial. Then, by Definition 3.1, (A∆′ , H, ρ, φ) is a Hopf matched pair if
(A∆′ , ρ) is a left H-comodule bialgebra.

It is obvious that the condition (4.1) holds. So, according to Proposition
4.1, (A⊗H, ∆̂, ∆̃) is a Hopf co-brace if (A, ρ) is a left H-comudule coalgebra,
where the comultiplication ∆̃ is given by

∆̃(a⊗ h) = a1′ ⊗ a2′(−1)h1 ⊗ a2′(0) ⊗ h2.

In this case, the comultiplication ∆̃ of the bicrossed coproduct A∆′ ▷◁ H
is actually the comultiplication of the usual smash coproduct on A∆′ ⊗H.

(2) Suppose that A is a Hopf algebra with comultiplication ∆. Then,
(A,∆,∆) is a Hopf co-brace. If H is a commutative cocommutative Hopf
algebra, and (A, ρ) is a left H-comudule bialgebra. Then, by the above remark,
we know that the smash coproduct (A×H, ∆̂, ∆̃) is a Hopf co-brace.

Proposition 4.3. Let A be a Hopf algebra, and (H,∆,∆′) a commutative
Hopf co-brace. If (A,H∆, ρ, φ) is a Hopf matched pair, and (A, ρ′) a left H∆′-
comodule bialgebra (whose comodule structure is given by ρ′(a) = a(−1)′ ⊗ a(0)′

for a ∈ A). Then, (A ⊗ H, ∆̃, ∆̄) is a Hopf co-brace, if and only if for all
a ∈ A, h ∈ H,

a(−1)′⊗a(0)′(−1)⊗a(0)′(0)= a(−1)11′S(a(−1)2)a(0)(−1)′⊗a(−1)12′⊗a(0)(0)′ ,(4.2)

h1′ ⊗ h2′[0] ⊗ h2′[1]= h1[0]11′S(h1[0]2)h1[1](−1)′h2⊗ h1[0]12′⊗h1[1](0)′ ,(4.3)

where ∆̄ denotes the comultiplication of smash coproduct on A⊗H∆′, that is,
for all a ∈ A, h ∈ H,

∆̄(a⊗ h) ≡ (a⊗ h)1̄ ⊗ (a⊗ h)2̄
= a1 ⊗ a2(−1)′h1′ ⊗ a2(0)′ ⊗ h2′ ,

and ∆̃ is given by

∆̃A⊗H∆
= (a1 ⊗ a2(−1)h1[0])⊗ (a2(0)h1[1] ⊗ h2).

Proof. It is a dualization of [1, Theorem 2.5]. We leave all the details to
the reader.

Remark 4.4. (1) Assume that H is a commutative Hopf algebra. Then,
by Example 2.3, we know that (H,∆,∆′ = ∆coH) is a commutative Hopf
co-brace.
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Suppose that (A,H, ρ, φ) is a Hopf matched pair, and the coaction of
left H∆′-comodule bialgebra on A is trivial. Then, Eq.(4.2) and Eq.(4.3) are
satisfied. So, according to Proposition 4.3, the bicrossed coproduct (A ▷◁
H, ∆̃, ∆̂) is a Hopf co-brace, where ∆̄ = ∆̂ since the coaction of left H∆′-
comodule on A is trivial.

(2) Let A and H be two commutative Hopf algebras, and (A, ρ′) a left
H∆coH -comodule bialgebra. Suppose that the coaction of the left H-comodule
algebra on A is trivial. Then, it is easy to see Eq.(4.2) holds, and Eq.(4.3)
amounts to

h1[0] ⊗ h2 ⊗ h1[1] = h1[0] ⊗ h1[1](−1)′h2 ⊗ h1[1](0)′ (4.4)

for all h ∈ H.

By Definition 3.1, (A,H, ρ, φ) is a Hopf matched pair if (H,φ) a right
A-comodule bialgebra. It is obvious that (H,∆,∆′ = ∆coH) is a Hopf co-
brace. So, according to Proposition 4.3, (A⊗H, ∆̃, ∆̄) is Hopf co-brace, whose
comultiplication ∆̃ is given by

∆̃(a⊗ h) = a1 ⊗ h1[0] ⊗ a2h1[1] ⊗ h2.

Note that the comultiplication ∆̃ of the bicrossed coproduct A ▷◁ H is
actually the comultiplication of the usual smash coproduct on A⊗H.

Example 4.5. (1) Let H be a finite dimensional cocommutative Hopf al-
gebra with antipode S, hi a basis of H and h∗i the corresponding dual basis of
H∗, and let

R = hi ⊗ h∗i ∈ Hop ⊗H∗.

Then, by [9], R is a weak R-matrix of Hop ⊗H∗ with the inverse R−1 =
S−1(hi)⊗ h∗i . So, by Example 3.2 (2), we know that (Hop, H∗, ρ, φ) is a Hopf
matched pair, and hence one can form the bicrossed coproduct Hop ▷◁ H∗,
whose comultiplication of Hop ▷◁ H∗ is given by

∆̃(x⊗ f) = x1 ⊗ h∗i f1h
∗
j ⊗ S−1(hj)x2hi ⊗ f2

for all x ∈ Hop, f ∈ H∗.

Therefore, according to Remark 4.4(1), the dual (D(H)∗, ∆̃, ∆̂) of Drin-
fel’d double D(H) is a Hopf co-brace.

(2) Let H4 = k{1, g, x, gx} be Sweedler’s 4-Hopf algebra with chark ̸= 2.
As an algebra, H is generated by g and x with relations

g2 = 1, x2 = 0, xg = −gx.

The coalgebra structure and antipode are determined by

∆(g) = g ⊗ g, ∆(x) = x⊗ g + 1⊗ x,
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ε(g) = 1, ε(x) = 0, S(g) = g, S(x) = gx.

Let A = kZ2, where Z2 is written multiplicatively as {1, a}, and

R =
1

2
(1⊗ 1 + 1⊗ a+ g ⊗ 1− g ⊗ a) ∈ H ⊗A.

Then, by [9], one can easily see that R is a weak R-matrix of H ⊗ A
with R−1 = R. So, by Lemma 1.3 in [9], we have the bicrossed coproduct
H4 ▷◁ kZ2, and according to Remark 4.4(1), we know that (H4 ▷◁ kZ2, ∆̃, ∆̂)
is a Hopf co-brace.

Acknowledgments. The authors would like to thank the referee for helpful sugges-
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