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The global solution of the 2-dimensional Landau-Lifshitz-Gilbert (LLG) equation
on the sphere S2 is studied. By the Hasimoto transformation, an equivalent
complex-valued equation is deduced under cylindrical symmetric coordinates.
Then the global H2 well-posedness of the Cauchy problem for this complex
system with minimal regularity assumptions on the initial data is proved, and
the well-posedness of the LLG equation is presented.
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1. INTRODUCTION

This paper discusses the global existence theorem for the Landau-Lifshitz-
Gilbert (LLG for short) equation, which comes from the macroscopic ferromag-
netic continuum. In a ferromagnet, long-wavelength magnetization S can vary
internally, but at each point, its magnitude is equal to the saturation magneti-
zation Ss. The LLG equation, introduced by Landau and Lifshitz [13], predicts
the spin of S in response to torque. In 1935, an earlier, but equivalent, LLG
equation was written down as:

∂S

∂t
= −γS ×Heff − µS × (S ×Heff),

where S = (S1, S2, S3) ∈ S2 ↪→ R3; Heff denotes the effective field, which is a
combination of the external magnetic field, the demagnetizing field, and some
quantum mechanical effects. × denotes the cross product; γ is the electron
gyromagnetic ratio; and µ is a phenomenological damping parameter given by
(δ is a dimensionless constant called the damping factor)

µ = δ
γ

Ss
.

The authors’ work on this material was supported by Special Projects in Key Areas of
Guangdong Province (No. ZDZX1088), and, in part, by the Fund for Science and Technology
of Guangzhou (No. 202102080428).

MATH. REPORTS 25(75) (2023), 4, 513–526

doi: 10.59277/mrar.2023.25.75.4.513

http://dx.doi.org/10.59277/mrar.2023.25.75.4.513


514 P. Zhong, X. Chen, and S. Tang 2

Let us consider the simplest situation of an LLG equation in which the
effects of anisotropy and external magnetic field have not been included. After
time scaling (here we set α2 + β2 = 1 and α ∈ [0, 1]), this simplest case of the
LLG equation takes the form:

(1)
∂S

∂t
= αS×∆S − βS× (S×∆S) ,

where the α-term denotes the exchange interaction, and the β-term is the
Gilbert damping term.

(1) is a mixture of two well-known partial differential equations, the
Schrödinger map equation (β = 0) and the harmonic map heat flow (α = 0).
Because the Schrödinger map equation is the simplest and the most important
section of the LLG equation, other papers showing previously known results for
(1) will be presented in order. By the difference method, C. Sulem, J. P. Sulem,
and C. Bardos [19] established the local well-posedness of (1) for initial data in
Hs(Rn) (s > n/2 + 1 and n ≥ 2). The equivalent system for the Schrödinger
map equation was applied by other authors to prove its well-posedness. Chang,
Shatah, and Uhlenbeck [4] established global existence, uniqueness, and reg-
ularity in the energy norm for the 1-dimensional Schrödinger map equation.
Under radially symmetric coordinates, they also proved similar results [4] for
the radially symmetric case assuming low energy in the 2-dimensional case. W.
Ding and Y. Wang [5] obtained similar results for any Schrödinger flow from Rn

or from a compact Riemannian manifold into a complete Kähler manifold. For
general Kähler manifolds, McGahagan [15] presented an approximation scheme
for the Schrödinger maps by the wave map and established a well-posedness
theorem for it. Much interest and ground-breaking work have arisen within
the last decade in the study of the Schrödinger map equation. Small initial
conditions will always lead to global solutions in time [2, 12, 3]. In n ≥ 4
dimensions, Bejenaru, Ionescu, and Kenig [2] proved that the Schrödinger map
equation admits a unique solution S ∈ (R : H∞

O ) under a smallness condition
near Q ∈ S2 as ∥S0 − O∥ ˙Hn/2 ≪ 1 (S0 ∈ (H∞

O )). Under n ≥ 3, Ionescu and

Kenig [12] obtained the global well-posedness of maps into S2 with small data

in the critical Besov spaces Ḃ
n/2
O (Rn, S2). Similarly, global well-posedness with

small critical Sobolev norms for n ≥ 2 was established by Bejenaru, Ionescu,
Kenig, and Tataru [3]. However, the Schrödinger map equation with large
data is a much more complex problem. Near the collection of families, Om

finite-energy stationary solutions for integer m ≥ 1, asymptotic stability and
blow-up for Schrödinger map equations have been considered by many authors
[17, 18, 8].

As background for the LLG equation (1), a few studies presenting previ-
ously known results are listed in order. F. Alouges and A. Soyeur [1] estab-
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lished some necessary conditions for the existence of a global weak solution
for the LLG equation in n = 3. They also proved that, if S satisfies the Neu-
mann boundary conditions, then there are infinitely many weak solutions. If
n = 1, Guo and Huang [7] established the existence of unique smooth solutions
by means of the technique of spatial differences under the periodic boundary
condition setting. In dimension n = 3, A. Huber [11] proved that there ex-
ists a time-periodic solution belonging to C1(R, L2(Ω,R3))∩C(R, H2

N (Ω,R3)),
where the bounded domain Ω ⊂ R3 and “N” stands for homogeneous Neumann
boundary conditions.

In dimension n ≥ 3, the LLG equation becomes super-critical with respect
to the L2 norm of |∇Sϵ| due to ∥∇Sϵ∥L2

x
→ 0 as ϵ → 0. Guo and Hong [6]

proved a global existence theorem for solutions of the LLG equation from some
n-dimensional manifold M into the S2 based on links between harmonic maps
and the solutions of the LLG equation. For a smallness initial condition on the
gradient, the global well-posedness on scaling invariant homogeneous Sobolev
space for (1) has been established in n ≥ 3 by Melcher [16]. According to the
work of Melcher [16], there exists a global smooth solution of (1) under the
condition S0 − S∞ ∈ H1 ∩W 1,n and small ∥∇S0∥Ln .

Although one can prove the global existence of weak (or even smooth) so-
lutions of the LLG equation, the smallness condition does not always mean that
the global solution exists. In fact, the question of regularity and uniqueness of
weak solutions is a delicate problem that depended on the spatial dimension.
Much like the Schrödinger map equation, the LLG equation is energy-critical in
dimension n = 2. This means that the scaling symmetry Sϵ(t, x) = S(t/ϵ2, x/ϵ)
and the L2 norm for |∇Sϵ| are conserved. In dimension 2, the global existence
of weak solutions with at most finitely many singularities and the uniqueness
among energy non-increasing solutions has been established by [9, 10] based
on the Ginzburg-Landau approximations method. In dimension 3, Melcher
[14] proved the existence of partially regular weak solutions for the Landau-
Lifshitz equation. Hence, the investigation of more flexible and conceptually
more adapted approaches would be desirable for obtaining the n ≤ 5 par-
tially regular and resolving the singularity issue. In this note, we establish
a relationship between the LLG equation and the complex Ginzburg-Landau
equations. This observation is inspired by recent developments in the context
of Schrödinger maps and the LLG equation, as mentioned above. It enables us
to prove global existence and regularity in n = 2 under a smallness condition.
Here, we state our main theorem as follows:

Theorem 1.1. Assuming n = 2 and initial data S0 ∈ H2
Rn for the radial

LLG equation
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(2) St − αS×
(
S1rr +

1

r
S1r

)
+ βS×

[
S×

(
S1rr +

1

r
S1r

)]
= 0,

there exists a global small initial solution (|∂rS0| small enough in L2 norm):

S ∈ C(R, H2
R2)
⋂

L4
loc(R,W

2,4
R2 ).

Remark 1.2. For Theorem 1.1, some comments can be made as follows.

1. If some prerequisites are imposed on the LLG equation, the small
initial data solution will become a global one. As seen in the work of Melcher
[16], a condition S0 − S∞ ∈ H1 ∩ W 1,n accompanied with small ∥∇S0∥Ln is
a compulsory component to deduce the global solvability of the equation. In
this work, Theorem 1.1 removes the constraint S0 − S∞.

2. Under the normal coordinates, Bejenaru, Ionescu, Kenig, and Tataru
[3] have obtained global well-posedness with small data in the critical Sobolev
space Ḣn/2 for the Schrödinger map equation. This indicates that a higher-
regularity initial condition is needed in the higher spatial dimensions to prove
global well-posedness. Two other papers also confirm this point of view; readers
are referred to [12] and [2]. Although these papers all deal with the Schrödinger
map rather than the LLG equation, we believe that their results can be ex-
tended to the LLG system.

The structure of this paper is as follows. Section 2 presents the deduc-
tion of the equivalent complex Ginzburg-Landau type equation from the LLG
system. Section 3 establishes some basic estimates of the Ginzburg-Landau
semigroup and proves global solvability for the 2-dimensional LLG equation.

2. EQUIVALENT EQUATIONS OF THE LLG EQUATION

This section presents the deduction of an equivalent system under the
Hasimoto transformation. This will be used to prove the global existence the-
orem for the LLG equation in Section 3.

To understand the LLG equation mathematically from another aspect, a
change of coordinates, referred to as the Hasimoto transformation, is a funda-
mental tool. Under this transformation, the LLG equation becomes a single
complex system as a nonlinear Ginzburg-Landau equation. The process of de-
ducing this equivalent transformation takes a differential geometry approach.
By mapping (2) onto a moving helical space curve in Euclidean space, this
new system can be derived. In Euclidean space, the curvature and torsion are
defined respectively as:

(3) κ = (Sr · Sr)
1
2 and τ =

S · (Sr×Srr)

κ2
.
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To maintain the parallel characteristic of the two vectors, S is mapped
onto the unit tangent vector e1 to obtain the time evolution equation of e1 as
follows:

∂

∂t
e1 − αe1×∆e1 + βe1×(e1×∆e1) = 0,

or equivalently in the form:

(4)
∂

∂t
e1 − αe1×∆e1 − β[∆e1 − (e1 ·∆e1)e1] = 0,

where

∆e1 = e1rr +
1

r
e1r.

The vectors have a right-hand coordinate relationship, as follows:

(5)

 e1
e2
e3

 =

 e2×e3

e3×e1

e1×e2

 .

The spatial derivatives of the orthogonal basis ei (i = 1, 2, 3) can be
represented by the Frenet formula of the moving frame method as follows:

(6)
∂

∂r

 e1
e2
e3

 =

 0 κ 0
−κ 0 τ
0 −τ 0

 e1
e2
e3

 .

The time derivatives of the space vectors ei are given by:

(7)
∂

∂t

 e1
e2
e3

 =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 e1
e2
e3

 .

To deduce more relationships about curvature and torsion, we need to
use (6)-(7) and the compatibility condition:

∂

∂t∂r

 e1
e2
e3

 =
∂

∂r∂t

 e1
e2
e3


to give

(8) κt = −τ ω2 − ω3r,

(9) τt = ω2κ− ω1r

and

(10) ω1 =
τ ω3

κ
− ω2 r

κ
.
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In addition, we can resolve from (4)-(7) to obtain:

(11) ω2 = α
[
κt +

κ

r

]
+ βκ τ,

and

(12) ω3 = ακ τ − β
[
κt +

κ

r

]
respectively.

Combining (11)-(12) with (10) yields:

(13) ω1 = α

[
τ2 − κrr

κ
+

1

r2
− κr

κ r

]
− β

[
2κrτ

κ
+

τ

r
+ τr

]
,

Substituting (11)-(12) into (8) gives:

(14) κt = α
[
−2κrτ − τ κ

r
− κ τr

]
− β

[
−κ τ2 − κrr −

κ

r2
+

κr
r

]
,

Combining (11), (13) and (9) yields:

(15)

τt = −
(
α
[
τ2 − κrr

κ + 1
r2

− κr
κ r

]
− β

[
2κrτ
κ + τ

r + τr
])

r

+
(
α
[
κt +

κ
r

]
+ βκ τ

)
κ.

Using the complex Hasimoto transformation, it can be assumed that:

(16) Φ =
κ

2
exp

[
i

∫ r

0
τ(t, r̃)dr̃

]
,

Calculating the time derivative of (16) leads to:

(17) Φt =
1

2

[
κte

i
∫ r
0 τdr̃ + iκei

∫ r
0 τdr̃

∫ r

0
τtdr̃

]
,

where

R(t) =

(∫
τtdr̃

)
r=0

.

By (14) and (15), (17) can be transformed into the nonlinear Ginzburg-
Landau equation as follows:

(18)

iΦt − (iβ − α)
(
Φrr +

Φr
r − Φ

r2

)
+ 4β Φ

∫ r
0 ℑ
(
ΦΦr

)
dr

+α
(
2 |Φ|2Φ+ 4Φ

∫ r
0
|Φ|2
r dr

)
− ΦR(t) = 0.

R(t) is a real-valued function in (18). It can be used to rearrange (18) to
be a single expression. More clearly, the transformation

(19) Q = Φexp

[
−i

∫ t

0
R(t′)dt̃′

]
,
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can be used to re-write (18) as:

(20)

iQt − (iβ − α)
(
Qrr +

Qr

r − Q
r2

)
+ 4β Q

∫ r
0 ℑ
(
QQr

)
dr

+α
(
2 |Q|2Q+ 4Q

∫ r
0
|Q|2
r dr

)
= 0.

The functions (t, r) 7→ Φ (or (t, r) 7→ Q) are said to be the Hasimoto
transformation. Under these transforms, two equations can be gathered in a
complex form. It is difficult to go back directly from solutions of the complex
system to the LLG equation by the Hasimoto transformation. Nonetheless,
some estimates of S can be obtained by the complex variable Q (or Φ).

3. GLOBAL EXISTENCE OF THE SOLUTION

Equation (20) is a complex equation. The kernel of the n-dimensional
linear Ginzburg–Landau equation

iQt − (iβ − α)∆Q = 0

is a mixture of the Poisson kernel and the heat kernel as follows:

Kα(r, t) =
e
− |x|2

4(β+iα)t√
2π(β + iα)t

,

which leads to a semigroup

(21) (Uα(t)φ)(x) =

∫
Rn

Kα(x− x′, t)φ(x′)dx′.

In another setting, (21) can also be written as Uα(t)φ = e(β+iα)t∆φ. Much
like the Schrödinger semigroup eit∆φ, the Ginzburg-Landau semigroup has a
certain smoothing effect on the Schrödinger derivatives. It is well known that
for 2 ≤ p ≤ ∞ and p′ with 1

p + 1
p′ = 1,

(22)
∥∥∥e(β+iα)t∆φ

∥∥∥
Lp
x

≤
∥∥eiαt∆φ∥∥

Lp
x
≤C |t|−

n
2
(1− 2

p
)∥φ∥

Lp′
x
,

which leads by dispersive estimate to:∥∥eit∆φ∥∥
L∞
x

≤C |t|−n/2∥φ∥L1
x

and complex interpolation from∥∥eiαt∆φ∥∥
L2
x
= ∥φ∥L2

x
,

denotes

Aφ(t) =

∫ t

0
Uα(t− t′)φ(t′) dt′.
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From the estimate (22), we obtain

(23) ∥Aφ(t)∥Lp
x
≤C

∫ t

0
|t− t′|−

n
2
(1− 2

p
)∥φ(t′)∥

Lp′
x
dt′.

The right-hand side of (23) is a convolution H ∗G, where

G(t) = ∥φ(t)∥
Lp′
x

and H(t) = C|t|−
n
2
(1− 2

p
)
.

If we set
1

γ
=

n

2
(1− 2

p
), γ > 1,

by the weak Young inequality,

(24) ∥H ∗G∥Lq
t
≤C ∥H∥Lγ

t
∥G∥

Lq′
t

.

The mixed space-time Lebesgue spaces are defined as the set of all func-
tions φ with

∥φ∥Lq
tL

p
x
=

(∫
∥φ(t′)∥q

Lp
x
dt′
) 1

q

,

where (p, q) are strict Strichartz pairs that satisfy 2 < q ≤ ∞, 2 ≤ p ≤ ∞ and

(25)
2

q
+

n

p
=

n

2
.

(24) indicates a control of the norm

∥Q∥Lq
tL

p
x
≤C ∥φ∥

Lq′
t Lp′

x

for the Ginzberg-Landau type equation

(26) iQt − (iβ − α)∆Q = φ.

Lemma 3.1. Let (q, p) be strict Strichartz pairs (see (25)). Then there
exists a constant C > 0 such that the dispersive inequality for the linear
Ginzburg-Landau propagator can be expressed as:∥∥∥e(β+iα)t∆φ

∥∥∥
Lp
x

≤C |t|−
n
2
(1− 2

p
)∥φ∥

Lp′
x

and the Hardy-Littlewood-Sobolev inequality can be expressed as follows:

∥Aφ(t)∥Lq
tL

p
x
≤C ∥φ∥

Lq′
t Lp′

x
.

To prove the regularity of the radial equation (20) in n-space dimensions,
an estimate for Q is needed. Obviously, Lemma 3.1 indicates the control of
the norm of Q that comes from (20). We claim that the variation of constants
formula defines a function Q in (26) that satisfies the Strichartz estimate.
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Lemma 3.2. Let (q, p) be strict Strichartz pairs. In n-space dimensions,
Q is the solution to the linear equation

(27) iQt − (iβ − α) (∆Q) = g, Q(0) = Q0.

Then Q satisfies the following space-time Strichartz estimate:

(28) ∥Q∥L∞
t L2

x
+ ∥Q∥Lq

tL
p
x
≤C ∥Q0∥L2

x
+ ∥g∥

Lq′
t Lp′

x
.

More clearly, (28) is a combination of Lemma 3.1 and the Duhamel for-
mula of (27), as follows:

Q = Uα(t)Q0 +

∫ t

0
Uα(t− t′)g(t′) dt′.

Before we proceed to present the theorem, we would like to make a few
remarks concerning Lemmas 3.1 and 3.2.

Remark 3.3. In Lemmas 3.1 and 3.2, the dispersive inequality, Hardy –
Littlewood – Sobolev inequality, and space-time Strichartz estimate for the
linear Ginzburg-Landau semigroup apply to the extreme case β = 0. Further-
more, the following theorems of each section remain true for the Schrödinger
map equation.

Lemma 3.2 (or Lemma 3.1) will be used to deduce an estimate of the
nonlinear terms of the complex equation (20). On 2-dimensional space, we will
prove a global result Q as follows.

Theorem 3.4. Assuming initial data S0 ∈ H2
R2 (or Q0 ∈ H1

R2) and
∥∂rS0∥L2 ≪ 1 for the radial LLG Equation:

St − αS×
(
S1rr +

1

r
S1r

)
+ βS×

[
S×

(
S1rr +

1

r
S1r

)]
= 0,

which can be equivalently written as

iQt − (iβ − α)
(
Qrr +

Qr

r − Q
r2

)
+ 4β Q

∫ r
0 ℑ
(
QQr

)
dr

+α
(
2 |Q|2Q+ 4Q

∫ r
0
|Q|2
r dr

)
= 0,

there exists a global small initial data solution

Q ∈ C(R, H1
R2)
⋂

L4
loc(R,W

1,4
R2 ).

Proof. Under the 2-dimensional space, we use the transformation W =
eiθQ (or Q = e−iθW ) to re-write (20) as follows:

(29) iWt − (iβ − α)∆W = G,
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where

∆W = Wrr +
Wr

r
+

Wθθ

r2

and

G = −4βW

∫ r

0
ℑ
(
WWr

)
dr − α

(
2 |W |2W + 4W

∫ r

0

|W |2

r
dr

)
.

An L2
R2 estimate of Q is needed. Let Q be a suitable smooth solution of

(29). Multiplying this by W , integrating, and taking the image part yields:

(30)
1

2
∥W (t)∥2L2

R2
− 1

2
∥W0∥2L2

R2
+ β

∫
R2

∥∇W (τ)∥2L2
R2

dτ = 0.

This also indicates a control of the norm as follows:

∥W (t)∥2L2
R2

≤ ∥W0∥2L2
R2

or

(31) ∥Q(t)∥2L2
R2

≤ ∥Q0∥2L2
R2
.

Under the constraint n = 2, from Lemma 3.2,

(32) ∥W∥L∞L2
R2

+ ∥W∥L4
R×R2

≤C ∥W0∥L2
R2

+ ∥G∥
L
4/3

R×R2
.

Combining (32) with ||W ||LR2
= ||Q||LR2

, we obtain:

(33)

||W ||L4
R×R2

≤C ||Q0||L2
R2

+ ||Q||3
L4
R×R2

+||Q
∫ r
0
|Q|2
r dr||

L
4/3

R×R2
+ ||Q

∫ r
0 ℑ
(
WWr

)
dr||

L
4/3

R×R2
.

The L4
R×R2 norm estimate can then be deduced for the last two terms in

(33). First, by (31), the Young inequality, and the Hardy inequality:

(34)

||Q
∫ r
0
|Q|2
r dr||

L
4/3

R×R2
≤ ||Q||L4

R×R2
||
∫ r
0
|Q|2
r dr||L2

R×R2

≤C ||Q||L4
R×R2

|||Q|2||L2
R×R2

≤C ||Q||3
L4
R×R2

.

Second, by (31) and the Young inequality, the norm for the last term of
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(33) can be estimated as:

(35)

||Q
∫ r
0 ℑ
(
WWr

)
dr||

L
4/3

R×R2
≤ ||Q

∫ r
0 ℑ
(
WWr

)
dr||

L
4/3

R×R2

≤C ||Q
∫ r
0 ℜ
(
WWr

)
dr||

L
4/3

R×R2

≤C ||Q|W |2||
L
4/3

R×R2

≤C ||Q||3
L4
R×R2

.

According to (35), the structure of Q
∫ r
0 ℑ
(
WWr

)
dr is similar to the

cubic nonlinearity |W |2W . According to (34) and (35),

(36) ||Q
∫ r

0

|Q|2

r
dr||

L
4/3

R×R2
+ ||Q

∫ r

0
ℑ
(
WWr

)
dr||

L
4/3

R×R2
≤C ||Q||3L4

R×R2
.

Combining (33) and (36), the norm of Q satisfies:

(37) ||Q||L4
R×R2

≤C ||Q0||L2
R2

+ ||Q||3L4
R×R2

.

If ||Q0||L2
R2

is small enough, combining it with the iteration argument

(using different initial times Tj (j = 0, 1, 2...), T0 = 0 to make sure that C
is small enough in each iteration step), (37) indicates a global estimate (for
Q ∈ L4

R×R2):

||Q||L4
R×R2

≤C ||Q0||L2
R2

or

||∂rS||L4
R×R2

≤C ||∂rS0||L2
R2
.

To achieve higher-order estimates (on H2) and deduce the well-posedness
of the classical solutions, one can differentiate (with respect to xi, i = 1, 2) (29)
and define V = Wxi to obtain:

(38) iVt − (iβ − α)∆V = G̃,

where

|G̃| ≤C
|Q|3

r
+Q|Q|2 + |V |

(
|Q|2 +

∫ r

0
ℑ
(
QQr

)
dr +

∫ r

0

|Q|2

r′
dr′
)
.

Similarly, the Duhamel formula of (38) gives the solution as follows:

V = Uα(t)V0 +

∫ t

0
Uα(t− t′)G̃(t′) dt′,

where V0 denotes the initial condition of V .
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According to Lemma 3.2, we obtain (similar to (32)):

(39) ∥V ∥L∞L2
R2

+ ∥V ∥L4
R×R2

≤C ∥V0∥L2
R2

+
∥∥∥G̃∥∥∥

L
4/3

R×R2
.

(39) will be applied to estimate the G̃ term of (38). Because Q(0, t) = 0,
the space norm of Q/r can be controlled by

||Q
r
||L4

R×R2
≤C ||∂rQ||L4

R×R2
.

Hence, the space norm of |Q|3
r +Q|Q|2 can be bounded by

(40)

|| |Q|3
r +Q|Q|2||

L
4/3

R×R2
≤ ||Q||3

L4
R×R2

+ || |Q|3
r ||

L
4/3

R×R2

≤C ||Q||3
L4
R×R2

+ ||Q||2
L4
R×R2

||Qr ||L4
R×R2

≤C ||Q||3
L4
R×R2

+ ||Q||2
L4
R×R2

||V ||L4
R×R2

.

|V ||Q|2 can be estimated by

(41) |||V ||Q|2||
L
4/3

R×R2
≤C ||V ||L4

R×R2
||Q||2L4

R×R2
.

Combining the Young and Hardy inequalities, the space norm of |V |
∫ r
0

|Q|2
r′ dr′

can be bounded by:

|||V |
∫ r

0

|Q|2

r′
dr′||

L
4/3

R×R2

≤C ||V ||L4
R×R2

||
∫ r

0

|Q|2

r′
dr′||L2

R×R2

≤C ||V ||L4
R×R2

||Q||2L4
R×R2

.

(42)

By (31) and the Young inequality, our estimates for the nonlinearity
|V ||Q|2 will suffice to show that:

(43)

|||V |
∫ r
0 ℑ
(
QQr

)
dr||

L
4/3

R×R2
≤ ||V ||L4

R×R2
||
∫ r
0 ℑ
(
QQr

)
dr||L2

R×R2

≤C ||V ||L4
R×R2

|||Q|2||L2
R×R2

≤C ||V ||L4
R×R2

||Q||2
L4
R×R2

.

According to the estimates (39)-(43),



13 Global well-posedness of the radial LLG equation 525

(44) ∥V ∥L∞L2
R2

+ ∥V ∥L4
R×R2

≤C ∥V0∥L2
R2

+ ||Q||3L4
R×R2

+ ||Q||2L4
R×R2

||V ||L4
R×R2

.

Combining (32) with (44) yields:

(45) ∥V ∥L∞L2
R2

+ ∥V ∥L4
R×R2

≤ C(Q0, V0, T ),

where C(Q0, V0, T ) is a bounded function depending on Q0, V0, and T .

In particular, we have estimates on the norm H1
R2 for some initial data

(Q0 ∈ L2
R2 (or Q ∈ L4

R2) and V0 ∈ L2
R2). The above is also enough to establish

the regularity claimed in Theorem 3.4: if Q0 small enough, we obtain a global
solution and prove Theorem 3.4.

As is already known, if ||Q0||L2
R2

is small enough, combining it with the

iteration argument (37) provides a global estimate (for Q ∈ L4
R2):

||Q||L4
R×R2

≤C ||Q0||L2
R2
.

Note that under radial coordinates, the relationship of the Q-norm and
the S-norm is:

∥Q∥4L4
R2

=

∫
R2

|Q|4dx1dx2 =
∫ +∞

0

(
1

2
κ

)4

rdr = 2−4 ∥∂rS∥4L4
R2

,

and therefore

||∂rS||L4
R×R2

≤C ||∂rS0||L2
R2
.

At the same time, (45) also indicates that:

∥Qx∥L∞L2
R2

+ ∥Qx∥L4
R×R2

≤ C(Q0, V0, T ),

or ∥∥∂2
rS
∥∥
L∞L2

R2
+
∥∥∂2

rS
∥∥
L4
R×R2

≤ C(Q0, V0, T ).

According to the above relationship of Q and S, Theorem 1.1 has already
been proved by Theorem 3.4.
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