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Let G be a finite group. For an element x of G, xG denotes the conjugacy class
of x in G. |xG| is called the size of the conjugacy class xG. Let N be a normal
subgroup of G. For x ∈ N , we have xG ⊆ N and xG is called a G-class of the
normal subgroup N . In this paper, we develop several results on the p -part of
G-class sizes of a normal subgroup of a finite group G.
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1. INTRODUCTION AND PRELIMINARIES

We shall always use the term group to refer to a finite group. The letter
G always denotes a group, and the letter p always denotes a prime. For an
element x of G, o(x) denotes the order of x, and xG denotes the conjugacy
class of x in G. |xG| is called the size of the conjugacy class xG, that is the
positive integer |G : CG(x)|. If n is a positive integer, then np denotes the
highest power of the prime p dividing n. We denote by π(n) the set of prime
divisors of n. For a group G, we set π(G) = π(|G|). Our remaining notation
is standard (see [9]).

Let N be a normal subgroup of a group G. For x ∈ N , we have xG ⊆ N
and we say that xG is a G-class of the normal subgroup N .

An important and interesting problem in finite group theory is the study
of the influence of the conjugacy class sizes of a group G on the structure of G.
Naturally, it is also an interesting problem to study the influence of the G-class
sizes of a normal subgroup N of a group G on the structure of N . For instance,
in [2], A. Beltran and M. J. Felip have established the following result: let N
be a normal subgroup of G, such that {|xG| : x ∈ N} = {1,m,mqa}, with q a
prime and (m, q) = 1. Then N is solvable. However, studying such properties
only from partial information, provided by G-class sizes of a normal subgroup
N of a group G, can be a more complex problem.
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The purpose of the present paper is to investigate the influence of the
p -part of G-class sizes of a normal subgroup N of a group G on the structure
of N . The main result is the following:

Theorem A. Let N be a normal subgroup of a group G, and let p be a
fixed prime factor of |G|. Suppose that

{|xG|p : x ∈ N)} = {1, pe},

where e is a fixed integer and e > 0. Then N is solvable and p -nilpotent.

Theorem A of [2], Theorem A of [3] and the main part of Theorem A of [1]
are immediate consequences of Theorem A of the present paper. In addition,
we are going to improve Theorem A of [2] and Theorem A of [3].

In this section, we list several lemmas which will be used. The following
Lemma 1.1 and Lemma 1.2 are well-known.

Lemma 1.1. Let x ∈ G. Assume that o(x) = pm1
1 ...pmn

n , where p1, ..., pn
are distinct primes and m1, ...,mn are positive integers. Then, x = x1...xn
with o(xi) = pmi

i and xrxs = xsxr for s, r = 1, ..., n. Furthermore, there exist
integers ki such that xki = xi for i = 1, · · · , n.

Lemma 1.2. Let N be a normal subgroup of G. The following two propo-
sitions hold:

(1) For every x ∈ N , |xN | | |xG|;

(2) For every x ∈ G, |(xN)G/N | | |xG|.

The following Lemma 1.3 is Thompson’s P ×Q-Lemma (see [6, Theorem
3.4, p. 179]).

Lemma 1.3. Let P × Q be a direct product of a p-group P and a p′-
group Q represented a group of automorphisms of a p-group G. Suppose that
CG(P ) ⊆ CG(Q). Then Q acts trivially on G.

Lemma 1.4 ([11]). Let P be a p-group. Suppose that {|xP | : x ∈ P} =
{1, pe}, where e is a fixed integer and e > 0. Then P has nilpotency class at
most 3 and P/Z(P ) has exponent p.

Lemma 1.5 ([4, Proposition 3]). Let G be a non-abelian simple group,
and let p ∈ π(G). Then, there exists an element x of G such that |xG|p = |G|p.

2. NORMAL K(pe)-SUBGROUPS

In this section, we discuss the so-called normal K(pe)-subgroups of a
group. We first establish two results on non-abelian simple groups as follows.
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Theorem 2.1. Let G be a non-abelian simple group, and let p ∈ π(G).
Then, |G|p > |M(G)|p, where M(G) denotes the Schur multiplier of G.

Proof. Clearly, we may assume that |M(G)| ≠ 1, 2. By the Classification
of the Finite Simple Groups, G is either an alternating group An(n ≥ 5) or
a sporadic simple group or a simple group of Lie type. We separately discuss
these cases as follows.

(1) Suppose that G ∼= An(n ≥ 5).

We have |M(An)| = 2 for all n ≥ 5 except for n = 6, 7, where |M(An))| =
6 (see [10, (11.17), p. 197]). Then, since |M(G)| ̸= 1, 2, we have that |G| =
23 ·32 ·5 or 23 ·32 ·5 ·7 and |M(G)| = 2 ·3, and it is obvious that |G|p > |M(G)|p.

(2) Suppose that G is a sporadic simple group.

Since |M(G)| ≠ 1 and 2, by checking the Atlas [5], we conclude that G is
isomorphic to one of the following groups: M22, Fi22, Suz, J3 and ON . Again,
by checking the Atlas [5], we conclude that |G|p > |M(G)|p. For example,
assume that G ∼= M22. Then, we have that |G| = 27 · 32 · 5 · 73 · 11 and
|M(G)| = 22 · 3 (see the Atlas [5]), and it is obvious that |G|p > |M(G)|p.

(3) Suppose that G is a simple group of Lie type.

We have PSL2(3
2) ∼= A6 and in (1) we have dealt with the case that G ∼=

A6. Hence, we may assume that G ̸∼= PSL2(3
2)). Then, since |M(G)| ≠ 1, 2,

G is isomorphic to one of the following groups: Dn(q)(n ≥ 4), 2Dn(q)(n ≥ 5),
E6(q),

2E6(q), PSL3(4), U4(3), U6(2), O7(3), SO
+
8 (2),

2B2(8), G2(3),
2E6(2),

An−1(q)(n ≥ 3) and 2An−1(q)(n ≥ 3) (see [12, p. 211 and p. 214]).

(3.i) Assume that G ∼= Dn(q)(n ≥ 4).

Since |M(G)| ̸= 1, 2, we have that |M(G)| = 4 and q ≡ 1(mod 4) or q ≡
−1(mod 2) (see [12, p. 211]). Clearly, if p ̸= 2, then we have |G|p > |M(G)|p.
So, we assume that p = 2. We have

|G| = |Dn(q)| = qn(n+1)(qn − 1)(q2 − 1) · · · (q2(n−1) − 1)/(4, qn − 1).

Since n ≥ 4 and q ≡ 1 (mod 4) or q ≡ −1 (mod 2), from the above
equality we know that |G|2 ≥ 8. Then, |G|2 > |M(G)|2 = 4.

(3.ii) Assume that G ∼=2 Dn(q)(n ≥ 5).

Since |M(G)| ̸= 1, 2, we have that |M(G)| = 4 and q ≡ −1(mod 4) (see
[12, p. 211]). Clearly, if p ̸= 2, then we have |G|p > |M(G)|p. So, we assume
that p = 2. We have

|G| = |2Dn(q)| = qn(n+1)(qn + 1)(q2 − 1) · · · (q2(n−1) − 1)/(4, qn + 1).
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Since n ≥ 5 and q ≡ −1(mod 4), from the above equality we know that
|G|2 ≥ 8. Then, |G|2 > |M(G)|2.

(3.iii) Assume that G ∼= E6(q).
Since |M(G)| ≠ 1, 2, we have that |M(G)| = 3 and q ≡ 1 (mod 3) (see

[?]. 211]10). Clearly, if p ̸= 3, then we have |G|p > |M(G)|p.
Now, we assume that p = 3. Since q ≡ 1 (mod 3), we have |G|3 ≥ 35 (see

[7, p.135]), and so |G|3 > |M(G)|3.

(3.iv) Assume that G =2 E6(q).
Since |M(G)| ≠ 1, 2, we have that |M(G)| = 3 and q ≡ −1 (mod 3)

(see [12, p. 211]). By the same arguments as in (3.iii), we conclude that
|G|p > |M(G)|p.

(3.v) Assume that G = PSL3(4).
We have that |M(G)| = 24 · 3 (see [12, p. 214]) and

|G| = |PSL3(4)| = 43(42 − 1)(43 − 1)/3 = 26 · 33 · 5 · 7.

Then, it is obvious that |G|p > |M(G)|p.

(3.vi) Assume that G is isomorphic to one of the following groups: U4(3),
U6(2), O7(3), SO

+
8 (2),

2B2(8), G2(3) and
2E6(2).

By checking the Atlas [5], we conclude that |G|p > |M(G)|p.
For example, assume that G ∼= U4(3). By checking the Atlas [5], we get

that |G| = 27 ·36 ·5 ·7 and |M(G)| = 32 ·4. It is obvious that |G|p > |M(G)|p.

(3.vii) Assume that G = An−1(q)(n ≥ 3).
We have |M(G)| = (n, q − 1) (see [12, p. 211]). Then, if p ̸ |(q − 1), then

|M(G)|p = 1, and hence |G|p > |M(G)|p. So, we assume that p|(q − 1). We
have (see [7, p. 135]):

|G| = |An−1(q)| = |PSLn(q)|
= (qn − 1) · · · (qn − qn−1)/(q − 1)(n, q − 1).

Assume that n ≥ 4. Then, it is easy to see that |G| is divisible by (q−1)2.
In particular, ((q − 1)2)p divides |G|p, and hence |G|p > |M(G)|p. Now, we
assume that n = 3. Then, since |M(G)| ̸= 1, we have that |M(G)| = 3 and
q ≡ 1 (mod 3). If p ̸= 3, then |G|p > |M(G)|p = 1. Hence, we assume that
p = 3. Then, since q ≡ 1 (mod 3), we have |G|3 ≥ 32 > |M(G)|3 = 3.

(3.viii) G =2 An−1(q)(n ≥ 3).
We have that |M(G)| = (n, q + 1) (see [12, p.121]) and

|G| = |2An−1(q)|
= q(n−1)n/2(q2 − (−1)2) · · · (qn − (−1)n).
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By the same arguments as in (3.vii), we conclude that |G|p > |M(G)|p.
So, we conclude that |G|p > |M(G)|p. This completes the proof of the

theorem.

Theorem 2.2. Let G be a non-abelian simple group, and let p ∈ π(G).
Then there exists an element x of G such that |xG|p does not divide |M(G)|,
where M(G) denotes the Schur multiplier of G.

Proof. By Lemma 1.5, there exists an element x of G such that |xG|p =
|G|p, and so by Theorem 2.1, we conclude that |xG|p does not divide |M(G)|.
This completes the proof.

Definition 2.3. Let N be a normal subgroup of G, and let p ∈ π(G).
We say that N is a K(pe)-subgroup of G if |xG|p = pe for every element x in
N\Z(G), where e is a fixed integer and e > 0.

We say that G is a K(pe)-group if |xG|p = pe for every noncentral element
x of G, where e is a fixed integer and e > 0 (see [3, Definition]).

By Lemma 2 of [2], we obtain the following:

Theorem 2.4. Let N be a normal subgroup of G, and suppose that N is
a K(pe)-subgroup of G. Let M be a norma p′-subgroup of G with M < N . If
N/M ̸⊆ Z(G/M), then N/M is a K(pe)-subgroup of G/M .

By Lemma 4 of [2] and its proof, we obtain the following:

Theorem 2.5. Let N be a normal subgroup of G, and suppose that N
is a K(pe)-subgroup of G. Then CN (Op(N)) contains all p′-elements of N .
Furthermore, if N is p-solvable, then N is p-nilpotent.

Suppose that N is a normal non-solvable subgroup of G and suppose that
an integer m divides |xG| for every x ∈ N\Z(N). Then m divides |Z(N)| [2,
Theorem 7]. By this result, we obtain the following:

Theorem 2.6. Let N be a normal subgroup of G, and suppose that N is
a K(pe)-subgroup of G. If N is non-solvable, then pe||Z(N)|.

Theorem 2.7. Let N be a normal subgroup of G, and suppose that N is
a K(pe)-subgroup of G. Then, N is solvable.

Proof. Suppose that the theorem does not hold, and let N be a coun-
terexample of minimal order. We proceed by the following series of steps.

Step 1. Let K be a normal subgroup of G such that K < N . Then K
is solvable.

Clearly, either K ⊆ Z(G) or K is a K(pe)-subgroup of G, and so K is
solvable by minimality of N .
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Step 2. Any Sylow subgroup of N is not a direct factor of N .

Suppose that a Sylow q-subgroup Q of N is a direct factor of N . Then,
we have N = K × Q, where K is a q-complement of N . Clearly, K ⊴ G and
K < N , and so K is solvable by Step 1. As a group of prime-power order, Q
is solvable. It follows that N = K ×Q is solvable, a contradiction.

Step 3. p||N/Z(N)|.
By Theorem 2.6, we have p||N |. It follows by Step 2 that p|N/Z(N)|.

Step 4. Op′(N) = 1. In particular, F (N)p′ = 1.

Let P0 be a Sylow p-subgroup of N , and let P be a Sylow p-subgroup of
G such that P0 ≤ P . Suppose that Op′(N) ̸= 1. Then, by Theorem 2.4, we
know that either N/Op′(N) ⊆ Z(G/Op′(N)) or N/Op′(N) is a K(pe)-subgroup
of G/Op′(N). If N/Op′(N) ⊆ Z(G/Op′(N)), then [P0, P ] ≤ Op′(N), and so
P0 ≤ Z(P ). This implies P0 ≤ Z(G) as e > 0, and thus P0 is a direct factor
of N , contradicting Step 2. It follows that N/Op′(N) is a K(pe)-subgroup of
G/Op′(N). Then, N/Op′(N) is solvable by minimality of N .

We have that Op′(N) ⊴ G and Op′(N) < N (see Theorem 2.6), and
so Op′(N) is solvable by Step 1. Therefore, both N/Op′(N) and Op′(N) are
solvable, and thus N is solvable, a contradiction. So, Op′(N) = 1.

Step 5. F (N) = Z(N).

Suppose that Z(N)p < Op(N). Then, CN (Op(N)) < N . Clearly, we have
CN (Op(N)) ⊴ G. Then, CN (Op(N)) is solvable by Step 1. By Theorem 2.5
|N : CN (Op(N))| is a p -number. It follows that N/CN (Op(N)) is solvable.
Then, since CN (Op(N)) is solvable, N is solvable, a contradiction.

So, by Step 4, we have proved F (N) = Z(N).

Step 6. If K is a normal subgroup of G such that K ≤ N , then either
K = N or K ≤ Z(N). In particular, noting that N is non-solvable, N/Z(N)
is a non-abelian chief factor of G and N is perfect.

Suppose K < N . K is solvable by Step 1. We have F (K) ≤ F (N).
Then, by Step 5, we have F (K) = Z(K). It follows that K = CK(Z(K)) =
CK(F (K)) ≤ F (K) = Z(K) (see [8, 4.2 Satz, p. 277]). And so K = Z(K) =
F (K) ≤ F (N) = Z(N).

Step 7. The final contradiction.

By Step 6, N/Z(N) is a non-abelian chief factor of G. Then, we have

N/Z(N) = L1/Z(N)× · · · × Lk/Z(N),

where Li/Z(N) are non-abelian simple groups and isomorphic (see [13, 8.9
Lemma (Remak), p. 169]).
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Write S = L1/Z(N). Then, S is a non-abelian simple group. Clearly, we
have Z(N) = Z(L1), and so S = L1/Z(N) = L1/Z(L1). N is perfect by Step
6, and so L1 is perfect by the above paragraph. Therefore, Z(N)(= Z(L1))
is isomorphic to a subgroup of the Schur multiplier M(S) of S(= L1/Z(N) =
L1/Z(L1)) (see [10, (11.20) Corollary, p. 186]). Then, by Theorem 2.6, we
have pe||M(S)|.

Notice that since Li/Z(N) are isomorphic, by Step 3 we have p||S| =
|L1/Z(N)|. By hypothesis and Lemma 1.2, we conclude that the p -part of the
conjugacy class size of every element of S divides pe. Then, since pe||M(S)|,
the p -part of the conjugacy class size of every element of S divides |M(S)|;
But this is impossible by Theorem 2.2.

So, we conclude that N is solvable. This completes the proof of the
theorem.

By Theorem 2.7 and Theorem 2.5, we obtain the following Theorem 2.8;
it is Theorem A mentioned in Section 1.

Theorem 2.8. Let N be a normal subgroup of G, and suppose that N is
a K(pe)-subgroup of G. Then, N is solvable and p-nilpotent.

The following Corollary 2.9 contains Theorem A of [3].

Corollary 2.9. Let G be a K(pe)-group, and let P be a Sylow p -
subgroup of G. Then, G is solvable and has a norma p-complement [3, Theorem
A]. Furthermore, P has nilpotency class at most 3 and P/Z(P ) has exponent
p.

Proof. By Theorem 2.8 (taking N = G), G is p -nilpotent. Then, G has a
normal p -complement H and G = PH. It follows that P ∼= G/H. G/H is non-
abelian; otherwise, P is abelian, contradicting e > 0. Then, by Theorem 2.4 we
conclude that P is a K(pe)-group. This means that {|xP | : x ∈ P} = {1, pe},
and thus by Lemma 1.4, we conclude that P has nilpotency class at most 3
and P/Z(P ) has exponent p. This completes the proof.

Corollary 2.10 ([1, Theorem A]). If N is a normal subgroup of a group
G and the size of any G-class of N is 1 or m, for some integer m, then N
is nilpotent. More precisely, N is abelian or N is the direct product of a non-
abelian p-group P by a central subgroup of G. In this case, P/(Z(G) ∩ P ) has
exponent p.

Proof. Let q ∈ π(N), and let Q be a Sylow q-subgroup of N . If q ̸∈ π(m),
then by Lemma 1.2 and [9, 33.4 Theorem, p. 444], we conclude that Q ≤ Z(N).
So, in order to prove that N is nilpotent, we may assume that π(N) ⊆ π(m).
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Then, by Theorem 2.8 we conclude that N is nilpotent. Thus, N is a direct
product of its Sylow subgroups.

In order to complete the proof, without loss we may assume that π(N) =
{p, q} and N = P × Q, where P and Q are a Sylow p -subgroup and a Sylow
q-subgroup of N , respectively.

We assume that P ̸⊆ Z(G) and take an element x ∈ P\Z(G). Let y
be any element in Q\Z(G). We have that CG(xy) = CG(x) ∩ CG(y). Hence,
by hypothesis we have CG(xy) = CG(x) = CG(y). Then, we conclude that
y ∈ Z(CG(x)). This means that Q ⊆ Z(CG(x)) because y is any element in
Q\Z(G), and thus Q is abelian.

If Q ̸⊆ Z(G), then by the same arguments, we conclude that P is abelian.
This has proved that either N is abelian or N is the direct product of

a non-abelian p -group P by a central subgroup of G. In the second case, P
is a non-abelian normal p -subgroup of G and P has only two G-class sizes,
and hence by [1, Theorem 11], we know that P/(Z(G) ∩ P ), and in particular
P/Z(P ), has exponent p. This completes the proof.

The following Corollary 2.11 contains Theorem A of [2].

Corollary 2.11. Let N be a normal subgroup of G, such that {|xG| :
x ∈ N} = {1,m,mqb}, with q a prime and (m, q) = 1. Then N is solvable
[2, Theorem A]. Furthermore, N has a norma Sylow q-subgroup Q (including
Q = 1, that is, q ̸ | |N |) and a nilpotent q-complement.

Proof. Let r ∈ π(N)\(π(m) ∪ {q}), and let R be a Sylow r-subgroup of
N . Then, by Lemma 1.2 and [9, 33.4 Theorem, p. 444], we conclude that
R ≤ Z(N). Hence, without loss we may assume that π(N) ⊆ π(m) ∪ {q}.
Then, by Theorem 2.8 we conclude that N is solvable and has a normal Sylow
q-subgroup Q and a nilpotent q-complement. This completes the proof.
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