ON THE p-PART OF G-CLASS SIZES OF A NORMAL SUBGROUP OF A FINITE GROUP G

YONGCAI REN

Communicated by Sorin Dăscălescu

Let G be a finite group. For an element x of G, x^G denotes the conjugacy class of x in G. $|x^G|$ is called the size of the conjugacy class x^G . Let N be a normal subgroup of G. For $x \in N$, we have $x^G \subseteq N$ and x^G is called a G-class of the normal subgroup N. In this paper, we develop several results on the p-part of G-class sizes of a normal subgroup of a finite group G.

AMS 2020 Subject Classification: 20D60, 20E45.

Key words: finite group, normal subgroup, conjugacy class size, G-class sizes, p-part, solvability, nilpotent.

1. INTRODUCTION AND PRELIMINARIES

We shall always use the term group to refer to a finite group. The letter G always denotes a group, and the letter p always denotes a prime. For an element x of G, o(x) denotes the order of x, and x^G denotes the conjugacy class of x in G. $|x^G|$ is called the size of the conjugacy class x^G , that is the positive integer $|G : C_G(x)|$. If n is a positive integer, then n_p denotes the highest power of the prime p dividing n. We denote by $\pi(n)$ the set of prime divisors of n. For a group G, we set $\pi(G) = \pi(|G|)$. Our remaining notation is standard (see [9]).

Let N be a normal subgroup of a group G. For $x \in N$, we have $x^G \subseteq N$ and we say that x^G is a G-class of the normal subgroup N.

An important and interesting problem in finite group theory is the study of the influence of the conjugacy class sizes of a group G on the structure of G. Naturally, it is also an interesting problem to study the influence of the G-class sizes of a normal subgroup N of a group G on the structure of N. For instance, in [2], A. Beltran and M. J. Felip have established the following result: let Nbe a normal subgroup of G, such that $\{|x^G| : x \in N\} = \{1, m, mq^a\}$, with q a prime and (m, q) = 1. Then N is solvable. However, studying such properties only from partial information, provided by G-class sizes of a normal subgroup N of a group G, can be a more complex problem. Y. Ren

The purpose of the present paper is to investigate the influence of the p-part of G-class sizes of a normal subgroup N of a group G on the structure of N. The main result is the following:

THEOREM A. Let N be a normal subgroup of a group G, and let p be a fixed prime factor of |G|. Suppose that

$$\{|x^G|_p : x \in N\} = \{1, p^e\},\$$

where e is a fixed integer and e > 0. Then N is solvable and p-nilpotent.

Theorem A of [2], Theorem A of [3] and the main part of Theorem A of [1] are immediate consequences of Theorem A of the present paper. In addition, we are going to improve Theorem A of [2] and Theorem A of [3].

In this section, we list several lemmas which will be used. The following Lemma 1.1 and Lemma 1.2 are well-known.

LEMMA 1.1. Let $x \in G$. Assume that $o(x) = p_1^{m_1} \dots p_n^{m_n}$, where p_1, \dots, p_n are distinct primes and m_1, \dots, m_n are positive integers. Then, $x = x_1 \dots x_n$ with $o(x_i) = p_i^{m_i}$ and $x_r x_s = x_s x_r$ for $s, r = 1, \dots, n$. Furthermore, there exist integers k_i such that $x^{k_i} = x_i$ for $i = 1, \dots, n$.

LEMMA 1.2. Let N be a normal subgroup of G. The following two propositions hold:

(1) For every $x \in N$, $|x^N| | |x^G|$;

(2) For every $x \in G$, $|(xN)^{G/N}| | |x^G|$.

The following Lemma 1.3 is Thompson's $P \times Q$ -Lemma (see [6, Theorem 3.4, p. 179]).

LEMMA 1.3. Let $P \times Q$ be a direct product of a p-group P and a p'-group Q represented a group of automorphisms of a p-group G. Suppose that $C_G(P) \subseteq C_G(Q)$. Then Q acts trivially on G.

LEMMA 1.4 ([11]). Let P be a p-group. Suppose that $\{|x^P| : x \in P\} = \{1, p^e\}$, where e is a fixed integer and e > 0. Then P has nilpotency class at most 3 and P/Z(P) has exponent p.

LEMMA 1.5 ([4, Proposition 3]). Let G be a non-abelian simple group, and let $p \in \pi(G)$. Then, there exists an element x of G such that $|x^G|_p = |G|_p$.

2. NORMAL $K(p^e)$ -SUBGROUPS

In this section, we discuss the so-called normal $K(p^e)$ -subgroups of a group. We first establish two results on non-abelian simple groups as follows.

THEOREM 2.1. Let G be a non-abelian simple group, and let $p \in \pi(G)$. Then, $|G|_p > |M(G)|_p$, where M(G) denotes the Schur multiplier of G.

Proof. Clearly, we may assume that $|M(G)| \neq 1, 2$. By the Classification of the Finite Simple Groups, G is either an alternating group $A_n (n \geq 5)$ or a sporadic simple group or a simple group of Lie type. We separately discuss these cases as follows.

(1) Suppose that $G \cong A_n (n \ge 5)$.

We have $|M(A_n)| = 2$ for all $n \ge 5$ except for n = 6, 7, where $|M(A_n)| = 6$ (see [10, (11.17), p. 197]). Then, since $|M(G)| \ne 1, 2$, we have that $|G| = 2^3 \cdot 3^2 \cdot 5$ or $2^3 \cdot 3^2 \cdot 5 \cdot 7$ and $|M(G)| = 2 \cdot 3$, and it is obvious that $|G|_p > |M(G)|_p$.

(2) Suppose that G is a sporadic simple group.

Since $|M(G)| \neq 1$ and 2, by checking the Atlas [5], we conclude that G is isomorphic to one of the following groups: M_{22} , Fi_{22} , Suz, J_3 and ON. Again, by checking the Atlas [5], we conclude that $|G|_p > |M(G)|_p$. For example, assume that $G \cong M_{22}$. Then, we have that $|G| = 2^7 \cdot 3^2 \cdot 5 \cdot 7^3 \cdot 11$ and $|M(G)| = 2^2 \cdot 3$ (see the Atlas [5]), and it is obvious that $|G|_p > |M(G)|_p$.

(3) Suppose that G is a simple group of Lie type.

We have $PSL_2(3^2) \cong A_6$ and in (1) we have dealt with the case that $G \cong A_6$. Hence, we may assume that $G \ncong PSL_2(3^2)$). Then, since $|M(G)| \neq 1, 2, G$ is isomorphic to one of the following groups: $D_n(q)(n \ge 4), {}^2D_n(q)(n \ge 5), E_6(q), {}^2E_6(q), PSL_3(4), U_4(3), U_6(2), O_7(3), SO_8^+(2), {}^2B_2(8), G_2(3), {}^2E_6(2), A_{n-1}(q)(n \ge 3)$ and ${}^2A_{n-1}(q)(n \ge 3)$ (see [12, p. 211 and p. 214]).

(3.i) Assume that $G \cong D_n(q) (n \ge 4)$.

Since $|M(G)| \neq 1, 2$, we have that |M(G)| = 4 and $q \equiv 1 \pmod{4}$ or $q \equiv -1 \pmod{2}$ (see [12, p. 211]). Clearly, if $p \neq 2$, then we have $|G|_p > |M(G)|_p$. So, we assume that p = 2. We have

$$|G| = |D_n(q)| = q^{n(n+1)}(q^n - 1)(q^2 - 1) \cdots (q^{2(n-1)} - 1)/(4, q^n - 1).$$

Since $n \ge 4$ and $q \equiv 1 \pmod{4}$ or $q \equiv -1 \pmod{2}$, from the above equality we know that $|G|_2 \ge 8$. Then, $|G|_2 > |M(G)|_2 = 4$.

(3.ii) Assume that $G \cong^2 D_n(q) (n \ge 5)$.

Since $|M(G)| \neq 1, 2$, we have that |M(G)| = 4 and $q \equiv -1 \pmod{4}$ (see [12, p. 211]). Clearly, if $p \neq 2$, then we have $|G|_p > |M(G)|_p$. So, we assume that p = 2. We have

$$|G| = |^{2}D_{n}(q)| = q^{n(n+1)}(q^{n}+1)(q^{2}-1)\cdots(q^{2(n-1)}-1)/(4,q^{n}+1).$$

Since $n \ge 5$ and $q \equiv -1 \pmod{4}$, from the above equality we know that $|G|_2 \ge 8$. Then, $|G|_2 > |M(G)|_2$.

(3.iii) Assume that $G \cong E_6(q)$.

Since $|M(G)| \neq 1, 2$, we have that |M(G)| = 3 and $q \equiv 1 \pmod{3}$ (see [?]. 211]10). Clearly, if $p \neq 3$, then we have $|G|_p > |M(G)|_p$.

Now, we assume that p = 3. Since $q \equiv 1 \pmod{3}$, we have $|G|_3 \ge 3^5$ (see [7, p.135]), and so $|G|_3 > |M(G)|_3$.

(3.iv) Assume that $G = {}^{2}E_{6}(q)$.

Since $|M(G)| \neq 1, 2$, we have that |M(G)| = 3 and $q \equiv -1 \pmod{3}$ (see [12, p. 211]). By the same arguments as in (3.iii), we conclude that $|G|_p > |M(G)|_p$.

(3.v) Assume that $G = PSL_3(4)$.

We have that $|M(G)| = 2^4 \cdot 3$ (see [12, p. 214]) and

$$|G| = |PSL_3(4)| = 4^3(4^2 - 1)(4^3 - 1)/3 = 2^6 \cdot 3^3 \cdot 5 \cdot 7.$$

Then, it is obvious that $|G|_p > |M(G)|_p$.

(3.vi) Assume that G is isomorphic to one of the following groups: $U_4(3)$, $U_6(2)$, $O_7(3)$, $SO_8^+(2)$, ${}^2B_2(8)$, $G_2(3)$ and ${}^2E_6(2)$.

By checking the Atlas [5], we conclude that $|G|_p > |M(G)|_p$.

For example, assume that $G \cong U_4(3)$. By checking the Atlas [5], we get that $|G| = 2^7 \cdot 3^6 \cdot 5 \cdot 7$ and $|M(G)| = 3^2 \cdot 4$. It is obvious that $|G|_p > |M(G)|_p$.

(3.vii) Assume that $G = A_{n-1}(q) (n \ge 3)$.

We have |M(G)| = (n, q - 1) (see [12, p. 211]). Then, if $p \not|(q - 1)$, then $|M(G)|_p = 1$, and hence $|G|_p > |M(G)|_p$. So, we assume that p|(q - 1). We have (see [7, p. 135]):

$$|G| = |A_{n-1}(q)| = |PSL_n(q)|$$

= $(q^n - 1) \cdots (q^n - q^{n-1})/(q - 1)(n, q - 1).$

Assume that $n \ge 4$. Then, it is easy to see that |G| is divisible by $(q-1)^2$. In particular, $((q-1)^2)_p$ divides $|G|_p$, and hence $|G|_p > |M(G)|_p$. Now, we assume that n = 3. Then, since $|M(G)| \ne 1$, we have that |M(G)| = 3 and $q \equiv 1 \pmod{3}$. If $p \ne 3$, then $|G|_p > |M(G)|_p = 1$. Hence, we assume that p = 3. Then, since $q \equiv 1 \pmod{3}$, we have $|G|_3 \ge 3^2 > |M(G)|_3 = 3$.

(3.viii)
$$G = {}^{2} A_{n-1}(q) (n \ge 3).$$

We have that $|M(G)| = (n, q+1)$ (see [12, p.121]) and
 $|G| = |{}^{2} A_{n-1}(q)|$
 $= q^{(n-1)n/2} (q^{2} - (-1)^{2}) \cdots (q^{n} - (-1)^{n}).$

By the same arguments as in (3.vii), we conclude that $|G|_p > |M(G)|_p$.

So, we conclude that $|G|_p > |M(G)|_p$. This completes the proof of the theorem. \Box

THEOREM 2.2. Let G be a non-abelian simple group, and let $p \in \pi(G)$. Then there exists an element x of G such that $|x^G|_p$ does not divide |M(G)|, where M(G) denotes the Schur multiplier of G.

Proof. By Lemma 1.5, there exists an element x of G such that $|x^G|_p = |G|_p$, and so by Theorem 2.1, we conclude that $|x^G|_p$ does not divide |M(G)|. This completes the proof. \Box

Definition 2.3. Let N be a normal subgroup of G, and let $p \in \pi(G)$. We say that N is a $K(p^e)$ -subgroup of G if $|x^G|_p = p^e$ for every element x in $N \setminus Z(G)$, where e is a fixed integer and e > 0.

We say that G is a $K(p^e)$ -group if $|x^G|_p = p^e$ for every noncentral element x of G, where e is a fixed integer and e > 0 (see [3, Definition]).

By Lemma 2 of [2], we obtain the following:

THEOREM 2.4. Let N be a normal subgroup of G, and suppose that N is a $K(p^e)$ -subgroup of G. Let M be a norma p'-subgroup of G with M < N. If $N/M \not\subseteq Z(G/M)$, then N/M is a $K(p^e)$ -subgroup of G/M.

By Lemma 4 of [2] and its proof, we obtain the following:

THEOREM 2.5. Let N be a normal subgroup of G, and suppose that N is a $K(p^e)$ -subgroup of G. Then $C_N(O_p(N))$ contains all p'-elements of N. Furthermore, if N is p-solvable, then N is p-nilpotent.

Suppose that N is a normal non-solvable subgroup of G and suppose that an integer m divides $|x^G|$ for every $x \in N \setminus Z(N)$. Then m divides |Z(N)| [2, Theorem 7]. By this result, we obtain the following:

THEOREM 2.6. Let N be a normal subgroup of G, and suppose that N is a $K(p^e)$ -subgroup of G. If N is non-solvable, then $p^e||Z(N)|$.

THEOREM 2.7. Let N be a normal subgroup of G, and suppose that N is a $K(p^e)$ -subgroup of G. Then, N is solvable.

Proof. Suppose that the theorem does not hold, and let N be a counterexample of minimal order. We proceed by the following series of steps.

STEP 1. Let K be a normal subgroup of G such that K < N. Then K is solvable.

Clearly, either $K \subseteq Z(G)$ or K is a $K(p^e)$ -subgroup of G, and so K is solvable by minimality of N.

STEP 2. Any Sylow subgroup of N is not a direct factor of N.

Suppose that a Sylow q-subgroup Q of N is a direct factor of N. Then, we have $N = K \times Q$, where K is a q-complement of N. Clearly, $K \leq G$ and K < N, and so K is solvable by Step 1. As a group of prime-power order, Q is solvable. It follows that $N = K \times Q$ is solvable, a contradiction.

STEP 3. p||N/Z(N)|. By Theorem 2.6, we have p||N|. It follows by Step 2 that p|N/Z(N)|.

STEP 4. $O_{p'}(N) = 1$. In particular, $F(N)_{p'} = 1$.

Let P_0 be a Sylow *p*-subgroup of N, and let P be a Sylow *p*-subgroup of G such that $P_0 \leq P$. Suppose that $O_{p'}(N) \neq 1$. Then, by Theorem 2.4, we know that either $N/O_{p'}(N) \subseteq Z(G/O_{p'}(N))$ or $N/O_{p'}(N)$ is a $K(p^e)$ -subgroup of $G/O_{p'}(N)$. If $N/O_{p'}(N) \subseteq Z(G/O_{p'}(N))$, then $[P_0, P] \leq O_{p'}(N)$, and so $P_0 \leq Z(P)$. This implies $P_0 \leq Z(G)$ as e > 0, and thus P_0 is a direct factor of N, contradicting Step 2. It follows that $N/O_{p'}(N)$ is a $K(p^e)$ -subgroup of $G/O_{p'}(N)$. Then, $N/O_{p'}(N)$ is solvable by minimality of N.

We have that $O_{p'}(N) \leq G$ and $O_{p'}(N) < N$ (see Theorem 2.6), and so $O_{p'}(N)$ is solvable by Step 1. Therefore, both $N/O_{p'}(N)$ and $O_{p'}(N)$ are solvable, and thus N is solvable, a contradiction. So, $O_{p'}(N) = 1$.

STEP 5. F(N) = Z(N).

Suppose that $Z(N)_p < O_p(N)$. Then, $C_N(O_p(N)) < N$. Clearly, we have $C_N(O_p(N)) \leq G$. Then, $C_N(O_p(N))$ is solvable by Step 1. By Theorem 2.5 $|N : C_N(O_p(N))|$ is a *p*-number. It follows that $N/C_N(O_p(N))$ is solvable. Then, since $C_N(O_p(N))$ is solvable, N is solvable, a contradiction.

So, by Step 4, we have proved F(N) = Z(N).

STEP 6. If K is a normal subgroup of G such that $K \leq N$, then either K = N or $K \leq Z(N)$. In particular, noting that N is non-solvable, N/Z(N) is a non-abelian chief factor of G and N is perfect.

Suppose K < N. K is solvable by Step 1. We have $F(K) \leq F(N)$. Then, by Step 5, we have F(K) = Z(K). It follows that $K = C_K(Z(K)) = C_K(F(K)) \leq F(K) = Z(K)$ (see [8, 4.2 Satz, p. 277]). And so $K = Z(K) = F(K) \leq F(N) = Z(N)$.

STEP 7. The final contradiction.

By Step 6, N/Z(N) is a non-abelian chief factor of G. Then, we have

$$N/Z(N) = L_1/Z(N) \times \cdots \times L_k/Z(N),$$

where $L_i/Z(N)$ are non-abelian simple groups and isomorphic (see [13, 8.9 Lemma (Remak), p. 169]).

Write $S = L_1/Z(N)$. Then, S is a non-abelian simple group. Clearly, we have $Z(N) = Z(L_1)$, and so $S = L_1/Z(N) = L_1/Z(L_1)$. N is perfect by Step 6, and so L_1 is perfect by the above paragraph. Therefore, $Z(N)(=Z(L_1))$ is isomorphic to a subgroup of the Schur multiplier M(S) of $S(=L_1/Z(N) = L_1/Z(L_1))$ (see [10, (11.20) Corollary, p. 186]). Then, by Theorem 2.6, we have $p^e ||M(S)|$.

Notice that since $L_i/Z(N)$ are isomorphic, by Step 3 we have $p||S| = |L_1/Z(N)|$. By hypothesis and Lemma 1.2, we conclude that the *p*-part of the conjugacy class size of every element of *S* divides p^e . Then, since $p^e||M(S)|$, the *p*-part of the conjugacy class size of every element of *S* divides |M(S)|; But this is impossible by Theorem 2.2.

So, we conclude that N is solvable. This completes the proof of the theorem. $\hfill\square$

By Theorem 2.7 and Theorem 2.5, we obtain the following Theorem 2.8; it is Theorem A mentioned in Section 1.

THEOREM 2.8. Let N be a normal subgroup of G, and suppose that N is a $K(p^e)$ -subgroup of G. Then, N is solvable and p-nilpotent.

The following Corollary 2.9 contains Theorem A of [3].

COROLLARY 2.9. Let G be a $K(p^e)$ -group, and let P be a Sylow psubgroup of G. Then, G is solvable and has a norma p-complement [3, Theorem A]. Furthermore, P has nilpotency class at most 3 and P/Z(P) has exponent p.

Proof. By Theorem 2.8 (taking N = G), G is p-nilpotent. Then, G has a normal p-complement H and G = PH. It follows that $P \cong G/H$. G/H is non-abelian; otherwise, P is abelian, contradicting e > 0. Then, by Theorem 2.4 we conclude that P is a $K(p^e)$ -group. This means that $\{|x^P| : x \in P\} = \{1, p^e\}$, and thus by Lemma 1.4, we conclude that P has nilpotency class at most 3 and P/Z(P) has exponent p. This completes the proof. \Box

COROLLARY 2.10 ([1, Theorem A]). If N is a normal subgroup of a group G and the size of any G-class of N is 1 or m, for some integer m, then N is nilpotent. More precisely, N is abelian or N is the direct product of a nonabelian p-group P by a central subgroup of G. In this case, $P/(Z(G) \cap P)$ has exponent p.

Proof. Let $q \in \pi(N)$, and let Q be a Sylow q-subgroup of N. If $q \notin \pi(m)$, then by Lemma 1.2 and [9, 33.4 Theorem, p. 444], we conclude that $Q \leq Z(N)$. So, in order to prove that N is nilpotent, we may assume that $\pi(N) \subseteq \pi(m)$.

Then, by Theorem 2.8 we conclude that N is nilpotent. Thus, N is a direct product of its Sylow subgroups.

In order to complete the proof, without loss we may assume that $\pi(N) = \{p,q\}$ and $N = P \times Q$, where P and Q are a Sylow p-subgroup and a Sylow q-subgroup of N, respectively.

We assume that $P \not\subseteq Z(G)$ and take an element $x \in P \setminus Z(G)$. Let y be any element in $Q \setminus Z(G)$. We have that $C_G(xy) = C_G(x) \cap C_G(y)$. Hence, by hypothesis we have $C_G(xy) = C_G(x) = C_G(y)$. Then, we conclude that $y \in Z(C_G(x))$. This means that $Q \subseteq Z(C_G(x))$ because y is any element in $Q \setminus Z(G)$, and thus Q is abelian.

If $Q \not\subseteq Z(G)$, then by the same arguments, we conclude that P is abelian.

This has proved that either N is abelian or N is the direct product of a non-abelian p-group P by a central subgroup of G. In the second case, P is a non-abelian normal p-subgroup of G and P has only two G-class sizes, and hence by [1, Theorem 11], we know that $P/(Z(G) \cap P)$, and in particular P/Z(P), has exponent p. This completes the proof. \Box

The following Corollary 2.11 contains Theorem A of [2].

COROLLARY 2.11. Let N be a normal subgroup of G, such that $\{|x^G| : x \in N\} = \{1, m, mq^b\}$, with q a prime and (m, q) = 1. Then N is solvable [2, Theorem A]. Furthermore, N has a norma Sylow q-subgroup Q (including Q = 1, that is, $q \not| N|$) and a nilpotent q-complement.

Proof. Let $r \in \pi(N) \setminus (\pi(m) \cup \{q\})$, and let R be a Sylow r-subgroup of N. Then, by Lemma 1.2 and [9, 33.4 Theorem, p. 444], we conclude that $R \leq Z(N)$. Hence, without loss we may assume that $\pi(N) \subseteq \pi(m) \cup \{q\}$. Then, by Theorem 2.8 we conclude that N is solvable and has a normal Sylow q-subgroup Q and a nilpotent q-complement. This completes the proof. \Box

REFERENCES

- E. Alemany, A. Beltrán, and M.J. Felipe, Nilpotency of normal subgroups having two G-class sizes. Proc. Amer. Math. Soc. 139 (2011), 2663–2669.
- [2] A. Beltrán and M.J. Felip, Solvability of normal subgroups and G-class sizes. Publ. Math. Debrecen. 5548 (2013), 916–926.
- [3] C. Casolo and S. Dolfi, Finite groups whose noncentral class sizes have the same p-part for some prime p. Israel. J. Math. 192 (2012), 197–219.
- [4] D. Chillag and M. Herzog, On the length of the conjugacy classes of finite groups. J. Algebra 131 (1990),110–125.
- [5] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, and R.A. Wilson, Atlas of Finite Groups. Clarendon Press, Oxford, 1985.

- [6] D. Gorenstein, *Finite Groups*. Harper's Series in Modern Mathematics, Harper & Row Publishers, London, New York, 1968.
- [7] D. Gorenstein, *Finite Simple Groups*. University Series in Mathematics, Plenum Press, New York, 1982.
- [8] B. Huppert, Endliche Gruppen I. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 134, Springer-Verlag, Berlin, 1967.
- [9] B. Huppert, Character Theory of Finite Groups. De Gruyter Exp. Math. 25, Walter de Gruyter, Berlin, 1998.
- [10] I.M. Isaacs, Character Theory of Finite Groups. Pure Appl. Math. 69, Academic Press, New York, 1976.
- [11] K. Ishikawa, On finite p-groups which have only two conjugacy lengths. Israel. J. Math. 129 (2002), 119–123.
- [12] G. Malle and D. Testerman, Linear Algebraic Groups and Finite Groups of Lie Type. Cambridge Stud. Adv. Math. 133, Cambridge Univ. Press, Cambridge, 2011.
- [13] J.H. Rose, A Course on Group Theory. Cambridge Univ. Press, Cambridge, 1978.

Received November 11, 2020

Sichuan University School of Mathematics Chengdu, China 18981711749@163.com