ON THE p-PART OF G-CLASS SIZES OF A NORMAL SUBGROUP OF A FINITE GROUP G

YONGCAI REN

Communicated by Sorin Dăscălescu

Abstract

Let G be a finite group. For an element x of G, x^{G} denotes the conjugacy class of x in G. $\left|x^{G}\right|$ is called the size of the conjugacy class x^{G}. Let N be a normal subgroup of G. For $x \in N$, we have $x^{G} \subseteq N$ and x^{G} is called a G-class of the normal subgroup N. In this paper, we develop several results on the p-part of G-class sizes of a normal subgroup of a finite group G.

AMS 2020 Subject Classification: 20D60, 20E45.
Key words: finite group, normal subgroup, conjugacy class size, G-class sizes, p-part, solvability, nilpotent.

1. INTRODUCTION AND PRELIMINARIES

We shall always use the term group to refer to a finite group. The letter G always denotes a group, and the letter p always denotes a prime. For an element x of $G, o(x)$ denotes the order of x, and x^{G} denotes the conjugacy class of x in $G .\left|x^{G}\right|$ is called the size of the conjugacy class x^{G}, that is the positive integer $\left|G: C_{G}(x)\right|$. If n is a positive integer, then n_{p} denotes the highest power of the prime p dividing n. We denote by $\pi(n)$ the set of prime divisors of n. For a group G, we set $\pi(G)=\pi(|G|)$. Our remaining notation is standard (see [9]).

Let N be a normal subgroup of a group G. For $x \in N$, we have $x^{G} \subseteq N$ and we say that x^{G} is a G-class of the normal subgroup N.

An important and interesting problem in finite group theory is the study of the influence of the conjugacy class sizes of a group G on the structure of G. Naturally, it is also an interesting problem to study the influence of the G-class sizes of a normal subgroup N of a group G on the structure of N. For instance, in [2], A. Beltran and M. J. Felip have established the following result: let N be a normal subgroup of G, such that $\left\{\left|x^{G}\right|: x \in N\right\}=\left\{1, m, m q^{a}\right\}$, with q a prime and $(m, q)=1$. Then N is solvable. However, studying such properties only from partial information, provided by G-class sizes of a normal subgroup N of a group G, can be a more complex problem.

MATH. REPORTS 25(75) (2023), 4, 543-551
doi: $10.59277 / \mathrm{mrar} .2023 .25 .75 .4 .543$

The purpose of the present paper is to investigate the influence of the p-part of G-class sizes of a normal subgroup N of a group G on the structure of N. The main result is the following:

Theorem A. Let N be a normal subgroup of a group G, and let p be a fixed prime factor of $|G|$. Suppose that

$$
\left.\left\{\left|x^{G}\right|_{p}: x \in N\right)\right\}=\left\{1, p^{e}\right\}
$$

where e is a fixed integer and $e>0$. Then N is solvable and p-nilpotent.
Theorem A of [2], Theorem A of [3] and the main part of Theorem A of [1] are immediate consequences of Theorem A of the present paper. In addition, we are going to improve Theorem A of [2] and Theorem A of [3].

In this section, we list several lemmas which will be used. The following Lemma 1.1 and Lemma 1.2 are well-known.

Lemma 1.1. Let $x \in G$. Assume that $o(x)=p_{1}^{m_{1}} \ldots p_{n}^{m_{n}}$, where p_{1}, \ldots, p_{n} are distinct primes and m_{1}, \ldots, m_{n} are positive integers. Then, $x=x_{1} \ldots x_{n}$ with $o\left(x_{i}\right)=p_{i}^{m_{i}}$ and $x_{r} x_{s}=x_{s} x_{r}$ for $s, r=1, \ldots, n$. Furthermore, there exist integers k_{i} such that $x^{k_{i}}=x_{i}$ for $i=1, \cdots, n$.

Lemma 1.2. Let N be a normal subgroup of G. The following two propositions hold:
(1) For every $x \in N,\left|x^{N}\right|| | x^{G} \mid$;
(2) For every $x \in G,\left|(x N)^{G / N}\right|| | x^{G} \mid$.

The following Lemma 1.3 is Thompson's $P \times Q$-Lemma (see [6] Theorem 3.4, p. 179]).

Lemma 1.3. Let $P \times Q$ be a direct product of a p-group P and a p^{\prime} group Q represented a group of automorphisms of a p-group G. Suppose that $C_{G}(P) \subseteq C_{G}(Q)$. Then Q acts trivially on G.

Lemma 1.4 ([11]). Let P be a p-group. Suppose that $\left\{\left|x^{P}\right|: x \in P\right\}=$ $\left\{1, p^{e}\right\}$, where e is a fixed integer and $e>0$. Then P has nilpotency class at most 3 and $P / Z(P)$ has exponent p.

Lemma 1.5 ([4, Proposition 3]). Let G be a non-abelian simple group, and let $p \in \pi(G)$. Then, there exists an element x of G such that $\left|x^{G}\right|_{p}=|G|_{p}$.

2. NORMAL $K\left(p^{e}\right)$-SUBGROUPS

In this section, we discuss the so-called normal $K\left(p^{e}\right)$-subgroups of a group. We first establish two results on non-abelian simple groups as follows.

Theorem 2.1. Let G be a non-abelian simple group, and let $p \in \pi(G)$. Then, $|G|_{p}>|M(G)|_{p}$, where $M(G)$ denotes the Schur multiplier of G.

Proof. Clearly, we may assume that $|M(G)| \neq 1,2$. By the Classification of the Finite Simple Groups, G is either an alternating group $A_{n}(n \geq 5)$ or a sporadic simple group or a simple group of Lie type. We separately discuss these cases as follows.
(1) Suppose that $G \cong A_{n}(n \geq 5)$.

We have $\left|M\left(A_{n}\right)\right|=2$ for all $n \geq 5$ except for $n=6,7$, where $\left.\mid M\left(A_{n}\right)\right) \mid=$ 6 (see [10, (11.17), p. 197]). Then, since $|M(G)| \neq 1,2$, we have that $|G|=$ $2^{3} \cdot 3^{2} \cdot 5$ or $2^{3} \cdot 3^{2} \cdot 5 \cdot 7$ and $|M(G)|=2 \cdot 3$, and it is obvious that $|G|_{p}>|M(G)|_{p}$.
(2) Suppose that G is a sporadic simple group.

Since $|M(G)| \neq 1$ and 2 , by checking the Atlas [5], we conclude that G is isomorphic to one of the following groups: $M_{22}, F i_{22}, S u z, J_{3}$ and $O N$. Again, by checking the Atlas [5], we conclude that $|G|_{p}>|M(G)|_{p}$. For example, assume that $G \cong M_{22}$. Then, we have that $|G|=2^{7} \cdot 3^{2} \cdot 5 \cdot 7^{3} \cdot 11$ and $|M(G)|=2^{2} \cdot 3$ (see the Atlas [5]), and it is obvious that $|G|_{p}>|M(G)|_{p}$.
(3) Suppose that G is a simple group of Lie type.

We have $P S L_{2}\left(3^{2}\right) \cong A_{6}$ and in (1) we have dealt with the case that $G \cong$ A_{6}. Hence, we may assume that $\left.G \not \approx P S L_{2}\left(3^{2}\right)\right)$. Then, since $|M(G)| \neq 1,2$, G is isomorphic to one of the following groups: $D_{n}(q)(n \geq 4),{ }^{2} D_{n}(q)(n \geq 5)$, $E_{6}(q),{ }^{2} E_{6}(q), P S L_{3}(4), U_{4}(3), U_{6}(2), O_{7}(3), S O_{8}^{+}(2),{ }^{2} B_{2}(8), G_{2}(3),{ }^{2} E_{6}(2)$, $A_{n-1}(q)(n \geq 3)$ and ${ }^{2} A_{n-1}(q)(n \geq 3)$ (see [12, p. 211 and p. 214]).
(3.i) Assume that $G \cong D_{n}(q)(n \geq 4)$.

Since $|M(G)| \neq 1,2$, we have that $|M(G)|=4$ and $q \equiv 1(\bmod 4)$ or $q \equiv$ $-1(\bmod 2)\left(\right.$ see [12, p. 211]). Clearly, if $p \neq 2$, then we have $|G|_{p}>|M(G)|_{p}$. So, we assume that $p=2$. We have

$$
|G|=\left|D_{n}(q)\right|=q^{n(n+1)}\left(q^{n}-1\right)\left(q^{2}-1\right) \cdots\left(q^{2(n-1)}-1\right) /\left(4, q^{n}-1\right)
$$

Since $n \geq 4$ and $q \equiv 1(\bmod 4)$ or $q \equiv-1(\bmod 2)$, from the above equality we know that $|G|_{2} \geq 8$. Then, $|G|_{2}>|M(G)|_{2}=4$.
(3.ii) Assume that $G \cong{ }^{2} D_{n}(q)(n \geq 5)$.

Since $|M(G)| \neq 1,2$, we have that $|M(G)|=4$ and $q \equiv-1(\bmod 4)$ (see [12, p. 211]). Clearly, if $p \neq 2$, then we have $|G|_{p}>|M(G)|_{p}$. So, we assume that $p=2$. We have

$$
|G|=\left.\right|^{2} D_{n}(q) \mid=q^{n(n+1)}\left(q^{n}+1\right)\left(q^{2}-1\right) \cdots\left(q^{2(n-1)}-1\right) /\left(4, q^{n}+1\right) .
$$

Since $n \geq 5$ and $q \equiv-1(\bmod 4)$, from the above equality we know that $|G|_{2} \geq 8$. Then, $|G|_{2}>|M(G)|_{2}$.
(3.iii) Assume that $G \cong E_{6}(q)$.

Since $|M(G)| \neq 1,2$, we have that $|M(G)|=3$ and $q \equiv 1(\bmod 3)$ (see [?]. 211]10). Clearly, if $p \neq 3$, then we have $|G|_{p}>|M(G)|_{p}$.

Now, we assume that $p=3$. Since $q \equiv 1(\bmod 3)$, we have $|G|_{3} \geq 3^{5}$ (see [7, p.135]), and so $|G|_{3}>|M(G)|_{3}$.
(3.iv) Assume that $G={ }^{2} E_{6}(q)$.

Since $|M(G)| \neq 1,2$, we have that $|M(G)|=3$ and $q \equiv-1(\bmod 3)$ (see [12, p. 211]). By the same arguments as in (3.iii), we conclude that $|G|_{p}>|M(G)|_{p}$.
(3.v) Assume that $G=P S L_{3}(4)$.

We have that $|M(G)|=2^{4} \cdot 3$ (see [12, p. 214]) and

$$
|G|=\left|P S L_{3}(4)\right|=4^{3}\left(4^{2}-1\right)\left(4^{3}-1\right) / 3=2^{6} \cdot 3^{3} \cdot 5 \cdot 7
$$

Then, it is obvious that $|G|_{p}>|M(G)|_{p}$.
(3.vi) Assume that G is isomorphic to one of the following groups: $U_{4}(3)$, $U_{6}(2), O_{7}(3), S O_{8}^{+}(2),{ }^{2} B_{2}(8), G_{2}(3)$ and ${ }^{2} E_{6}(2)$.

By checking the Atlas [5], we conclude that $|G|_{p}>|M(G)|_{p}$.
For example, assume that $G \cong U_{4}(3)$. By checking the Atlas [5], we get that $|G|=2^{7} \cdot 3^{6} \cdot 5 \cdot 7$ and $|M(G)|=3^{2} \cdot 4$. It is obvious that $|G|_{p}>|M(G)|_{p}$.
(3.vii) Assume that $G=A_{n-1}(q)(n \geq 3)$.

We have $|M(G)|=(n, q-1)$ (see [12, p. 211]). Then, if $p \nmid(q-1)$, then $|M(G)|_{p}=1$, and hence $|G|_{p}>|M(G)|_{p}$. So, we assume that $p \mid(q-1)$. We have (see [7, p. 135]):

$$
\begin{aligned}
|G| & =\left|A_{n-1}(q)\right|=\left|P S L_{n}(q)\right| \\
& =\left(q^{n}-1\right) \cdots\left(q^{n}-q^{n-1}\right) /(q-1)(n, q-1)
\end{aligned}
$$

Assume that $n \geq 4$. Then, it is easy to see that $|G|$ is divisible by $(q-1)^{2}$. In particular, $\left((q-1)^{2}\right)_{p}$ divides $|G|_{p}$, and hence $|G|_{p}>|M(G)|_{p}$. Now, we assume that $n=3$. Then, since $|M(G)| \neq 1$, we have that $|M(G)|=3$ and $q \equiv 1(\bmod 3)$. If $p \neq 3$, then $|G|_{p}>|M(G)|_{p}=1$. Hence, we assume that $p=3$. Then, since $q \equiv 1(\bmod 3)$, we have $|G|_{3} \geq 3^{2}>|M(G)|_{3}=3$.
(3.viii) $G={ }^{2} A_{n-1}(q)(n \geq 3)$.

We have that $|M(G)|=(n, q+1)$ (see [12, p.121]) and

$$
\begin{aligned}
|G| & =\left.\right|^{2} A_{n-1}(q) \mid \\
& =q^{(n-1) n / 2}\left(q^{2}-(-1)^{2}\right) \cdots\left(q^{n}-(-1)^{n}\right)
\end{aligned}
$$

By the same arguments as in (3.vii), we conclude that $|G|_{p}>|M(G)|_{p}$.
So, we conclude that $|G|_{p}>|M(G)|_{p}$. This completes the proof of the theorem.

Theorem 2.2. Let G be a non-abelian simple group, and let $p \in \pi(G)$. Then there exists an element x of G such that $\left|x^{G}\right|_{p}$ does not divide $|M(G)|$, where $M(G)$ denotes the Schur multiplier of G.

Proof. By Lemma 1.5, there exists an element x of G such that $\left|x^{G}\right|_{p}=$ $|G|_{p}$, and so by Theorem 2.1, we conclude that $\left|x^{G}\right|_{p}$ does not divide $|M(G)|$. This completes the proof.

Definition 2.3. Let N be a normal subgroup of G, and let $p \in \pi(G)$. We say that N is a $K\left(p^{e}\right)$-subgroup of G if $\left|x^{G}\right|_{p}=p^{e}$ for every element x in $N \backslash Z(G)$, where e is a fixed integer and $e>0$.

We say that G is a $K\left(p^{e}\right)$-group if $\left|x^{G}\right|_{p}=p^{e}$ for every noncentral element x of G, where e is a fixed integer and $e>0$ (see [3, Definition]).

By Lemma 2 of [2], we obtain the following:
THEOREM 2.4. Let N be a normal subgroup of G, and suppose that N is a $K\left(p^{e}\right)$-subgroup of G. Let M be a norma p^{\prime}-subgroup of G with $M<N$. If $N / M \nsubseteq Z(G / M)$, then N / M is a $K\left(p^{e}\right)$-subgroup of G / M.

By Lemma 4 of [2] and its proof, we obtain the following:
THEOREM 2.5. Let N be a normal subgroup of G, and suppose that N is a $K\left(p^{e}\right)$-subgroup of G. Then $C_{N}\left(O_{p}(N)\right)$ contains all p^{\prime}-elements of N. Furthermore, if N is p-solvable, then N is p-nilpotent.

Suppose that N is a normal non-solvable subgroup of G and suppose that an integer m divides $\left|x^{G}\right|$ for every $x \in N \backslash Z(N)$. Then m divides $|Z(N)|$ [2, Theorem 7]. By this result, we obtain the following:

Theorem 2.6. Let N be a normal subgroup of G, and suppose that N is a $K\left(p^{e}\right)$-subgroup of G. If N is non-solvable, then $p^{e}| | Z(N) \mid$.

Theorem 2.7. Let N be a normal subgroup of G, and suppose that N is a $K\left(p^{e}\right)$-subgroup of G. Then, N is solvable.

Proof. Suppose that the theorem does not hold, and let N be a counterexample of minimal order. We proceed by the following series of steps.

STEP 1. Let K be a normal subgroup of G such that $K<N$. Then K is solvable.

Clearly, either $K \subseteq Z(G)$ or K is a $K\left(p^{e}\right)$-subgroup of G, and so K is solvable by minimality of N.

Step 2. Any Sylow subgroup of N is not a direct factor of N.
Suppose that a Sylow q-subgroup Q of N is a direct factor of N. Then, we have $N=K \times Q$, where K is a q-complement of N. Clearly, $K \unlhd G$ and $K<N$, and so K is solvable by Step 1 . As a group of prime-power order, Q is solvable. It follows that $N=K \times Q$ is solvable, a contradiction.

Step 3. $p \| N / Z(N) \mid$.
By Theorem 2.6, we have $p \| N \mid$. It follows by Step 2 that $p|N / Z(N)|$.
Step 4. $O_{p^{\prime}}(N)=1$. In particular, $F(N)_{p^{\prime}}=1$.
Let P_{0} be a Sylow p-subgroup of N, and let P be a Sylow p-subgroup of G such that $P_{0} \leq P$. Suppose that $O_{p^{\prime}}(N) \neq 1$. Then, by Theorem 2.4, we know that either $N / O_{p^{\prime}}(N) \subseteq Z\left(G / O_{p^{\prime}}(N)\right)$ or $N / O_{p^{\prime}}(N)$ is a $K\left(p^{e}\right)$-subgroup of $G / O_{p^{\prime}}(N)$. If $N / O_{p^{\prime}}(N) \subseteq Z\left(G / O_{p^{\prime}}(N)\right)$, then $\left[P_{0}, P\right] \leq O_{p^{\prime}}(N)$, and so $P_{0} \leq Z(P)$. This implies $P_{0} \leq Z(G)$ as $e>0$, and thus P_{0} is a direct factor of N, contradicting Step 2. It follows that $N / O_{p^{\prime}}(N)$ is a $K\left(p^{e}\right)$-subgroup of $G / O_{p^{\prime}}(N)$. Then, $N / O_{p^{\prime}}(N)$ is solvable by minimality of N.

We have that $O_{p^{\prime}}(N) \unlhd G$ and $O_{p^{\prime}}(N)<N$ (see Theorem 2.6), and so $O_{p^{\prime}}(N)$ is solvable by Step 1. Therefore, both $N / O_{p^{\prime}}(N)$ and $O_{p^{\prime}}(N)$ are solvable, and thus N is solvable, a contradiction. So, $O_{p^{\prime}}(N)=1$.

Step 5. $F(N)=Z(N)$.
Suppose that $Z(N)_{p}<O_{p}(N)$. Then, $C_{N}\left(O_{p}(N)\right)<N$. Clearly, we have $C_{N}\left(O_{p}(N)\right) \unlhd G$. Then, $C_{N}\left(O_{p}(N)\right)$ is solvable by Step 1. By Theorem 2.5 $\left|N: C_{N}\left(O_{p}(N)\right)\right|$ is a p-number. It follows that $N / C_{N}\left(O_{p}(N)\right)$ is solvable. Then, since $C_{N}\left(O_{p}(N)\right)$ is solvable, N is solvable, a contradiction.

So, by Step 4, we have proved $F(N)=Z(N)$.
STEP 6. If K is a normal subgroup of G such that $K \leq N$, then either $K=N$ or $K \leq Z(N)$. In particular, noting that N is non-solvable, $N / Z(N)$ is a non-abelian chief factor of G and N is perfect.

Suppose $K<N . K$ is solvable by Step 1. We have $F(K) \leq F(N)$. Then, by Step 5, we have $F(K)=Z(K)$. It follows that $K=C_{K}(Z(K))=$ $C_{K}(F(K)) \leq F(K)=Z(K)$ (see [8, 4.2 Satz, p. 277]). And so $K=Z(K)=$ $F(K) \leq F(N)=Z(N)$.

Step 7. The final contradiction.
By Step 6, $N / Z(N)$ is a non-abelian chief factor of G. Then, we have

$$
N / Z(N)=L_{1} / Z(N) \times \cdots \times L_{k} / Z(N)
$$

where $L_{i} / Z(N)$ are non-abelian simple groups and isomorphic (see [13, 8.9 Lemma (Remak), p. 169]).

Write $S=L_{1} / Z(N)$. Then, S is a non-abelian simple group. Clearly, we have $Z(N)=Z\left(L_{1}\right)$, and so $S=L_{1} / Z(N)=L_{1} / Z\left(L_{1}\right) . N$ is perfect by Step 6 , and so L_{1} is perfect by the above paragraph. Therefore, $Z(N)\left(=Z\left(L_{1}\right)\right)$ is isomorphic to a subgroup of the Schur multiplier $M(S)$ of $S\left(=L_{1} / Z(N)=\right.$ $\left.L_{1} / Z\left(L_{1}\right)\right)$ (see [10, (11.20) Corollary, p. 186]). Then, by Theorem 2.6, we have $p^{e}| | M(S) \mid$.

Notice that since $L_{i} / Z(N)$ are isomorphic, by Step 3 we have $p||S|=$ $\left|L_{1} / Z(N)\right|$. By hypothesis and Lemma 1.2, we conclude that the p-part of the conjugacy class size of every element of S divides p^{e}. Then, since $p^{e}| | M(S) \mid$, the p-part of the conjugacy class size of every element of S divides $|M(S)|$; But this is impossible by Theorem 2.2.

So, we conclude that N is solvable. This completes the proof of the theorem.

By Theorem 2.7 and Theorem 2.5, we obtain the following Theorem 2.8; it is Theorem A mentioned in Section 1.

Theorem 2.8. Let N be a normal subgroup of G, and suppose that N is a $K\left(p^{e}\right)$-subgroup of G. Then, N is solvable and p-nilpotent.

The following Corollary 2.9 contains Theorem A of [3].
Corollary 2.9. Let G be a $K\left(p^{e}\right)$-group, and let P be a Sylow p subgroup of G. Then, G is solvable and has a norma p-complement [3, Theorem A]. Furthermore, P has nilpotency class at most 3 and $P / Z(P)$ has exponent p.

Proof. By Theorem 2.8 (taking $N=G$), G is p-nilpotent. Then, G has a normal p-complement H and $G=P H$. It follows that $P \cong G / H . G / H$ is nonabelian; otherwise, P is abelian, contradicting $e>0$. Then, by Theorem 2.4 we conclude that P is a $K\left(p^{e}\right)$-group. This means that $\left\{\left|x^{P}\right|: x \in P\right\}=\left\{1, p^{e}\right\}$, and thus by Lemma 1.4, we conclude that P has nilpotency class at most 3 and $P / Z(P)$ has exponent p. This completes the proof.

Corollary 2.10 ([1, Theorem A]). If N is a normal subgroup of a group G and the size of any G-class of N is 1 or m, for some integer m, then N is nilpotent. More precisely, N is abelian or N is the direct product of a nonabelian p-group P by a central subgroup of G. In this case, $P /(Z(G) \cap P)$ has exponent p.

Proof. Let $q \in \pi(N)$, and let Q be a Sylow q-subgroup of N. If $q \notin \pi(m)$, then by Lemma 1.2 and [9, 33.4 Theorem, p. 444], we conclude that $Q \leq Z(N)$. So, in order to prove that N is nilpotent, we may assume that $\pi(N) \subseteq \pi(m)$.

Then, by Theorem 2.8 we conclude that N is nilpotent. Thus, N is a direct product of its Sylow subgroups.

In order to complete the proof, without loss we may assume that $\pi(N)=$ $\{p, q\}$ and $N=P \times Q$, where P and Q are a Sylow p-subgroup and a Sylow q-subgroup of N, respectively.

We assume that $P \nsubseteq Z(G)$ and take an element $x \in P \backslash Z(G)$. Let y be any element in $Q \backslash Z(G)$. We have that $C_{G}(x y)=C_{G}(x) \cap C_{G}(y)$. Hence, by hypothesis we have $C_{G}(x y)=C_{G}(x)=C_{G}(y)$. Then, we conclude that $y \in Z\left(C_{G}(x)\right)$. This means that $Q \subseteq Z\left(C_{G}(x)\right)$ because y is any element in $Q \backslash Z(G)$, and thus Q is abelian.

If $Q \nsubseteq Z(G)$, then by the same arguments, we conclude that P is abelian.
This has proved that either N is abelian or N is the direct product of a non-abelian p-group P by a central subgroup of G. In the second case, P is a non-abelian normal p-subgroup of G and P has only two G-class sizes, and hence by [1, Theorem 11], we know that $P /(Z(G) \cap P)$, and in particular $P / Z(P)$, has exponent p. This completes the proof.

The following Corollary 2.11 contains Theorem A of [2].
Corollary 2.11. Let N be a normal subgroup of G, such that $\left\{\left|x^{G}\right|\right.$: $x \in N\}=\left\{1, m, m q^{b}\right\}$, with q a prime and $(m, q)=1$. Then N is solvable [2, Theorem A]. Furthermore, N has a norma Sylow q-subgroup Q (including $Q=1$, that is, $q \backslash|N|$) and a nilpotent q-complement.

Proof. Let $r \in \pi(N) \backslash(\pi(m) \cup\{q\})$, and let R be a Sylow r-subgroup of N. Then, by Lemma 1.2 and [9, 33.4 Theorem, p. 444], we conclude that $R \leq Z(N)$. Hence, without loss we may assume that $\pi(N) \subseteq \pi(m) \cup\{q\}$. Then, by Theorem 2.8 we conclude that N is solvable and has a normal Sylow q-subgroup Q and a nilpotent q-complement. This completes the proof.

REFERENCES

[1] E. Alemany, A. Beltrán, and M.J. Felipe, Nilpotency of normal subgroups having two G-class sizes. Proc. Amer. Math. Soc. 139 (2011), 2663-2669.
[2] A. Beltrán and M.J. Felip, Solvability of normal subgroups and G-class sizes. Publ. Math. Debrecen. 5548 (2013), 916-926.
[3] C. Casolo and S. Dolfi, Finite groups whose noncentral class sizes have the same p-part for some prime p. Israel. J. Math. 192 (2012), 197-219.
[4] D. Chillag and M. Herzog, On the length of the conjugacy classes of finite groups. J. Algebra 131 (1990),110-125.
[5] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, and R.A. Wilson, Atlas of Finite Groups. Clarendon Press, Oxford, 1985.
[6] D. Gorenstein, Finite Groups. Harper's Series in Modern Mathematics, Harper \& Row Publishers, London, New York, 1968.
[7] D. Gorenstein, Finite Simple Groups. University Series in Mathematics, Plenum Press, New York, 1982.
[8] B. Huppert, Endliche Gruppen I. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 134, Springer-Verlag, Berlin, 1967.
[9] B. Huppert, Character Theory of Finite Groups. De Gruyter Exp. Math. 25, Walter de Gruyter, Berlin, 1998.
[10] I.M. Isaacs, Character Theory of Finite Groups. Pure Appl. Math. 69, Academic Press, New York, 1976.
[11] K. Ishikawa, On finite p-groups which have only two conjugacy lengths. Israel. J. Math. 129 (2002), 119-123.
[12] G. Malle and D. Testerman, Linear Algebraic Groups and Finite Groups of Lie Type. Cambridge Stud. Adv. Math. 133, Cambridge Univ. Press, Cambridge, 2011.
[13] J.H. Rose, A Course on Group Theory. Cambridge Univ. Press, Cambridge, 1978.

Received November 11, 2020
Sichuan University
School of Mathematics
Chengdu, China
18981711749@163.com

