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Subobject independence as morphism co-possibility has recently been defined in
[2] and studied in the context of algebraic quantum field theory. This notion
of independence is handy when it comes to systems coming from physics, but
when directly applied to classical algebras, subobject independence is not entirely
satisfactory. The sole purpose of this note is to introduce the notion of subalgebra
independence, which is a slight variation of subobject independence, yet this
modification enables us to connect subalgebra independence to more traditional
notions of independence. Apart from drawing connections between subalgebra
independence and coproducts and congruences, we mainly illustrate the notion
by discussing examples.
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1. INTRODUCTION

Specifying notions of independence of subsystems of a larger system is
crucial in the axiomatic approach to algebraic quantum field theory. It turns
out that such notions of independence can be specified in a number of nonequiv-
alent ways, Summers [8] gives a review of the rich hierarchy of independence
notions; for a non-technical review of subsystem independence concepts that in-
clude more recent developments as well, see [9]. Generalizing earlier attempts,
a purely categorial formulation of independence of subobjects as morphism
co-possibility has been introduced and studied in the recent papers [5, 6] and
[2]. Two subobjects of an object are defined to be independent if any two
morphisms on the two subobjects are jointly implementable by a single mor-
phism on the larger object. More precisely, let us recall the definition from [2].
Suppose M is a class of monomorphisms and H is another class of morphisms
of a category.
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Definition 1.1. M -morphisms fA : A → X and fB : B → X are called
H-independent if for any two H-morphisms α : A → A and β : B → B there
is an H-morphism γ : X → X such that the diagram below commutes.

A X B

A X B

fA

α γ

fB

β

fA fB

The objects A and B can be regarded as M -subobjects of X, and it is
intuitively clear why H-independence of M -subobjects A and B is an inde-
pendence condition: fixing the morphism αA on object A does not interfere
with fixing any morphism αB on object B, and vice versa. That is to say,
morphisms can be independently chosen on these objects seen as subobjects of
object X.

In algebraic quantum field theory, independence given by the definition
above is specified in the context of the category of special C∗-algebras taken
with the class of operations (completely positive, unit preserving, linear maps)
between C∗-algebras. Considerations from physics ensure injectivity of the
“large system” X and therefore, extending morphisms from the subobjects to
the larger object in which independence is defined as always possible.

Although the definitions employed in [2] are rather general, they become
too restrictive when injectivity is not guaranteed. To reiterate: the main con-
cern is that independence of A and B should not depend on whether morphisms
can be extended to the entire X, but rather one should care for extensions to
the subobject “generated by” A and B only. In other words, in a concrete
category of structures, independence of A and B should depend only on how
elements that can be term-defined from A and B relate to each other and not
on elements that have “nothing to do” with A and B. Algebraically, term-
definable elements are exactly the elements of the substructure generated by
A and B. Defining the notion of a generated subobject in category theoretic
terms is not unproblematic and we do not take the trouble here to deal with
such issues. Instead, we focus almost exclusively on concrete algebras or cate-
gories of algebras. We introduce a slight modification to Definition 1.1 which
makes it more useful among algebras. We illustrate this “usefulness” by ex-
amples where subalgebra independence coincide with well-known traditional
notions of independence:

• Subset independence is disjointness.

• Subspace independence is linear independence.
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• Boolean subalgebra independence is logical independence.

• Abelian subgroup independence is the traditional notion of group inde-
pendence.1

Finally, we mention a related concept that we call congruence independence.

2. SUBALGEBRA INDEPENDENCE

Let us fix an algebraic (or more generally, a first order) similarity type.
When we speak about algebras or structures, then we understand these algebras
(structures) to have the same similarity type. We use the convention that
algebras are denoted by Fraktur letters A and the universe of the algebra A is
denoted by the same but capital letter A. For subalgebras A,B of X we write
A ∨B for the subalgebra of X generated by A ∪B.

Definition 2.1 (Subalgebra-independence). Let X be an algebra and A,B
be subalgebras of X. We say that A and B are subalgebra-independent in X if
for any homomorphisms α : A → A and β : B → B there is a homomorphism
γ : A ∨B → A ∨B such that the diagram below commutes.

A A ∨B B

A A ∨B B

⊆

α γ

⊇

β

⊆ ⊇

The homomorphism γ is called the joint extension of α and β (to A ∨B). We
write A |⌣X B when A and B are subalgebra-independent in X, and we might
omit the subscript X when it is clear from the context.

When the algebras in question have particular names, e.g. groups, fields,
etc., then we specify the independence as “subgroup-independence”, “subfield-
independence” etc.

Comparing subalgebra independence with Definition 1.1, it is clear that
the inclusion mappings take the role of M -morphisms and H is the class of all
homomorphisms between algebras. The main difference, however, is that in
subalgebra independence we extend the mappings α and β to the substructure
generated by A∪B only. We also note that H could be chosen differently, e.g.
it could be the class of automorphisms, leading to variations of the notion of
independence. We do not discuss such variations in this paper.

1However, the case of non-Abelian groups is very different.
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Before discussing the examples, let us state some useful propositions.
First, it is an immediate consequence of the definition of subalgebra indepen-
dence that the joint extension of α and β is always unique (if exists):

Proposition 2.2. If the joint extension γ : A∨B → A∨B of α : A → A
and β : B → B exists, then it is unique and is given by

γ
(
tA∨B(⃗a, b⃗)

)
= tA∨B

(
α(⃗a), β(⃗b)

)
for each term t(x⃗, y⃗) and elements a⃗ ∈ A, b⃗ ∈ B.

Proof. Elements of A∨B are of the form tA∨B(⃗a, b⃗) for a⃗ ∈ A and b⃗ ∈ B.
As γ is a homomorphism that extends both α and β, we must have

γ
(
tA∨B(⃗a, b⃗)

)
= tA∨B

(
γ(⃗a), γ(⃗b)

)
= tA∨B

(
α(⃗a), β(⃗b)

)
.

Let K be a class of similar algebras regarded as a category with homomor-
phisms as morphisms. Let A1,A2 ∈ K and consider embeddings ei : Ai → C.
Then C is a coproduct of A1 and A2 in K iff C has the following universal
property with respect to K: for any D ∈ K and homomorphisms fi : Ai → D
there is a homomorphism g : C → D such that fi = g ◦ ei (i = 1, 2). The co-
product, if exists, is unique up to isomorphism. If K is clear from the context,
we denote a coproduct of A1 and A2 by A1 ⊕ A2. In what follows, we assume
that A and B are (identified with) subalgebras of the coproduct A⊕B.

Proposition 2.3. Consider A and B as subalgebras of the coproduct
A ⊕B. Then any pair of homomorphisms α : A → A and β : B → B has a
joint extension to a homomorphism α⊕ β : A⊕B → A⊕B.

Proof. From the diagram below on the left-hand side, by composing ar-
rows, one gets the diagram on the right-hand side which is a coproduct diagram.
Therefore, a suitable γ with the dotted arrow exists and completes the proof.

A A⊕B B

A A⊕B B

eA

α

eA

eB

β

eB

A A⊕B B

A⊕B

eA

αeA
γ

eB

βeB

Proposition 2.4. Subalgebras A and B of the coproduct A ⊕ B are
subalgebra-independent provided A ∨B = A⊕B.
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Proof. Immediate from Proposition 2.3.

It is clear that there is a canonical surjective homomorphism q : A⊕B →
A ∨ B. Take homomorphisms α : A → A and β : B → B and consider the
diagram below.

A⊕B A⊕B

A ∨B A ∨B

α⊕ β

q q

γ

Then the joint extension γ : A ∨B → A ∨B of α and β exists if and only if
the mapping

γ(q(x)) = q((α⊕ β)(x))

is well-defined, that is, α⊕ β is “compatible” with the kernel ker(q). We make
use of this observation later on when we discuss the case of groups.

Let us see the examples without further ado.

2.1. Sets

Sets can be regarded as structures having the empty set as similarity
type. If A and B are subsets of C, then the subset of C generated by A
and B is simply their union A ∪ B. It is straightforward to check that subset
independence coincides with disjointness.

Proposition 2.5. For A,B ⊆ C, we have A |⌣ B if and only if A∩B =
∅.

Proof. It is straightforward to check that A and B are independent if and
only if they are disjoint as otherwise, one could take permutations of A and
B that act differently on the intersection disallowing a joint extension of these
permutations to A ∪B.

Let Set be the category of sets as objects and functions as morphisms.
The coproduct A⊕B of two sets A and B exists and is equal (isomorphic) to
the disjoint union of A and B. Hence, we get the following corollary.

Corollary 2.6. For subsets A,B ⊆ C we have A |⌣ B if and only if
A ∪B ∼= A⊕B.
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2.2. Vector spaces

Let VectF be the class (category) of vector spaces over the field F. Ho-
momorphisms between vector spaces are precisely the linear mappings. Recall
that two subspaces A and B of a vector space C are linearly independent if
and only if A ∩B = {0}.

We claim that subspace independence coincides with linear independence
of subspaces.

Proposition 2.7. For subspaces A,B of a vector space C, we have A |⌣
B if and only if A ∩B = {0}.

Proof. Take homomorphisms α : A → A and β : B → B. Then α and β
act on the bases ⟨ai : i ∈ I⟩ = A and ⟨bj : j ∈ J⟩ = B. Any function defined on
bases can be extended to a linear mapping, therefore α and β have a common
extension

γ : ⟨ai, bj : i ∈ I, j ∈ J⟩ → ⟨ai, bj : i ∈ I, j ∈ J⟩
if and only if they act on A ∩ B the same way. As α, β were arbitrary, the
latter condition is equivalent to A ∩B = {0}.

Coproduct in the category VectF of vector spaces over the fixed field
F coincides with the direct sum construction. Let us denote the direct sum
(coproduct) of two subspaces A, B by A⊕B.

Corollary 2.8. For subspaces A,B of a vector space C, we have A |⌣ B
if and only if A ∨B ∼= A⊕B.

2.3. Boolean algebras

Let Bool be the category of Boolean algebras as objects with Boolean
homomorphisms as morphisms. The Boolean algebra C is the internal sum of
the subalgebras A,B ≤ C just in case the union A∪B generates C and whenever
a ∈ A, b ∈ B are non-zero elements, then a∧ b is non-zero (cf. Lemma 1 on p.
428 in [1]). This latter condition is called Boole-independence: two subalgebras
A,B ≤ C are Boole-independent (A ∥ B in symbols) if for all a ∈ A, b ∈ B, we
have a ∩ b ̸= 0 provided a ̸= 0 ̸= b.

The internal sum construction coincides with the coproduct A⊕B in the
category Bool. As before, A∨B is the subalgebra (of C) generated by A∪B.
Then, we have A ∨B ∼= A⊕B precisely when A ∥ B.

We claim that Boolean subalgebra independence coincides with Boole-
independence of subalgebras.



7 Subalgebra independence 595

Proposition 2.9. For Boolean subalgebras A,B of a Boolean algebra C
we have

A |⌣ B ⇐⇒ A ∥ B ⇐⇒ A ∨B ∼= A⊕B.

Proof. The second equivalence A ∥ B ⇐⇒ A ∨B = A ⊕B is clear.
By Proposition 2.4 coproduct injections are always independent, therefore, we
have

A ∥ B ⇒ A |⌣ B.

As for the converse implication assume A |⌣ B. By way of contradiction
suppose there are non-zero elements a ∈ A, b ∈ B so that a ∩ b = 0. For an
element x let x′ stand for the Boolean negation (complement) of x. Take a
homomorphism α : A → A such that α(a) = 1 ∈ A and α(a′) = 0 ∈ A (e.g.
take an ultrafilter in A that contains a, and send elements belonging to the
ultrafilter to 1 ∈ A). Take β = idB. These two homomorphisms cannot be
jointly extended to a homomorphism γ : A ∨B → A ∨B because such a joint
extension γ would satisfy γ(a′) = α(a′) = 0 and γ(b) = β(b) = b ̸= 0. As
b ⊆ a′, it must follow that γ(b) ⊆ γ(a′) = 0; contradiction.

We remark that A ∥ B implies A ∩ B = {0, 1} (for if 0 ̸= a ̸= 1 was an
element of A ∩ B, then taking a ∈ A and a′ ∈ B would witness non-Boole-
independence). Thus, similarly to the previous cases, subalgebra-independence
requires that the two subalgebras in question intersect in the minimal subal-
gebra.

Notice that Boolean independence coincides with logical independence
if the Boolean algebras are viewed as the Lindenbaum–Tarski algebras of a
classical propositional logic: a∧b ̸= 0 entails that there is an interpretation on C
that makes a∧b hence, both a and b true; i.e., any two propositions that are not
contradictions can be jointly true in some interpretation. Therefore, Boolean-
subalgebra independence captures logical independence in the category Bool.

2.4. Abelian groups

The category AbGrp contains commutative groups as objects and group
homomorphisms as arrows. The commutative group G is the internal direct
sum of its two subgroups H and F if and only if G is generated by H ∪ F and
H ∩F = {e} (here and later on, e is the unit element of the group). (Internal)
direct sums are precisely the coproducts, denoted by A ⊕ B, in the category
AbGrp.

We claim that abelian-subgroup independence coincides with having the
trivial group as the intersection.
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Proposition 2.10. For subgroups A,B of the commutative group C, we
have

A |⌣ B ⇐⇒ A ∩B = {e} ⇐⇒ A ∨B ∼= A⊕B.

Proof. As A∨B is the subgroup of C generated by A∪B, the equivalence

A ∩B = {e} ⇐⇒ A ∨B ∼= A⊕B

is clear. Since summands of a coproduct are always independent (Proposition
2.4), we also have

A ∩B = {e} =⇒ A |⌣ B.

As for the other direction suppose, by way of contradiction, that there is e ̸=
g ∈ A∩B. Take α : A → A, α(x) = e and β = idB. These two homomorphisms
cannot have a joint extension to A ∨ B as α(g) ̸= β(g); contradicting A |⌣
B.

Independence of subgroups A,B of C was defined in [7] by the condi-
tion A ∩ B = {e}. In the case of Abelian groups, subgroup independence
gives back this exact notion, however, the case of general groups is much more
complicated.

2.5. Groups

Consider the category Grp of groups with homomorphisms. Coproducts
in this category exist and are isomorphic to free products. Recall that the
free product of two groups is infinite and non-commutative even if both groups
are finite or commutative (unless one of them is trivial as in this case the free
product is isomorphic to one of the two groups). Suppose A,B ≤ C. The proof
of Proposition 2.10 shows that A |⌣ B implies A ∩B = {e}.

Proposition 2.11. If A |⌣ B, then A ∩B = {e}.

On the other hand, consider the subgroups Z2,Z3 of Z6 (here, Zn is the
modulo n group with addition). These subgroups are independent as Abelian
groups, and since any homomorphic image of a commutative group is commu-
tative, they are independent as groups, too. But the free product (coproduct)
Z2⊕Z3 is infinite, thus it is not isomorphic to Z2∨Z3 = Z6. This is an example
for an algebraic category where subalgebra independence and being an internal
coproduct are not equivalent.

Using the next proposition, we can draw some useful sufficient conditions
for subgroup independence.
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Proposition 2.12. A |⌣ B if and only if for all homomorphisms α :
A → A and β : B → B and elements ai ∈ A, bi ∈ B, we have∏

aibi = e implies
∏

α(ai)β(bi) = e.

Proof. Consider the diagram below and let N be the normal subgroup of
A⊕B corresponding to the kernel ker(q).

A⊕B A⊕B

A ∨B A ∨B

α⊕ β

q q

γ

The joint extension γ : A ∨ B → A ∨ B of α and β exists if and only if
(α⊕ β)(N) ⊆ N as this is equivalent to that the mapping

γ(q(x)) = q((α⊕ β)(x))

is well-defined.

Observe that Proposition 2.2 implies that whenever α and β has a joint
extension γ, then γ is given by the equation

γ
(∏

aibi
)

=
∏

α(ai)β(bi)

for every element
∏

aibi of A ∨B (where ai ∈ A, bi ∈ B).

Proposition 2.13. If A and B are normal subgroups, such that A∩B =
{e}, then A |⌣ B.

Proof. If A and B are normal subgroups with A∩B = {e}, then ab = ba
holds for all a ∈ A and b ∈ B, for a(ba−1b−1) ∈ A and (aba−1)b−1 ∈ B,
and thus, aba−1b−1 ∈ A ∩ B = {e}. Let us apply Proposition 2.12. Take
homomorphisms α and β and elements ai ∈ A and bi ∈ B. Write a =

∏
ai and

b =
∏

bi. By the first observation
∏

aibi = ab follows. Thus, if
∏

aibi = e,
then ab = e. As a ∈ A, b ∈ B and A∩B = {e}, we have a = b = e. Therefore,
α(a)β(b) = e. Using the homomorphism property and reordering the product,
we get

∏
α(ai)β(bi) = e as desired.

However, if one of the subgroups is normal but the other is not, then they
cannot be subgroup independent.

Proposition 2.14. If A and B are subgroups such that A is normal but
B is not normal in their join, then A ̸ |⌣ B.
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Proof. We can assume A ∩ B = {e} as this condition is necessary for
subgroup independence.

Note first that given the assumptions there must exist a ∈ A and b ∈ B
such that ab ̸= ba. Otherwise, we would have aBa−1 = B for all a ∈ A, and
thus

gBg−1 = a1b1...anbnBb−1
n a−1

n ...b−1
1 a−1

1

would yield B, contradicting B being not normal.

Pick a ∈ A and b ∈ B with ab ̸= ba. Then bab−1 ̸= a, but bab−1 ∈ A since
A is a normal subgroup. Therefore, bab−1 = a′ ̸= a and a′ ∈ A. Let α : A → A
be the identity function and β : B → B be such that β(x) = e. If σ was a
joint extension of α and β, then we would get

σ(bab−1) = σ(b)σ(a)σ(b−1) = eae = a,(1)

σ(a′) = a′.(2)

Hence, σ(bab−1) ̸= σ(a′) which contradicts bab−1 = a′.

One might be tempted to think that because normal subgroups are in-
dependent, and if exactly one of the subgroups is normal, then they are not
independent, it could also be the case that two non-normal subgroups cannot
be independent. Unfortunately, this is not so, as indicated by the example
below.

Example 2.15. Consider the group D∞ given by the presentation D∞ =
⟨x, y | x2 = y2 = e⟩. Let A and B be its subgroups generated respectively by
x and y. Clearly, A ∼= B ∼= Z2. None of A and B are normal subgroups of
D∞, yet A |⌣D∞

B since the only homomorphisms A → A and B → B are
either the identical or the trivial mappings, each can be extended to a joint
homomorphism D∞ → D∞.

In the previous example, D∞ is the free product of its subgroups A and
B. The next example shows that two non-normal subgroups can be subgroup
independent in finite groups too.

Example 2.16. Let A = {e, (12)} and B = {e, (13)(24)} be subgroups of
the symmetric group on four elements. The subgroup generated by A ∪ B is
isomorphic to the dihedral group D4. None of A or B are normal subgroups,
still A |⌣ B for the same reason as in the previous example.

We do not yet have any nice group theoretical characterization of sub-
group independence, and we leave it as an open problem.
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2.6. Graphs

Let us see a non-algebraic example. A graph is a structure of the form
G = (V,E), where V is a set and E is a binary relation E ⊆ V × V . There
are at least two different types of homomorphisms between graphs: weak and
strong homomorphisms. Let us recall the definitions.

Definition 2.17. Given two graphs (V,E) and (W,F ) the mapping f :
V → W is a (weak) homomorphism if

(3) (u, v) ∈ E =⇒ (f(u), f(v)) ∈ F,

and a strong homomorphism, if

(4) (u, v) ∈ E ⇐⇒ (f(u), f(v)) ∈ F.

Subgraphs can be understood in the graph theoretic way (that is, embed-
dings are weak homomorphisms) or as substructures (i.e., we take inclusions
as strong embeddings; this corresponds to spanned subgraphs in the graph
theoretic terminology).

Let Graw and Gras respectively, be the category of graphs with weak or
strong homomorphisms as arrows. In both cases the coproduct of two graphs
G1 and G2 exists and is (isomorphic to) their disjoint union, denoted by G1 ⊕
G2. By Proposition 2.4, it is clear that G1 |⌣G1⊕G2

G2. But not the other way
around:

Example 2.18. Call a graph G rigid if the identity is its only (weak)
homomorphism. There are arbitrarily large rigid graphs [4, 3]. Take two
rigid graphs G1 and G2 such that their underlying sets are not disjoint. Then
G1 |⌣G1∪G2

G2 are independent, nevertheless, G1 ∪G2 is not the coproduct of
G1 and G2.

3. JOINT EXTENSION OF CONGRUENCES

A property that is strongly related to subalgebra independence is the
joint extension property of congruences. Suppose α : A → A and β : B → B
are homomorphisms and there is a joint extension γ : A ∨ B → A ∨ B such
that the diagram in Definition 2.1 commutes. This implies a relation between
the kernels of the homomorphisms:

ker(γ) ∩ (A×A) = ker(α), and ker(γ) ∩ (B ×B) = ker(β)(5)

If A |⌣ B, then (5) is the case for all congruences that are kernels of the
appropriate endomorphisms. This motivates the following definition.
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Definition 3.1. Let X be an algebra and A,B be subalgebras of X. We
say that A and B are congruence-independent in X if for any congruences
θA ∈ Con(A) and θB ∈ Con(B) there is a congruence θ ∈ Con(A ∨ B) such
that

θ ∩ (A×A) = θA, and θ ∩ (B ×B) = θB
. We write A |⌣

c
X B when A and B are congruence-independent in X, and we

might omit the subscript X when it is clear from the context.

Notice that A |⌣
c
B implies |A∩B| ≤ 1. For if |A∩B| ≥ 2, take the two

congruences θA = idA and θB = B × B (or θA = A× A and θB = idB). Then
no θ can have the property

θ ∩ (A×A) = θA, and θ ∩ (B ×B) = θB

as in that case we would have

θ∩(A∩B)2 = θA∩(A∩B)2 = idA∩B ̸= (A∩B)2 = θB∩(A∩B)2 = θ∩(A∩B)2.

The connection between subalgebra independence and congruence inde-
pendence is subtle, and already the sets show that none implies the other.
Take, for example, A = {a} and B = {a, b} as subsets of a set. Then A |⌣

c
B

but A ̸ |⌣ B witnessed by α = idA and β : B → B, β(x) = b. However, a
proposition similar to Proposition 2.3 can be formulated.

Proposition 3.2. Consider A and B as subalgebras of the coproduct
A ⊕B. Then for any congruences θA ∈ Con(A) and θB ∈ Con(B) there is a
congruence θ ∈ Con(A⊕B) such that

θ ∩ (A×A) = θA, and θ ∩ (B ×B) = θB

.

Proof. Let α : A → A/θA and β : B → B/θB be the quotient mappings.
Using the universal property of the coproduct, there is a homomorphism γ
making the diagram below commute.

A A⊕B B

A/θA A/θA ⊕B/θB B/θB

eA

α

eA

eB

β

eB

γ

Then θ = ker(γ) is suitable.

Proposition 3.3. Subalgebras A and B of the coproduct A ⊕ B are
congruence-independent provided A ∨B = A⊕B.
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Proof. Immediate from Proposition 3.2.

Acknowledgments. We are grateful to the anonymous referee whose careful reading

of the manuscript and helpful comments have improved the paper.

REFERENCES

[1] S. Givant and P. Halmos, Introduction to Boolean Algebras. Undergrad. Texts Math.,
Springer Science & Business Media, New York, 2008.
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