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The arithmetic-geometric index AG(G) and the geometric-arithmetic index

GA(G) of a graph G are defined as AG(G) =
∑

uv∈E(G)
dG(u)+dG(v)

2
√

dG(u)dG(v)
and

GA(G) =
∑

uv∈E(G)

2
√

dG(u)dG(v)

dG(u)+dG(v)
, where E(G) is the edge set of G, and dG(u)

and dG(v) are the degrees of vertices u and v, respectively. We study relations
between AG(G) and GA(G) for graphs G of given size, minimum degree and
maximum degree. We present lower and upper bounds on AG(G) + GA(G),
AG(G)−GA(G) and AG(G) ·GA(G). All the bounds are sharp.
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1. INTRODUCTION

Let G be a graph with vertex set V (G) and edge set E(G). The degree
dG(v) of a vertex v ∈ V (G) is the number of edges incident with v. In a
regular graph, any two vertices have the same degree. A molecular graph is a
connected graph in which each vertex has degree at most 4. A bipartite graph
is a graph whose vertices can be partitioned into two partite sets, such that
no two vertices in the same set are adjacent. A semiregular bipartite graph
is a bipartite graph such that every two vertices in the same partite set have
the same degree, and any two vertices from different partite sets have distinct
degrees. That graph is called (d1, d2)-semiregular bipartite, if the degrees of
the vertices are d1 and d2.

Degree-based topological indices have been used in mathematical chem-
istry for several decades. The geometric-arithmetic index

GA(G) =
∑

uv∈E(G)

2
√
dG(u)dG(v)

dG(u) + dG(v)
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of a graph G has been introduced by Vukičević and Furtula [17] in 2009. The
arithmetic-geometric index

AG(G) =
∑

uv∈E(G)

dG(u) + dG(v)

2
√
dG(u)dG(v)

=
1

2

∑
uv∈E(G)

[√
dG(u)

dG(v)
+

√
dG(v)

dG(u)

]
is even newer, as it was introduced in 2015 ([14]).

A lot of research has been done on both indices. The AG index was
investigated for example in [10], [11] and [13], and the GA index in [3], [6],
[12] and [15]. Chemical applications of the GA index were studied for instance
in [1], [17] and [19], and many interesting results can be found in the survey
paper [8]. Degree-based indices were investigated also in [2] and [18].

Relations between the AG index and GA index have been studied by
several researchers. Cui et al. [5] and Vujošević et al. [16] showed that
GA(G) ≤ AG(G) which means that

AG(G)−GA(G) ≥ 0 and
AG(G)

GA(G)
≥ 1.

Cui et al. [5] also showed that

AG(G)

GA(G)
≤ (n+ δ − 1)2

4(n− 1)δ
, thus

AG(G)

GA(G)
≤ n2

4(n− 1)

for connected graphs with n vertices (and minimum degree δ). The latter result
was obtained also by Vujošević et al. [16] who gave lower and upper bounds on

AG(G) +GA(G), AG(G)−GA(G), AG(G) ·GA(G) and AG(G)
GA(G) for connected

graphs G of given order. Gutman [9] showed that

AG(G) ·GA(G) ≤ 1

8

(
√
δ +

√
∆)4

(δ +∆)
√
δ∆)

m2

for graphs with m edges, minimum degree δ and maximum degree ∆.
Motivated by the works [5], [9] and [16], we study relations between

AG(G) and GA(G). We extend known results in the area for graphs G of
given size, minimum degree and maximum degree. We present lower and up-
per bounds on AG(G) + GA(G), AG(G) − GA(G) and AG(G) · GA(G). All
the bounds are sharp.

Our first theorem is expressed in terms of M1(G) and R 1
2
(G), therefore,

we present definitions of those indices too. For α ∈ R, the general Randić
index

Rα(G) =
∑

uv∈E(G)

[dG(u)dG(v)]
α,

of a graph G was introduced by Bollobás and Erdős [4]. Special cases of
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the general Randić index have been extensively studied, especially the Randić
index and second Zagreb index which are obtained if α = −1

2 and α = 1,
respectively. The first Zagreb index

M1(G) =
∑

v∈V (G)

[dG(v)]
2 =

∑
uv∈E(G)

[dG(u) + dG(v)]

also belongs to the most well-known topological indices.

2. RESULTS

In Theorem 2.1, Corollary 2.1 and Theorem 2.2, we present bounds on
AG(G) +GA(G).

Theorem 2.1. Let G be a graph with m edges and maximum degree ∆.
Then

AG(G) +GA(G) ≥ 2m+
[M1(G)− 2R 1

2
(G)]2

2m(2∆− 1)
√
∆(∆− 1)

.

The equality holds if and only if G is a regular graph or a (∆,∆−1)-semiregular
bipartite graph.

Proof. If G is regular, then for any edge uv ∈ E(G), we have dG(u) =
dG(v) = ∆,

AG(G) = m

(
∆+∆

2
√
∆2

)
= m, GA(G) = m

(
2
√
∆2

∆+∆

)
= m,

M1(G) = m(∆ +∆) = 2m∆ and R 1
2
(G) = m

√
∆2 = m∆.

So M1(G)−2R 1
2
(G) = 0 and AG(G)+GA(G) = 2m = 2m+

[M1(G)−2R 1
2
(G)]2

2m(2∆−1)
√

∆(∆−1)
.

Thus, Theorem 2.1 holds for regular graphs.
Now, we consider graphs G which are not regular. We have

AG(G) +GA(G)

=
∑

uv∈E(G)

[
dG(u) + dG(v)

2
√
dG(u)dG(v)

+
2
√

dG(u)dG(v)

dG(u) + dG(v)

]

=
∑

uv∈E(G)

√ dG(u) + dG(v)

2
√
dG(u)dG(v)

−

√
2
√
dG(u)dG(v)

dG(u) + dG(v)

2

+ 2


= 2m+

∑
uv∈E(G)

[√
dG(u)−

√
dG(v)

]4
2[dG(u) + dG(v)]

√
dG(u)dG(v)

.



20 K. C. Das, T. Vetŕık, and M. Yong-Cheol 4

If dG(u) = dG(v), then

[√
dG(u)−

√
dG(v)

]4
2[dG(u)+dG(v)]

√
dG(u)dG(v)

= 0, thus

AG(G) +GA(G) = 2m+
∑

uv∈E(G)
dG(u)̸=dG(v)

[√
dG(u)−

√
dG(v)

]4
2[dG(u) + dG(v)]

√
dG(u)dG(v)

.

For uv ∈ E(G) with dG(u) ̸= dG(v), at most one of dG(u), dG(v) is ∆ and the
other degree is at most ∆− 1. Therefore

(1) AG(G) +GA(G) ≥ 2m+
∑

uv∈E(G)
dG(u)̸=dG(v)

[√
dG(u)−

√
dG(v)

]4
2(2∆− 1)

√
∆(∆− 1)

.

By Cauchy-Schwarz inequality, we have

(2)

 ∑
uv∈E(G)

[√
dG(u)−

√
dG(v)

]22

≤ m
∑

uv∈E(G)

[√
dG(u)−

√
dG(v)

]4
.

Then ∑
uv∈E(G)

dG(u)̸=dG(v)

[√
dG(u)−

√
dG(v)

]4
=

∑
uv∈E(G)

[√
dG(u)−

√
dG(v)

]4

≥ 1

m

 ∑
uv∈E(G)

[
dG(u) + dG(v)− 2

√
dG(u)dG(v)

]2

=
1

m

[
M1(G)− 2R 1

2
(G)
]2

.

Using this result in (1), we get

(3) AG(G) +GA(G) ≥ 2m+
[M1(G)− 2R 1

2
(G)]2

2m(2∆− 1)
√
∆(∆− 1)

.

For a connected graph which is not regular, the equality in (3) holds if
and only if we have equalities in (1) and (2). The equality in (1) means that
every edge uv with dG(u) ̸= dG(v) must be incident with one vertex of degree
∆ and the other vertex of degree ∆ − 1. The equality in (2) means that we
have[√

dG(u)−
√
dG(v)

]2
=
[√

dG(u′)−
√

dG(v′)
]2

=
[√

∆−
√
∆− 1

]2
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for any two edges uv, u′v′ ∈ E(G). Thus, every edge of G is incident with
one vertex of degree ∆ and the other vertex of degree ∆ − 1. Clearly, G is
bipartite, otherwise G would contain an odd cycle and there would be two
adjacent vertices having the same degree. Hence G is (∆,∆ − 1)-semiregular
bipartite graph.

For connected graphs, the following result was obtained also by
Gutman [9].

Corollary 2.1. Let G be a graph with m edges. Then

AG(G) +GA(G) ≥ 2m.

The equality holds if and only if G is a regular graph.

Proof. For regular graphs G, we have AG(G)+GA(G) = 2m. For graphs
G which are not regular, by (1), we have AG(G) +GA(G) > 2m.

Let G be a graph with maximum degree ∆ and minimum degree δ. From
the proof of Theorem 4 given in [7], we know that for any two vertices u, v ∈
V (G),

(4)
dG(u) + dG(v)

2
√

dG(u)dG(v)
≤ ∆+ δ

2
√
∆δ

with equality if and only if {dG(u), dG(v)} = {δ,∆}. Note that

dG(u)− 2
√

dG(u)dG(v) + dG(v) =
[√

dG(u)−
√

dG(v)
]2

≥ 0,

thus dG(u) + dG(v) ≥ 2
√

dG(u)dG(v). Consequently,

(5)
dG(u) + dG(v)

2
√
dG(u)dG(v)

≥ 1.

The equality holds if and only if dG(u) = dG(v).

Inequality (4) is used in the proofs of Theorems 2.2, 2.5 and 2.8. Inequal-
ity (5) is used in the proofs of Theorems 2.2, 2.4 and 2.5.

Theorem 2.2. Let G be a graph with m edges, maximum degree ∆ and
minimum degree δ. Then

AG(G) +GA(G) ≤ ∆2 + δ2 + 6∆δ

2(∆ + δ)
√
∆δ

m.

The equality holds if and only if G is a regular graph or a (∆, δ)-semiregular
bipartite graph.
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Proof. By (4), for any two vertices u, v ∈ V (G),

dG(u) + dG(v)

2
√

dG(u)dG(v)
≤ ∆+ δ

2
√
∆δ

with equality if and only if {dG(u), dG(v)} = {δ,∆}. Similarly,

−
2
√

dG(u)dG(v)

dG(u) + dG(v)
≤ − 2

√
∆δ

∆+ δ
.

By (5),

dG(u) + dG(v)

2
√

dG(u)dG(v)
≥ 1 and 0 <

2
√

dG(u)dG(v)

dG(u) + dG(v)
≤ 1.

Then

0 ≤
√

dG(u) + dG(v)

2
√
dG(u)dG(v)

−

√
2
√

dG(u)dG(v)

dG(u) + dG(v)
≤

√
∆+ δ

2
√
∆δ

−

√
2
√
∆δ

∆+ δ

with equality if and only if {dG(u), dG(v)} = {δ,∆}. Consequently,
AG(G) +GA(G)

=
∑

uv∈E(G)

[
dG(u) + dG(v)

2
√
dG(u)dG(v)

+
2
√

dG(u)dG(v)

dG(u) + dG(v)

]

=
∑

uv∈E(G)

√ dG(u) + dG(v)

2
√
dG(u)dG(v)

−

√
2
√
dG(u)dG(v)

dG(u) + dG(v)

2

+ 2


≤

∑
uv∈E(G)

√∆+ δ

2
√
∆δ

−

√
2
√
∆δ

∆+ δ

2

+ 2


=

∑
uv∈E(G)

[
∆+ δ

2
√
∆δ

+
2
√
∆δ

∆+ δ

]

=
∆2 + δ2 + 6∆δ

2(∆ + δ)
√
∆δ

m.

The equality holds if and only if {dG(u), dG(v)} = {δ,∆} for every edge
uv ∈ E(G), which means that every edge of G is incident with one vertex of
degree ∆ and the other vertex of degree δ, so G is a regular graph (if ∆ = δ)
or (∆, δ)-semiregular bipartite graph (if ∆ > δ).

Let S be the set containing graphs G such that V (G) = V1 ∪V2 ∪ · · · ∪Vp

(p ≥ 2), where

V1 = {v ∈ V (G) : dG(v) = ∆},
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V2 = {v ∈ V (G) : dG(v) = r < ∆} ,

Vj =

{
v ∈ V (G) : dG(v) =

rj−1

∆j−2

}
, j = 3, 4, . . . , p,

and any edge of G is incident with one vertex in Vk−1 and one vertex in Vk,
where k ∈ {2, 3, . . . , p}. We can also write

Vj =

{
v ∈ V (G) : dG(v) =

rj−1

∆j−2

}
, j = 1, 2, . . . , p.

Clearly, rj−1

∆j−2 must be an integer for each j = 1, 2, . . . , p, and ∆ is the maximum
degree of G.

Example 2.3. Let G ∈ S for p = 4, ∆ = 8 and r = 4. Then r2

∆ = 2 and
r3

∆2 = 1. We have V (G) = V1 ∪ V2 ∪ V3 ∪ V4, where

V1 = {v ∈ V (G) : dG(v) = 8}, V2 = {v ∈ V (G) : dG(v) = 4},
V3 = {v ∈ V (G) : dG(v) = 2}, V4 = {v ∈ V (G) : dG(v) = 1}.

This graph is presented in Figure 1.

V1

V2

V3

V4

Figure 1 – Graph in S for p = 4, ∆ = 8 and r = 4.

We present the exact value of AG(G) ·GA(G) for any graph G ∈ S.

Lemma 2.1. Let G ∈ S. Then

AG(G) ·GA(G) = m2,

where m is the number of edges of G.

Proof. Any edge uv of G is incident with one vertex in Vk−1 and one
vertex in Vk, where k ∈ {2, 3, . . . , p}.

dG(u) + dG(v)

2
√

dG(u)dG(v)
=

rk−2

∆k−3 + rk−1

∆k−2

2
√

rk−2

∆k−3
rk−1

∆k−2

=
rk−2

∆k−2 (∆ + r)

2 rk−2

∆k−2

√
∆r

=
∆+ r

2
√
∆r

.
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Hence

AG(G) ·GA(G) =
∑

uv∈E(G)

dG(u) + dG(v)

2
√
dG(u)dG(v)

∑
uv∈E(G)

2
√

dG(u)dG(v)

dG(u) + dG(v)

= m

(
∆+ r

2
√
∆r

)
m

(
2
√
∆r

∆+ r

)
= m2.

We give a lower bound on AG(G) ·GA(G) for a graph G of given size.

Theorem 2.4. Let G be a graph with m edges. Then

AG(G) ·GA(G) ≥ m2.

If G is connected, then the equality holds if and only if G is a regular graph or
G ∈ S.

Proof. For the i-th edge uv ∈ E(G), let dG(u)+dG(v)

2
√

dG(u)dG(v)
= xi, where i = 1,

2, . . . ,m, since |E(G)| = m. By (5), we know that the rational numbers xi ≥ 1.
We can assume that x1 ≥ x2 ≥ · · · ≥ xm ≥ 1. Thus, we have

AG(G) ·GA(G) =
∑

uv∈E(G)

dG(u) + dG(v)

2
√
dG(u)dG(v)

∑
uv∈E(G)

2
√

dG(u)dG(v)

dG(u) + dG(v)

=

m∑
k=1

xk

m∑
k=1

1

xk

= m+
∑

1≤i<j≤m

(
xi
xj

+
xj
xi

)

= m+
∑

1≤i<j≤m

[(√
xi
xj

−
√

xj
xi

)2

+ 2

]

= m2 +
∑

1≤i<j≤m

(√
xi
xj

−
√

xj
xi

)2

(6)

≥ m2.

It remains to find the extremal graphs. If AG(G) · GA(G) = m2, then
x1 = x2 = · · · = xm. We consider two cases.

Case 1: x1 = x2 = · · · = xm = 1.
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For any edge uv ∈ E(G), we have dG(u)+dG(v)

2
√

dG(u)dG(v)
= 1, which implies that[√

dG(u)−
√

dG(v)
]2

= 0. Thus dG(u) = dG(v). Since G is connected, all the

vertices of G have the same degree, so G is a regular graph. Clearly, for a regu-
lar graph G, we have AG(G) = GA(G) = m and hence AG(G) ·GA(G) = m2.

Case 2: x1 = x2 = · · · = xm > 1.

Note that for any two edges v1v2, v1v3 ∈ E(G), we have

dG(v1) + dG(v2)

2
√

dG(v1)dG(v2)
=

dG(v1) + dG(v3)

2
√

dG(v1)dG(v3)
,

which implies that

(7)
[
dG(v1)−

√
dG(v2)dG(v3)

] [√
dG(v2)−

√
dG(v3)

]
= 0.

Let w be any vertex of maximum degree in G. So dG(w) = ∆. Let u and u′ be
any two vertices adjacent to w in G. So wu,wu′ ∈ E(G). By (7), we obtain[

∆−
√

dG(u)dG(u′)
] [√

dG(u)−
√

dG(u′)
]
= 0.

Since xi > 1 (1 ≤ i ≤ m), we have dG(u) < ∆ and dG(u
′) < ∆. (If, say,

dG(u) = ∆, then dG(w)+dG(u)

2
√

dG(w)dG(u)
= 1, a contradiction). Hence dG(u) =

dG(u
′) < ∆ for any two neighbors u, u′ of w in G. Let dG(u) = r for any vertex

u adjacent to w. Let z ( ̸= w) be a vertex adjacent to u. So uw, uz ∈ E(G).
By (7), we have [

r −
√
∆dG(z)

] [√
∆−

√
dG(z)

]
= 0.

We obtain

dG(z) = ∆ or dG(z) =
r2

∆
.

If G contains a vertex z of degree r2

∆ , then z has at least one neighbor
of degree r and one can easily show that any other vertex adjacent to z has
degree r or r3

∆2 . In general, if G contains a vertex z′ of degree rj−1

∆j−2 , then z′ has

at least one neighbor of degree rj−2

∆j−3 and any other vertex adjacent to z′ has

degree rj−2

∆j−3 or rj

∆j−1 , where j ≥ 3 is an integer. Since G is connected, it follows
that G ∈ S. By Lemma 2.1, for G ∈ S, we have AG(G) ·GA(G) = m2.

We obtain an upper bound on AG(G) ·GA(G).

Theorem 2.5. Let G be a graph with m edges, maximum degree ∆ and
minimum degree δ. Then
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AG(G) ·GA(G) ≤ m2 +
m1(m1 − 1)

2

[
(∆ + δ)

√
∆(∆− 1)− (2∆− 1)

√
∆δ
]2

(2∆− 1)(∆ + δ)∆
√
(∆− 1)δ

+

(√
∆−

√
δ
)4

√
∆δ

(m−m1)m1,

where m1 is the number of edges uv ∈ E(G) with dG(u) ̸= dG(v). The equality
holds if G is a regular graph or a (∆,∆− 1)-semiregular bipartite graph.

Proof. For a regular graph G, we have m1 = 0 and AG(G) ·GA(G) = m2.
So the equality holds in Theorem 2.5.

Let us consider graphs G which are not regular. Since m1 is the number
of edges uv ∈ E(G) with dG(u) ̸= dG(v), we have 1 ≤ m1 ≤ m. For the i-th

edge uv ∈ E(G), let dG(u)+dG(v)

2
√

dG(u)dG(v)
= xi, where i = 1, 2, . . . ,m. By (5), we can

assume that x1 ≥ x2 ≥ · · · ≥ xm1 > 1 = xm1+1 = xm1+2 = · · · = xm. From
(6), we obtain

AG(G) ·GA(G)

= m2 +
∑

1≤i<j≤m1

(√
xi
xj

−
√

xj
xi

)2

+
∑

m1+1≤i<j≤m

(√
xi
xj

−
√

xj
xi

)2

+
∑

1≤i≤m1
m1+1≤j≤m

(√
xi
xj

−
√

xj
xi

)2

= m2 +
∑

1≤i<j≤m1

(√
xi
xj

−
√

xj
xi

)2

+ (m−m1)

m1∑
i=1

(
√
xi −

1
√
xi

)2

,(8)

since ∑
m1+1≤i<j≤m

(√
xi
xj

−
√

xj
xi

)2

= 0

and ∑
1≤i≤m1

m1+1≤j≤m

(√
xi
xj

−
√

xj
xi

)2

= (m−m1)

m1∑
i=1

(
√
xi −

1
√
xi

)2

.

For uv ∈ E(G) with dG(u) > dG(v), we have dG(u) − dG(v) ≥ 1 and
dG(u)dG(v) ≤ ∆(∆− 1) as ∆ is the maximum degree in G. Thus

1

∆(∆− 1)
≤ [dG(u)− dG(v)]

2

dG(u)dG(v)
.

Then
1

∆(∆− 1)
+ 4 ≤ dG(u)

dG(v)
+

dG(v)

dG(u)
+ 2,
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which gives

(2∆− 1)2

∆(∆− 1)
≤

(√
dG(u)

dG(v)
+

√
dG(v)

dG(u)

)2

,

and consequently,

2∆− 1√
∆(∆− 1)

≤

√
dG(u)

dG(v)
+

√
dG(v)

dG(u)
=

dG(u) + dG(v)√
dG(u)dG(v)

.

Thus, for 1 ≤ i ≤ m1,

2∆− 1

2
√

∆(∆− 1)
≤ xi ≤

∆+ δ

2
√
∆δ

by (4). Then

(9)

(
√
xi −

1
√
xi

)2

≤

√∆+ δ

2
√
∆δ

−

√
2
√
∆δ

∆+ δ

2

=
(
√
∆−

√
δ)4

2(∆ + δ)
√
∆δ

.

For xi ≥ xj , where 1 ≤ i < j ≤ m1, we obtain

xi
xj

≤
(∆ + δ)

√
∆(∆− 1)

(2∆− 1)
√
∆δ

,

which gives√
xi
xj

−
√

xj
xi

≤

√
(∆ + δ)

√
∆(∆− 1)

(2∆− 1)
√
∆δ

−

√
(2∆− 1)

√
∆δ

(∆ + δ)
√

∆(∆− 1)

and hence

(10)

(√
xi
xj

−
√

xj
xi

)2

≤

[
(∆ + δ)

√
∆(∆− 1)− (2∆− 1)

√
∆δ
]2

(2∆− 1)(∆ + δ)∆
√
(∆− 1)δ

.

Using (10) and (9) in (8), we obtain

AG(G) ·GA(G) ≤ m2 +
m1(m1 − 1)

2

[
(∆ + δ)

√
∆(∆− 1)− (2∆− 1)

√
∆δ
]2

(2∆− 1)(∆ + δ)∆
√
(∆− 1)δ

+

(√
∆−

√
δ
)4

√
∆δ

(m−m1)m1,

For a (∆,∆ − 1)-semiregular bipartite graph G, we have m1 = m and

δ = ∆− 1. We have AG(G) = 2∆−1

2
√

∆(∆−1)
m and GA(G) =

2
√

∆(∆−1)

2∆−1 m, hence

AG(G) ·GA(G) = m2. So the equality holds in Theorem 2.5.
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Lemma 2.2 is used in the proof of Theorem 2.7.

Lemma 2.2. There is no connected graph G with an edge v1v2 ∈ E(G)
such that dG(v2) = dG(v1) + 1 and dG(u) = dG(v) for all the other edges
uv ∈ E(G).

Proof. Assume to the contrary that there is a connected graph G with an
edge v1v2 ∈ E(G) such that dG(v2) = dG(v1)+1 and dG(u) = dG(v) for all the
other edges uv ∈ E(G). Then the degree of any vertex in G is ∆ and ∆ − 1.
So dG(v1) = ∆− 1 and dG(v2) = ∆.

Note that v1v2 is a cut edge (otherwise if v1v2 is not a cut edge, then there
exists a path v1u1u2 . . . utv2 for t ≥ 1 in G such that ∆−1 = dG(v1) = dG(u1) =
· · · = dG(ut) = dG(v2) = ∆, a contradiction). Suppose that G−v1v2 = G1∪G2,
where v1 ∈ V (G1) and v2 ∈ V (G2). Then dG(v) = ∆− 1 for every v ∈ V (G1)
and dG(v) = ∆ for every v ∈ V (G2). Let |E(G1)| = m1 and |E(G2)| = m2.
Then∑
v∈V (G1)

dG1(v) = (∆− 2) + (∆− 1)(|V (G1)| − 1) = (∆− 1)|V (G1)| − 1 = 2m1

and ∑
v∈V (G2)

dG2(v) = (∆− 1) + ∆(|V (G2)| − 1) = ∆|V (G2)| − 1 = 2m2,

which means that both, (∆− 1)|V (G1)| and ∆|V (G2)| are odd. However, that
is not possible, since ∆− 1 or ∆ is even. We have a contradiction.

Remark 2.6. Having Lemma 2.2, it is natural to ask whether

• there is any connected graph G with an edge v1v2 ∈ E(G) such that
dG(v2) = dG(v1) + 2 and dG(u) = dG(v) for all the other edges uv ∈ E(G);

• there is any connected graph G with two edges v1v2, v
′
1v

′
2 ∈ E(G) (pos-

sibly sharing a vertex) such that dG(v2) = dG(v1)+1 and dG(v
′
2) = dG(v

′
1)+1,

and dG(u) = dG(v) for all the other edges uv ∈ E(G).

The answers are given in Figures 2, 3 and 4.

Figure 2 – Graph H1.

In Figure 2, we present the graph H1 with an edge v1v2 ∈ E(G) such that
dG(v2) = dG(v1) + 2 and dG(u) = dG(v) for all the other edges uv ∈ E(G).
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Figure 3 – Graph H2.

In Figure 3, we present the graph H2 with two edges v1v2, v1v
′
2 ∈ E(G)

such that {dG(v1), dG(v2)} = {dG(v1), dG(v′2)} = {∆−1,∆} and dG(u) = dG(v)
for all the other edges uv ∈ E(G).

Figure 4 – Graph H3.

In Figure 4, we present the graph H3 with two edges v1v2, v
′
1v

′
2 ∈ E(G)

such that {dG(v1), dG(v2)} = {∆−2,∆−1} and {dG(v′1), dG(v′2)} = {∆−1,∆},
and dG(u) = dG(v) for all the other edges uv ∈ E(G).

Bounds on AG(G)−GA(G) are given in Theorems 2.7 and 2.8.

Theorem 2.7. Let G be a connected graph with maximum degree ∆ and
minimum degree δ.

If ∆ = δ + 1, then

AG(G)−GA(G) ≥ 1

(2∆− 1)
√

∆(∆− 1)
.

The equality holds if and only if G contains exactly two edges uv ∈ E(G) such
that dG(u) ̸= dG(v).

If ∆ ̸= δ + 1, then

AG(G)−GA(G) ≥ ∆− δ

2(2∆− 1)
√
∆(∆− 1)

.

The equality holds if and only if G is a regular graph.

Proof. We distinguish two cases.

Case 1: ∆ = δ + 1.

For any edge uv ∈ E(G) with dG(u) = dG(v), we have

dG(u) + dG(v)

2
√

dG(u)dG(v)
= 1 =

2
√

dG(u)dG(v)

dG(u) + dG(v)
.



30 K. C. Das, T. Vetŕık, and M. Yong-Cheol 14

For any edge uv ∈ E(G) with dG(u) ̸= dG(v), we have {dG(u), dG(v)} =
{∆− 1,∆}, so

dG(u) + dG(v)

2
√
dG(u)dG(v)

=
2∆− 1

2
√
∆(∆− 1)

and
2
√

dG(u)dG(v)

dG(u) + dG(v)
=

2
√

∆(∆− 1)

2∆− 1
.

By Lemma 2.2, there exist at least two edges uv ∈ E(G) such that dG(u) ̸=
dG(v), thus

AG(G)−GA(G) =
∑

uv∈E(G)

[
dG(u) + dG(v)

2
√

dG(u)dG(v)
−

2
√
dG(u)dG(v)

dG(u) + dG(v)

]

=
∑

uv∈E(G)
dG(vi )̸=dG(vj)

[
dG(u) + dG(v)

2
√
dG(u)dG(v)

−
2
√

dG(u)dG(v)

dG(u) + dG(v)

]

=
∑

uv∈E(G)
dG(u)̸=dG(v)

[
2∆− 1

2
√
∆(∆− 1)

−
2
√

∆(∆− 1)

2∆− 1

]

≥ 2

[
2∆− 1

2
√
∆(∆− 1)

−
2
√

∆(∆− 1)

2∆− 1

]
=

1

(2∆− 1)
√
∆(∆− 1)

.

The equality holds if and only if G contains exactly two edges uv ∈ E(G) such
that dG(u) ̸= dG(v) (which means that {dG(u), dG(v)} = {∆− 1,∆}).

Case 2: ∆ ̸= δ + 1.

For a regular graph G, we have δ = dG(u) + dG(v) = ∆ and

dG(u) + dG(v)

2
√

dG(u)dG(v)
= 1 =

2
√

dG(u)dG(v)

dG(u) + dG(v)

for any edge uv ∈ E(G). Thus AG(G) = m, GA(G) = m and

AG(G)−GA(G) = 0 =
∆− δ

2(2∆− 1)
√
∆(∆− 1)

.

Hence, the equality holds in Theorem 2.7.

Now we consider graphs G which are not regular. So ∆ ≥ δ + 2. There
exists an edge uv ∈ E(G) such that dG(u) = δ ≤ ∆− 2 and dG(v) ≤ ∆. Then

[dG(u) + dG(v)]
√
dG(u)dG(v) ≤ 2(∆− 1)

√
∆(∆− 2) < (2∆− 1)

√
∆(∆− 1).
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For all the other edges uv ∈ E(G) such that dG(u) ̸= dG(v), we have [dG(u) +
dG(v)]

√
dG(u)dG(v) ≤ (2∆− 1)

√
∆(∆− 1). Thus

AG(G)−GA(G) =
∑

uv∈E(G)
dG(u)̸=dG(v)

[
dG(u) + dG(v)

2
√
dG(u)dG(v)

−
2
√

dG(u)dG(v)

dG(u) + dG(v)

]

=
∑

uv∈E(G)
dG(u)̸=dG(v)

[dG(u)− dG(v)]
2

2(dG(u) + dG(v))
√
dG(u)dG(v)

>
∑

uv∈E(G)
dG(u)̸=dG(v)

[dG(u)− dG(v)]
2

2(2∆− 1)
√

∆(∆− 1)
.(11)

SinceG is connected, G contains a path v1v2 . . . vp, where dG(v1) = ∆, dG(vp) =
δ, p ≥ 2 and δ < dG(vi) < ∆ for 2 ≤ i ≤ p− 1. Let r be the number of edges
vivi+1 such that dG(vi) ̸= dG(vi+1), where 1 ≤ i ≤ p−1. We denote the degrees
of the vertices v1, v2, . . . , vp by

∆ = d1, d2, . . . , d2︸ ︷︷ ︸
t2

, d3, . . . , d3︸ ︷︷ ︸
t3

, . . . , dr, . . . , dr︸ ︷︷ ︸
tr

, dr+1 = δ,

respectively, where d1 ̸= d2 ̸= d3 ̸= . . . ̸= dr ̸= dr+1. Note that for any integer
n, we have n2 ≥ |n|. Then∑

uv∈E(G)
dG(u)̸=dG(v)

[dG(u)− dG(v)]
2 ≥

p−1∑
i=1

[dG(vi)− dG(vi+1)]
2

≥
p−1∑
i=1

|dG(vi)− dG(vi+1)|

≥ (d1 − d2) + (d2 − d3) + · · ·+ (dr − dr+1)

= ∆− δ.

Consequently, by (11), for graphs which are not regular, we obtain

AG(G)−GA(G) >
∆− δ

2(2∆− 1)
√
∆(∆− 1)

.

Theorem 2.8. Let G be a graph with m edges, maximum degree ∆ and
minimum degree δ. Then

AG(G)−GA(G) ≤ (∆− δ)2

2(∆ + δ)
√
∆δ

m.
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The equality holds if and only if G is a regular graph or a (∆, δ)-semiregular
bipartite graph.

Proof. By (4), for any two vertices u, v ∈ V (G),

dG(u) + dG(v)

2
√

dG(u)dG(v)
≤ ∆+ δ

2
√
∆δ

with equality if and only if {dG(u), dG(v)} = {δ,∆}. Similarly,

−
2
√

dG(u)dG(v)

dG(u) + dG(v)
≤ − 2

√
∆δ

∆+ δ
.

Then

AG(G)−GA(G) =
∑

uv∈E(G)

[
dG(u) + dG(v)

2
√
dG(u)dG(v)

−
2
√

dG(u)dG(v)

dG(u) + dG(v)

]

≤
∑

vivj∈E(G)

[
∆+ δ

2
√
∆δ

− 2
√
∆δ

∆+ δ

]

=
(∆− δ)2

2(∆ + δ)
√
∆δ

m.

The equality holds if and only if {dG(u), dG(v)} = {δ,∆} for every edge uv ∈
E(G), which means that every edge of G is incident with one vertex of degree
∆ and the other vertex of degree δ, so G is a regular graph (if ∆ = δ) or
(∆, δ)-semiregular bipartite graph (if ∆ > δ).

3. CONCLUSION

In Section 2, we presented relations between the AG index and GA index
by studying AG(G) + GA(G), AG(G) · GA(G) and AG(G) − GA(G). Let us
apply our results to polycyclic aromatic systems and in more general, to any
molecular graphs.

The number of edges of a graph G is denoted by m, minimum degree by
δ and maximum degree by ∆. In Corollary 2.1, we showed that

AG(G) +GA(G) ≥ 2m.

For connected graphs, this result was obtained also in [9]. In Theorem 2.2, we
obtained the bound

AG(G) +GA(G) ≤ ∆2 + δ2 + 6∆δ

2(∆ + δ)
√
∆δ

m.
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We use δ = 1 and ∆ = 4 to obtain the upper bound

AG(G) +GA(G) ≤ 2.05m

for molecular graphs. For polycyclic aromatic systems, we have δ = 2 and

∆ = 3, so

AG(G) +GA(G) ≤ 2.00042m.

Thus AG(G) + GA(G) is close to 2m for molecular graphs and polycyclic

aromatic systems (such as benzenoids, phenylenes, fluoranthenes).
Let us investigate AG(G) ·GA(G). Gutman [9] showed that

AG(G) ·GA(G) ≤ 1

8

(
√
δ +

√
∆)4

(δ +∆)
√
δ∆)

m2,

with equality if and only if G is regular. Using δ = 1 and ∆ = 4, we obtain

AG(G) ·GA(G) ≤ 1.0125m2

for molecular graphs. Using δ = 2 and ∆ = 3, we have

AG(G) ·GA(G) ≤ 1.000104m2

for polycyclic aromatic systems. Note that in Theorem 2.5, we presented an

upper bound on AG(G) ·GA(G), which is sharp also for (∆,∆−1)-semiregular
bipartite graphs G.

In Theorem 2.4, we obtained the bound

AG(G) ·GA(G) ≥ m2

and we presented all the connected graphs satisfying the equality

AG(G) · GA(G) = m2. From the previous inequalities, it follows that even
for molecular graphs and polycyclic aromatic systems, AG(G) ·GA(G) is very
close to m2.

Finally, we consider AG(G) −GA(G). In Theorem 2.8, we obtained the
bound

AG(G)−GA(G) ≤ (∆− δ)2

2(∆ + δ)
√
∆δ

m.

Using δ = 1 and ∆ = 4, we obtain

AG(G)−GA(G) ≤ 0.45m

for molecular graphs. Using δ = 2 and ∆ = 3, we have

AG(G)−GA(G) ≤ 0.041m
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for polycyclic aromatic systems. In Section 1, we presented the bound

AG(G)−GA(G) ≥ 0

given in [5] and [16]. Hence, AG(G) − GA(G) is close to 0 for polycyclic
aromatic systems. Let us mention that we improved the bound AG(G) −
GA(G) ≥ 0 for connected graphs with given δ and ∆ by presenting sharp
lower bounds on AG(G)−GA(G) in Theorem 2.7.
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geometric index. Symmetry 13 (2021), 4, 689.

[14] V.S. Shegehalli and R. Kanabur, Arithmetic-geometric indices of amalgamation of two
graphs. Int. J. Math. Arch. 6 (2015), 155–158.

[15] M. Sohrabi-Haghighat and M. Rostami, The minimum value of geometric-arithmetic
index of graphs with minimum degree 2. J. Comb. Optim. 34 (2017), 1, 218–232.



19 Arithmetic-geometric index and geometric-arithmetic index 35
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[17] D. Vukičević and B. Furtula, Topological index based on the ratios of geometrical and
arithmetical means of end-vertex degrees of edges. J. Math. Chem. 46 (2009), 4, 1369–
1376.

[18] S. Wang, W. Gao, M.K. Jamil, M.R. Farahani, and J.-B. Liu, Bounds of Zagreb indices
and hyper Zagreb indices. Math. Rep. (Bucur.) 21(71) (2019), 1, 93–102.
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