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We are surveying recent results that describe second order differential operators
having only algebraic solutions in the sense of Galois theory. We call such op-
erators algebraic. For hypergeometric operators, this problem was studied by
Schwarz and Klein who also gave results that describe all second order linear
differential operators with a full set of algebraic solutions. Starting from their
work, we see algebraic operators as pull-backs of algebraic hypergeometric oper-
ators via Belyi functions. We are surveying some of the main results describing
second order operators with a full set of algebraic solutions, especially those ob-
tained by using the properties of the pull-back functions. Using the Grothendieck
correspondence, these properties transfer to properties for their corresponding
dessins d’enfants.
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1. INTRODUCTION

Consider an ordinary linear differential operator of order n:

(1) L =
dn

d zn
+ a1(z)

d

d z
+ · · ·+ an(z),

with the coefficients a1, . . . , an : P1(C) → P1(C) being rational functions
over C. This operator corresponds to a homogeneous linear differential equa-
tion on P1

C \ {∞}. If we change the variable z 7→ 1
z , we can see what happens

around the point z = ∞ and we can look at this equation on the whole P1
C. It

behaves “regularly” around the points of P1
C \S, where S contains the finite set

of the poles of the coefficients a1, . . . , an. It also includes ∞ if, after changing
the variable as mentioned, 0 becomes a pole for at least one of the coefficient
functions of the induced equation. More precisely, we have:
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38 R. Liţcanu and I.-C. Pleşca 2

Definition 1.1. Consider equation (2). A point α ∈ C is called:

• regular if the limit lim
z→α

ai(z) exists and is finite for all the coefficients

ai, where i ∈ {1, 2, . . . , n} (in other words, all the coefficient functions ai
are holomorphic at α);

• regular singular if the limit lim
z→α

(z − α)iai(z) exists and is finite for all

the coefficients ai, where i ∈ {1, 2, . . . , n} (the order of α as a possible
pole of ai is bounded by i).

The analogous conditions for the point z = ∞ are obtained by making the
substitution z = 1

x and studying if x = 0 is a regular or a regular singular
point of the new equation. A point in P1(C) is called a singular point for (2)
if it is not a regular point.

Let us notice that this is the approach that Lazarus Fuchs used for dealing
with regular singular points. He proved that this condition is equivalent to the
more classical one involving growth estimates for the solutions, emphasizing
by this approach that the nature of this notion is algebraic. Moreover, if ζ is
a uniformizing parameter at the point α, we denote D = ζ d

d ζ and we rewrite

L = Dn + b1(ζ)D
n−1 + . . .+ bn(ζ)

then z = α is a regular singular point if and only if all the functions bi(ζ) are
holomorphic at ζ = 0.

Fuchs studied the equations that now are called Fuchsian equations:

Definition 1.2. An ordinary linear differential equation is called Fuch-
sian if any point in P1(C) is a regular or a regular singular point for the
equation.

For a detailed history of Fuchsian operators, see [18].

We are interested in the situation when the ordinary linear differential
equation:

(2) L(y(z)) = 0

has a full set of solutions in an algebraic extension of C(x). In this case, we
call the operator and the corresponding equation algebraic. Every algebraic
operator is Fuchsian, hence, when looking for conditions for an operator to
be algebraic, we will always suppose that any singularity of the operator is a
regular singular point.
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Questions related to the nature of the solutions have been studied since
the 1850’s. Riemann studied algebraic functions [38] and the hypergeometric
operator [37] given by:

(3) D =
d2

d z2
+

(
γ

z
+

δ

z − 1

)
d

d z
+

αβ

z(z − 1)
,

where α, β, γ, δ ∈ C such that α+ β + 1 = γ + δ.

Kummer listed substitutions for hypergeometric functions and compiled
a list known as Kummer’s 24 solutions to the hypergeometric equation [28].
Following the work of Weierstrass and Cauchy regarding the existence of so-
lutions of differential equations, Bouquet and Briot studied singular points of
differential equations [8] and [9].

From Cauchy’s theory of differential equations, it follows that given α
a regular point of an n-th order differential equation there exists a basis of
solutions that locally look like:

fi(z) = (z − α)i · gi, gi ∈ C[[z − α]], gi(α) ̸= 0

for all i ∈ {0, 1, . . . , n− 1}.
In the attempt to recover similar results for regular singular points, the

indicial equation was introduced. For further details, see [6], [36] and [43].

Definition 1.3. Let α ∈ P1(C) be a regular or a regular singular
point of (2). Let

αi :=

 lim
z→α

(z − α)iai(z), if α ∈ C

lim
z→∞

ziai(z), if α = ∞,
for all i = {1, 2, . . . , n}.

The indicial equation is:

(4) X(X−1) . . . (X−n+1)+α1X(X−1) . . . (X−n+2)+· · ·+αn−1X+αn = 0

if α ∈ C;
(5)
X(X−1) . . . (X−n+1)−α1X . . . (X−n+2)+· · ·+(−1)n−1αn−1X+(−1)nαn = 0

if α = ∞.

The solutions of this equation are called local exponents.

Fuchs proposed a theorem to replicate Cauchy’s result [6]:

Theorem 1.1 (Fuchs). Let α ∈ P1(C) be a regular singularity of (2)
and t be a local parameter at α. We distinguish two cases regarding the local
exponents:
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1. Assume that ρ is a local exponent at α such that none of the numbers
ρ + 1, ρ + 2, . . . is a local exponent. In this case, there exists g(t) =∑

k≥0 gkt
k an analytic function around t = 0, with g0 ̸= 0, such that

tρ · g(t) is a solution.

2. Let ρ1, . . . , ρn be the set of local exponents ordered such that the local
exponents that differ by an integer occur in a decreasing order. Then there
exists a nilpotent matrix N = (Nij)1≤i,j≤n ∈ nil(Mn×n(C)), g1, g2, . . . , gn
analytic functions around t = 0 with gk(0) ̸= 0 (k ∈ {1, . . . , n}) such that

(tρ1g1, t
ρ2g2, . . . , t

ρngn)t
N

is a basis of solutions. Moreover, if Nij ̸= 0 it follows that i ̸= j and
ρi − ρj ∈ N.

A Fuchsian differential operator of order n, having s singular points, is
fully determined by the singular points, the ns exponents and a set of accessory
parameters, whose cardinality aL can be determined ([22], [15]):

(6) aL =
(n− 1)[n(s− 2)− 2]

2
.

The monodromy group of a differential operator of order n is the image
of the representation π1(P1 \S) → GL(n,C) given by the analytic continuation
of n solutions in a basis along the closed paths that represent the elements of
π1(P1 \ S). For a second order operator, the projective monodromy group is
defined in a similar way, using the continuation of the ratio of solutions in a
basis. These groups are well-defined up to conjugation.

If X is a higher genus Riemann surface and U ⊂ X is an open subset, a
differential equation on U is a pair (M,∇), where M is a locally free coherent
sheaf on U and ∇ is a connection

∇ : M −→ M ⊗ Ω1
U/C.

The set S of singular points corresponds to M \U and the solutions of such an
equation are the sections of the kernel of ∇. The regular singular points are
defined for such a general equation in an analogous manner to the correspond-
ing notion for an equation on P1. One can use growth estimates for the local
holomorphic solutions, or Fuchs’ algebraic approach, as explained by Deligne
[13]: the point α is regular singular if there exists a locally free coherent al-
gebraic sheaf M on X, extending M , on which the derivation t d

dt acts stably
through ∇ (here t is a uniformizing parameter at α) (see also [26]).

Before outlining the content of the paper, let us also mention the con-
nection with Hilbert’s 21st problem and with p-adic statements. Hilbert’s 21st
problem asks whether there always exists a Fuchsian linear differential equation
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with prescribed regular singular points and monodromy group. The reader can
see Deligne’s fundamental paper [13] and Katz’s expository article [26]. One
of the open questions raised by Katz concerns the algebraic description of the
algebraic linear differential operators.

On the other hand, progress in studying algebraic differential operators
has been stimulated by the famous “p-curvature conjecture” of Grothendieck.
Suppose that, for the operator L on P1

C, the coefficients belong to K(x), where
K is a number field. One can reduce these coefficients modulo almost all primes
p of the ring of integers ofK and ask about the properties of the newly obtained
operators (eventually after completing the field of constants) and about the p-
adic behaviour of the solutions. For example, if L is algebraic, then for almost
all primes p the reduced operator has a full set of solutions or, equivalently,
the invariant called “p-curvature” vanishes. Grothendieck’s conjecture states
that the converse is also true. Katz proved the conjecture for Picard-Fuchs
operators in [25]. Other cases were proved by Farb and Kisin [16]. See also
[24], [21] for properties of the p-curvature and relations with properties of the
operator L, and [14], [15] for details on p-adic operators.

The next section of the paper concerns a brief survey of some general
results describing second order differential operators with a full set of algebraic
solutions. It includes some general properties of such operators, starting with
the classical work of Klein and Schwarz, and the connection with the Belyi
functions and the associated dessins d’enfants. The following part is devoted
to more specific and explicit results for Lamé operators, obtained using these
arithmetic and combinatorial tools. They include some finiteness properties,
answers to questions raised by Baldassarri and by Dwork and some explicit
results concerning these operators with four singular points. We emphasize
the fact that, even if we consider the context of differential operators on the
Riemann sphere, most of the notions and invariants involved (such as the
monodromy group, local exponents etc.) can be easily defined in the framework
of general Riemann surfaces, in sense explained hereinbefore. Many of the
results presented hereafter are valid for linear differential operators defined on
arbitrary Riemann surfaces. We will make this explicit for some finiteness
results in the last section.

In a subsequent paper [35], we will provide a new illustration of this
strategy, consisting in a detailed description of Heun operators with tetrahedral
projective monodromy group. The same ideas can be similarly employed for
studying Heun operators with any fixed, finite monodromy group.
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2. SECOND ORDER DIFFERENTIAL OPERATORS WITH
ALGEBRAIC SOLUTIONS

We will consider, from this point forward, only second order differential
operators. Hence the monodromy group will be a subgroup of GL(2,C) and
the projective monodromy group a subgroup of PGL(1,C). For each singular
point, the indicial equation is quadratic and provides two local exponents ρ1
and ρ2. The assertions of Theorem 1.1 become:

• If the difference of the exponents ρ1 − ρ2 /∈ Z, then there is a basis of
solutions of the form

g1(t) = tρ1 ·
∑
i≥0

ait
i, a0 ̸= 0

g2(t) = tρ2 ·
∑
i≥0

bit
i, b0 ̸= 0.

• If ρ1 − ρ2 ∈ N, then there exists a nilpotent matrix

N = (Nij)1≤i,j≤2 ∈ nil(M2×2(C)),

and the functions g1, g2 analytic around t = 0 with gk(0) ̸= 0 (k ∈ {1, 2})
such that

(tρ1g1, t
ρ2g2)t

N

is a basis of solutions.

As we have already mentioned, we are interested in operators having a
full set of solutions included in an algebraic extension of C(z).

This property is closely related to the finiteness of the monodromy
group [23]. More precisely, the following statements are equivalent (see,
for example, [43]):

• The equation is algebraic.

• The monodromy group of the equation is finite.

• The projective monodromy group of the equation is finite and its Wron-
skian is algebraic.

It is easily seen that a full set of algebraic solutions can occur only if the
local exponents at any point are rational (for example, one can argue as in [36],
observing that the analytic continuation of a solution along the closed paths
leads to an infinite number of determinations if the corresponding exponent is
irrational, and hence contradicting the equivalence hereinbefore).
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In what concerns the algebraicity of the Wronskian, more details can be
found in [4]. In what follows, we will focus on the finiteness of the projective
monodromy group. Properly speaking, this characterizes the algebraicity of
the ratio of the solutions in a basis. It is then natural to define the following
equivalence relation:

Definition 2.1 ([4]). Two differential operators L1 and L2 are said to
be projectively equivalent if there exists θ a radical function (a product
of powers of rational functions, rational exponents being allowed) such that
L2 = θ ◦ L1 ◦ θ−1.

Proposition 2.1 ([4]). Let L1 and L2 be projectively equivalent dif-
ferential operators. The following are true:

1. If L1 is Fuchsian, then L2 is Fuchsian.

2. L1 and L2 have a common ratio of independent solutions at a point of
the Riemann sphere.

3. L1 and L2 have isomorphic projective monodromy group.

4. Let ρ1 and ρ2 be the local exponents of L1 in α ∈ P1(C). It follows that
ρ2−ρ1 is the difference of local exponents of both L1 and L2 at α ∈ P1(C).

Then the second order linear differential operators can be reduced to their
normalized form (see [17], [4], [10], [43]):

Proposition 2.2. Let L = d2

d z2
+ a1(z)

d
d z + a2(z) be a second order

differential operator. Then it is projectively equivalent to one in normalized
form:

d2

dz2
+B(z), where B : P1(C) → P1(C).

An essential tool in our discussion is the pull-back of a differential operator
via a rational function. In fact, one can find in the recent literature two types
of pull-back relations:

Definition 2.2 ([43]). Let L := dn

d zn +a1(z)
dn−1

d zn−1 + · · ·+an−1(z)
d
d z +an(z)

be a Fuchsian operator with finite monodromy. If z is replaced by a non-
constant rational function f(x) ∈ C(x), then L becomes:

(7) Lf :=

(
d

f ′(x) dx

)n

+ · · ·+ an−1(f)
d

f ′(x) dx
+ an(f).

Lf is an operator of order n (the derivation being with respect to x), called the
proper rational pull-back of L by z = f(x). If L′ is a differential operator
with respect to x that is projectively equivalent with Lf , L

′ is called a rational
pull-back of L by z = f(x).
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Proposition 2.3 ([43]). Let Lf be a proper rational pull-back of L by f .
If L is Fuchsian, then Lf is Fuchsian.

Proposition 2.4 ([4]). Let L′ be a rational pull-back of the Fuchsian
operator L by z = f(x) ∈ C(x). Let ρL1 (α) and ρL2 (α) be two local exponents of
L in α = f(α̃) ∈ P1(C). Let eα̃ be the ramification index of f in α̃. If ρL

′
1 (α̃)

and ρL
′

2 (α̃) are local exponents of L′ in α̃, then:

(8) ρL
′

1 (α̃)− ρL
′

2 (α̃) = eα̃ ·
(
ρL1 (α)− ρL2 (α)

)
.

We can define the global invariant

(9) ∆L =
∑

α∈P1(C)

(|ρ1(α)− ρ2(α)| − 1),

where ρ1(α), ρ2(α) are the local exponents of L in α. Then, we have:

Proposition 2.5 ([4]). Consider L,L′ two differential operators such
that L′ is the pull-back of L by the function f . Then

(10) ∆L′ + 2 = deg f · (∆L + 2).

One can extend the definition of the pull-back for general operators de-
fined over arbitrary (open subsets of) Riemann surfaces (as described in the
previous section), and Proposition 2.4 holds. If L and L′ are differential op-
erators on the Riemann surfaces X and X ′ respectively and f : X ′ → X is a
morphism such that L′ is the pull-back of L through f , then the formula (10)
becomes ([4])

(11) ∆L′ + 2(1− g′) = deg f · [∆L + 2(1− g)]

where g and g′ are the genus of X and X ′, respectively.
Formulas (10) and (11) easily follow from Proposition 2.4 and the Hurwitz

genus formula.
Let us return to the algebraicity problem. The first case to look at is

that of operators with three singular points (we can suppose that they
are 0, 1 and ∞) that is, the minimal number leading to a non-trivial situation.
These are the hypergeometric operators/equations given by (3). Their normal
form is

(12) Hλ,µ,ν =
d2

d z2
+

1− λ2

4z2
+

1− µ2

4(z − 1)2
+

λ2 + µ2 − ν2 − 1

4z(z − 1)

where λ, µ, ν ∈ C, while the local exponents at the singular points are:

(13)

 0 1 ∞ z

0 0 0
λ µ ν
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Such a table, including, on the first row, the singular points, and the local
exponents on the corresponding columns is called the Riemann scheme of the
operator. It can be observed that λ, µ, ν are also the differences of the lo-
cal exponents. It is worth mentioning that the hypergeometric operators are
completely determined by their associated Riemann scheme (13), and any dif-
ferential operator with three singular points is projectively equivalent to a
hypergeometric one (see also formula (6)). This case was fully solved in the
second half of the 19th century, when Schwarz determined completely the equa-
tions that have only algebraic solutions by studying the algebraicity of the ratio
of two independent solutions [39]. F. C. Klein introduced in [27] equivalences
between operators and reduced the original list of Schwarz to what is called
the “basic Schwarz list”:

(14)

(λ, µ, ν) Projective monodromy group

(1/n, 1, 1/n) CN , N ∈ N∗

(1/2, 1/n, 1/2) DN , N ∈ N∗

(1/2, 1/3, 1/3) A4

(1/2, 1/3, 1/4) S4

(1/2, 1/3, 1/5) A5

.

Moreover, these operators proved to be essential in studying all second
order equations with a full set of algebraic solutions. Klein proved the following
theorem and provided an efficient strategy for studying the algebraicity of a
second order differential operator ([27], [4]):

Theorem 2.6 (Klein). Let L be a second order differential operator in
normal form on P1(C) with finite projective monodromy group G. Then there
exists a unique hypergeometric operator H belonging to (14), having G as pro-
jective monodromy group, such that L is a rational pull-back of H via a rational
function f : P1(C) → P1(C). Moreover, the function f is also unique, mod-
ulo Möbius transformations leaving the operator H invariant and permuting its
singular points.

The analogous result for general second order operators on Riemann sur-
faces is proved in [1].

We can say more if the operator has no apparent singularity (that is, at
each singular point the exponent difference is a non-integer rational number):

Proposition 2.7 ([31]). Let L be a second order differential operator
with finite projective monodromy and without apparent singularities, and let S
be its set of singular points. Let f : P1(C) → P1(C) be a rational map that
realizes L as a rational pull-back of a hypergeometric operator H from (14).
The following hold true:
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• f is only ramified above 0, 1 and ∞.

• f(S) ⊂ {0, 1,∞}.

• Let α ∈ {0, 1,∞} with ρH1 (α), ρH2 (α) local exponents of H at α, and α̃ ̸∈ S
with f(α̃) = α. Then the ramification index of f at α̃ is

eα =
1

|ρH1 (α)− ρH2 (α)|
.

Proof. The statements follow easily from Proposition 2.4. Let
α, α̃ ∈ P1(C) such that f(α̃) = α. Let ρH1 (α), ρH2 (α)), ρL1 (α̃), ρ

L
2 (α̃) be local

exponents of H and L at α and α̃, respectively. Let eα̃ be the ramification
index of f in α̃.

Suppose that α /∈ {0, 1,∞} and α is a critical point of f . Then α is a
regular point for H, hence | ρH1 (α)−ρH2 (α)) |= 1. As α is a critical point, there
exists α̃ ∈ P1(C) such that and the ramification index of f at α̃ is eα̃ > 1. It
follows from (8) that the exponent difference of L at α̃ is

| ρL1 (α̃)− ρL2 (α̃) |= eα̃ > 1.

As eα̃ ∈ N, this contradicts the assumption that L doesn’t have apparent
singularities.

Hence any α ∈ P1(C) \ {0, 1,∞} is not critical for f . It is also a regular
point for H, so relation (8) implies that, for every α̃ such that f(α̃) = α,

| ρL1 (α̃)− ρL2 (α̃) |= 1.

So α̃ /∈ S, in other words f(S) ⊂ {0, 1,∞}.
Finally, the last assertion of the statement follows also from (8), as the

hypothesis α̃ ̸∈ S implies that the difference of the local exponents of L at α̃
is 1.

Hence, the basic Schwarz list gives a complete picture for second order
differential operators with three singular points. Klein’s work also opened the
way for studying more general second order operators with algebraic solutions,
as he proved that they are pull-backs of hypergeometric operators from this
list. In 1979-1980, F. Baldassari and B. Dwork started studying the problem for
second order operators with four singular points by studying Lamé operators.
Based on some work of F. Brioschi, they gave necessary conditions for a Lamé
operator to be algebraic [4], [1], [2].
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3. BELYI FUNCTIONS, DESSINS D’ENFANTS AND GENERAL
CONSEQUENCES

In [30] and [31] these results have been recovered in a new way, using
Grothendieck’s theory of Belyi functions and dessins d’enfants. This approach
is possible due to Theorem 2.6 and Proposition 2.7, which provide the main
technical tool for our approach.

Definition 3.1 ([20], [40]). Given X a compact Riemann surface, a Belyi
function is a morphism of Riemann surfaces f : X → P1(C) with at most
three critical values. The pair (X, f) is called a Belyi pair.

Up to Möbius transformations, we can assume that the critical points are
0, 1, and ∞. Moreover, a Belyi function f is called clean if every point in the
fibre f−1(1) is ramified with the ramification index 2. Even if this may seem
a significant restriction, there is a standard procedure for associating a clean
function to an arbitrary Belyi function f : consider f ′ = 4f(1− f).

A celebrated theorem of Belyi [5] states that there exists a function f :
X → P1(C) with at most three critical values if and only if the Riemann
surface X can be defined over a number field. Grothendieck [20] emphasized
the arithmetic importance of this result and associated to f a particular type
of graph embedded in the topological surface X. By Belyi’s theorem, these
graphs, which he called dessins d’enfants, have a profound arithmetic nature,
beside the topological and the combinatorial ones. We mention that sometimes
the term multi-graph is used when describing the dessins d’enfants, as they may
have loops (edges for which the two end vertices coincide), or multiple edges
(that is, edges that have the same end vertices).

In order to clarify the aforementioned correspondence, we recall some
useful concepts. For further details on Belyi functions, dessins d’enfants and
their topological and arithmetical properties and applications, see for example
[40],[29], [19].

Definition 3.2. A map is a pair (X,D) where D is a graph embedded
into a surface X such that

• the vertices are distinct points of the surface;

• the edges are curves on the surface that intersect only at the vertices;

• the set X \ D is a disjoint union of connected components, called faces,
each homeomorphic to an open disk.

The map (X,D) is called a dessin d’enfants (or hypermap) if D is a bi-
coloured graph. We shall consider the two colours to be white and black.
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A dessin d’enfant that has all its black vertices of order 2 is called a clean
dessin ([40],[32]). In this case, we can simplify the drawing, by only repre-
senting the white vertices (but keeping in mind that on each edge there is an
old “black vertex”). It should be mentioned that in this case the graph can
also have loops. The original graph can be recovered by adding a black vertex
somewhere on each edge. An abstract dessin is an isomorphism class of dessins,
where two dessins are called isomorphic if there exists a homeomorphism be-
tween the underlying topological surfaces that induces homeomorphisms be-
tween the topological spaces obtained as the union of the edges, on one side,
and of the vertices, on the other.

Now, we can state the correspondence between Belyi pairs and dessins
d’enfants ([20]):

Grothendieck correspondence. There is a bijective correspondence
between the set of clean abstract dessins d’enfants and the isomorphism classes
of clean Belyi pairs.

In short, if one starts with a clean Belyi couple (X, f), then f−1([0, 1]) is
a graph embedded on X, the vertices being the elements of the set f−1({0, 1})
(whence the two colours). The other way around, if one has a clean dessin
embedded in a surface X, it is easy to construct (topologically) a map f : X →
P1(C) (seen as the topological sphere) with three branching points. Then the
Riemann Existence Theorem guarantees the existence of a Riemann surface
structure on X such that f becomes a rational function with three critical
values. Moreover, Belyi’s Theorem says that this Riemann surface can be
defined over a number field.

This correspondence is the framework in which a dictionary can be es-
tablished, between the ramification data of the Belyi function f , on one side,
and the combinatorial data of the associated dessin, on the other.

Dessin d’enfant Belyi function with critical values {0, 1,∞}
White vertices f−1({0})
Black vertices f−1({1})
Faces of the graph f−1({∞})
Degree of white vertex vw Branching order of the point Pvw ∈ f−1({0})
Degree of black vertex vb Branching order of the point Pvb ∈ f−1({1})
Order of the face φ Branching order of the point Pφ ∈ f−1({∞})
Number of edges Degree of f

Edges of the graph Sheets of f−1([0, 1])

In order to offer a better picture of this correspondence, we will provide
some examples.
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Example 1. A common example is the star graph that corresponds to the
power function. Below, we give the graph with three edges that corresponds
to the function f : P1(C) → P1(C), f(z) = z3.

The white vertex corresponds to f−1(0) = {03}1 and the three black ones
represent the complex roots of unity that are counterimages of 1, f−1(1) =
{1, ε, ε}. The graph has only one face, corresponding to f−1(∞) = {∞3}.

Example 2. Other standard examples are Chebyshev polynomials of the
first kind corresponding to path graphs. We give a graph with three edges that
corresponds to f : P1(C) → P1(C), f(z) = z(4z − 3)3. (We applied a Möbius
transformation in order to keep the critical points in the set {0, 1,∞}).

The white vertices correspond to f−1(0) = {0, 34
2} the black ones to f−1(1) =

{1, 14
2}, while the only face corresponds to f−1(∞) = {∞3}.

Example 3. Another graph with three edges is the following:

corresponding to the function f : P1(C) → P1(C), f(z) = z3

3z−2 . This time, the

graph has two faces, corresponding to the points in the ramified fiber f−1(∞):
one of order 1, corresponding to 2

3 and another of order 2, corresponding to
∞2. The only white vertex represents 03 while the two black ones represent 12

and −2.

On the other side, the equalities (8), (10), (11) relate the ramification
data of a Belyi function f to the invariants of a second order algebraic op-
erator L without apparent singularities, which is realized as a pull-back of a
hypergeometric operator in the Schwarz list through f ; this always happens,
following Klein’s Theorem 2.6 and Proposition 2.7. This is the main point of
our strategy.

We have the following finiteness result:

1The exponent denotes the ramification index, if greater than 1.
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Theorem 3.1 ([32]). Let m be a fixed positive real number. The set of
Belyi pairs (X, f) (up to automorphisms of X and of P1) of degree at most m
is finite.

In particular, the set of Belyi functions f : P1 → P1 such that the critical
values are 0, 1 and ∞ and f({0, 1,∞}) ⊂ {0, 1,∞}, of bounded degree, is finite.

If X and X ′ are two Riemann surfaces endowed with second order linear
differential operators L and L′ respectively, we say that the couples (X,L)
and (X ′, L′) are isomorphic if there exists an isomorphism of Riemann surfaces
f : X → X ′ such that L is a rational pull-back of L′ by f .

We obtain immediately:

Proposition 3.2. If M is a fixed constant and G is one of the finite
groups appearing in the Schwarz list, there are finitely many isomorphism
classes of couples (X,L) where L has the projective monodromy group G, no
apparent singularity and ∆L ≤ M .

Proof. Let H be the hypergeometric operator having the projective mon-
odromy G. The differences of the local exponents at the three singular points
are given by the Riemann scheme (13), hence the invariant ∆(H) is fixed.

If (X,L) is a couple as in the statement of the proposition then, according
to Klein’s Theorem (Theorem 2.6), there exists a morphism f : X → P1 such
that L is a rational pull-back by f . Moreover, f is a Belyi function, as L has
no apparent singularity. Then, as ∆L ≤ M , the relation (11) implies that the
degree of f is bounded. Theorem 3.1 implies the result.

We obtain:

Theorem 3.3 ([31]). The set of isomorphism classes of couples (X,L),
where L has finite monodromy and no apparent singularity, is countable.

4. LAMÉ OPERATORS WITH FINITE MONODROMY

The case of second order operators (on P1) with three singular points
being completely and explicitly solved, the next situation to look at is that
of second order operators with four singular points. A fundamental difficulty
that arises is the following. For operators with three singular points we can
suppose, modulo an isomorphism of P1, that the singular points are 0, 1 and ∞.
Moreover, the local exponent differences at these points completely determine
the operator, modulo the projective equivalence defined hereinbefore. This
is no longer the case for operators with at least four singular points. The
location of the singular points and local exponent differences do not determine
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the differential operator any more. It depends, moreover, on some accessory
parameters, namely one accessory parameter for operators with four singular
points, according to (6).

In a series of papers ([30], [31], [33], [34],[12], [44]), the techniques de-
scribed in the previous section were used for studying the Lamé operators:

(15) Ln =
d2

dx2
+

1

2

3∑
i=1

1

x− ei

d

dx
− n(n+ 1)x+B

4(x− e1)(x− e2)(x− e3)
.

We survey in what follows the main results.
Such an operator has four singular points (e1, e2, e3 and ∞) and local

exponents as follows:  e1 e2 e3 ∞ x

0 0 0 −n
2

1
2

1
2

1
2

n+1
2


The accessory parameter is denoted by B. Modulo a homography, we

can suppose that e1 = 0 and e2 = 1. In this case, we will denote λ the fourth
singular point, λ ∈ C \ {0, 1}, and the formula (15) becomes:

(16) Ln =
d2

dx2
+

1

2

(
1

x
+

1

x− 1
+

1

x− λ

)
d

dx
− n(n+ 1)x+B

4x(x− 1)(x− λ)
.

We can see a Lamé operator as being defined on a suitable elliptic
curve [3]. Let Eλ be the elliptic curve described by the equation:

y2 = 4x(x− 1)(x− λ).

Then the pull-back of Ln by the projection

π : Eλ → P1, π(x, y) = x

is a second order operator

(17) Ln = D2 − [n(n+ 1)x+B]

having one singular point, 0E , with the local exponents (−n, n + 1).
Here, D = y d

dx .
Let us remark first that Ln = L−n−1, so we can suppose n > −1

2 . Then, if
n ∈ Z+ 1

2 , the difference of the local exponents at ∞ is an integer, so either Ln

has an apparent singularity, or a logarithmic solution (which is not algebraic).
On the other hand, Brioschi proved that if n ∈ Z + 1

2 then Ln is algebraic if
and only if its projective monodromy group is the dihedral group of order four
D2 (the Klein “Vierergruppe”). See [36], [2], [15].

The following theorem fully classifies the Lamé operators with finite mon-
odromy and no apparent singularity:
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Theorem 4.1 ([2], [31]). Suppose that n /∈ N+ 1
2 .

1. There is no Lamé operator with cyclic projective monodromy group.

2. There is no Lamé operator with tetrahedral projective monodromy group.

3. If the projective monodromy group of Ln is octahedral, then

n ∈ 1

2

(
Z+

1

2

)
∪ 1

3

(
Z+

1

2

)
.

4. If the projective monodromy group of Ln is icosahedral, then

n ∈ 1

3

(
Z+

1

2

)
∪ 1

5

(
Z+

1

2

)
.

5. If the projective monodromy group of Ln is dihedral, then n ∈ Z. If the
projective monodromy group of Ln is finite and n ∈ Z, then this group is
dihedral of order at least 6.

Proof. We give here just the main idea, following [31]. As Ln has no
apparent singularity, it is the pull-back, by a Belyi function f , of a hyper-
geometric operator H in the basic Schwarz list, having the same projective
monodromy. Moreover, as this projective monodromy group is not D2, this
pull-back is unique (this remark is exploited in the explicit results that will be
mentioned hereafter). Hence, using the Grothendieck correspondence, to such
an operator one can associate a unique abstract dessin d’enfants on the Rie-
mann sphere. The singular points and the differences of the local exponents of
both the Lamé operator and the corresponding hypergeometric operator give
information, by relation (8), about the ramification data of the pull-back func-
tion f . This corresponds, further on, to the combinatorial data of the dessin.
By analysing these data in this combinatorial context, we obtain restrictions
on the existence of the dessin, hence of the function f , and we arrive to the
conclusion.

We illustrate this strategy by giving some more details for the case 2 in the
statement of the theorem. If the projective monodromy group is the tetrahedral
group A4, then the Riemann scheme of the hypergeometric operator H is

(18)

 0 1 ∞ x

0 0 0
1
2

1
3

1
3

 .

Then, by (8), the ramification data of the Belyi function f realizing the pull-

back is summarized in the following table:
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0 1 λ ∞ ai
0 1 1 1 0, 2n+ 1 0, 2

1 0 0 0 0, 3n+ 3
2 0, 3

∞ 0 0 0 0, 3n+ 3
2 0, 3

This table should be read as follows. On the first column, there are the
critical values of f (0, 1 and ∞ - the singular points of H); on the first line,
there are all the points in the ramified fibers: 0, 1, λ, ∞ (the singular points
of L) and some other points ai (that are regular points for L). The rest of the
table contains the possible ramification indices, as they follow from (8). For
example, the relation (8) forces f(0) = f(1) = f(λ) = 0 with ramification index
1 (unramified points). The image of ∞ can be either 0 (with the ramification
index 2n+1), or 1 (with the ramification index 3n+ 3

2), or ∞ (again, with the
ramification index 3n+ 3

2). For the other points ai, as they are regular points
of L, their ramification index must “kill” the difference of the exponents of the
image, so it must be 2 if f(ai) = 0 and it must be 3 if f(ai) ∈ {0,∞}.

We can immediately see that f(∞) ̸= 0, otherwise the ramification index
would be 2n+ 1 ∈ Z, and this contradicts the hypothesis n /∈ N+ 1

2 . Then we
can suppose f(∞) = 1 (the other case, f(∞) = ∞, reduces to this one modulo
a homography). Then, using the dictionary in the previous section, we can see
the table hereinbefore as containing the combinatorial data of the associated
dessin d’enfants and one can prove that such a graph cannot exist (it would
be a bipartite regular graph with a cell whose valency is too high by respect
to the total number of vertices). So, we obtain that there is no Lamé operator
with tetrahedral projective monodromy.

As a consequence, we obtain the following theorem, providing an answer
to a question raised by Dwork:

Theorem 4.2 ([33]). Let n /∈ Z+ 1
2 and G be a finite group. The set of

isomorphism classes of elliptic curves on which there exists a Lamé operator
Ln with projective monodromy G is finite, and on each such curve there exist
finitely many such operators.

Corollary 4.3 ([33]). If n /∈ 1
2Z, there are finitely many Lamé operators

Ln with a full set of algebraic solutions.

Using the combinatorics of dessins d’enfants, some explicit computations
for various families of Lamé operators can be found in [30], [31], [34], [12]. In
[30], the number of Lamé operators L1 with given finite dihedral monodromy
is explicitly computed using this method:
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Theorem 4.4. (i) The number C(1, N) of non-homographic covers f :
P1
C → P1

C which transform by pull-back a hypergeometric operator H with di-
hedral projective monodromy group of order 2N into a Lamé operator L1 is

C(1, N) =
(N − 1)(N − 2)

6
+

2ε

3

where ε = 1 if 3 | N and ε = 0 if not.
(ii) If L(1, N) is the number of non-homographic Lamé operators L1 with

dihedral projective monodromy group of order 2N , then

C(1, N) =
∑

N ′|N,N ′ ̸=2

L(1, N ′).

Explicit computations for the dihedral case with n = 1 were also per-
formed in [10], with other techniques. The similar computation for n = 2 and
dihedral projective monodromy can be found in [31] (and also in [11], with
the same techniques as in [10]). In [34] the octahedral and icosahedral projec-
tive monodromies are considered. For dihedral monodromy, a general result is
given in [12], generalizing Theorem 4.4 :

Theorem 4.5. Let L(n,N) is the number of non-homographic Lamé op-
erators Ln with dihedral projective monodromy group of order 2N . Then∑

N ′|N,N ′ ̸=2

L(n,N ′) =
n(n+ 1)

12
(N − 1)(N − 2) +

2

3
ε(n,N)

where

ε(n,N) =

{
1 if 3 | N , n ≡ 1 ( mod 3)
0 otherwise

.

One can use Euler’s totient function and its 2-dimensional analogue for
obtaining an explicit formula for L(n,N).

In [7], another study of the Lamé differential operators with algebraic
solutions is realized, based mainly on the group theoretic properties of the cor-
responding finite monodromy group. All the possible cases for the monodromy
group are listed.

Baldassarri, in [3], relates algebraic Lamé equations L1 to torsion points
on the associated elliptic curve and recovers several results (for example,
that L0 is never algebraic, the Klein group never occurs as the projective
monodromy of L1 etc.). More precisely, let us consider the operator Ln given
by (16) and the elliptic curve Eλ given by the equation:

y2 = 4x(x− 1)(x− λ).

Denote by P one of the two points of Eλ such that π(P ) = B, where π : Eλ →
P1 is the canonical degree two cover. If n = 1, one can see ([44]) that this
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provides a bijection between the equivalence classes of Lamé operators L1 and
equivalence classes of pointed elliptic curves (E,P ).

Suppose now that L1 is algebraic. Then, we have already seen that there
is a (unique) Belyi function f : P1 → P1 that realizes L1 as a rational pull-
back of a hypergeometric operator with the same projective monodromy. The
point P ∈ Eλ that we have described is the unique pole of the rational function
g = f ◦π (−P being its only zero) and the differential form d g has a double zero
at 0E . Baldassarri proved that the reverse is also true, that is, if there exists
a rational function g on the elliptic curve E with the properties hereinbefore,
then L1 is algebraic. Moreover, in this case, P is a torsion point of Eλ.

This approach is also taken by Zapponi in [44], where the field of moduli
of Lamé operators L1 with dihedral monodromy is studied and the relation
between the algebraicity of the solutions and zeroes of certain modular forms
is emphasized.

The methods described in this paper, combining data coming from the
ramification properties of the pull-back function and from the combinatorics
of the associated dessin d’enfants, can be used for general second order op-
erators with four singular points - the Heun operators. In [41], Filipuk and
Vidun̄as found 61 Belyi functions of degree less than 12, that realize pull-backs
from hypergeometric to Heun operators, and their associated dessins d’enfants.
Vidun̄as studies in [42] Heun equations that are pull-backs of hypergeomet-
ric equations with cyclic or dihedral monodromy. Another illustration of the
method presented in our article can be found in [35], where a complete study
of second order operators with four singular points, that are pull-backs of the
hypergeometric operators with tetrahedral monodromy, is realized.

Acknowledgments. We thank the referee for her/his careful reading and suggestions,
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[7] F. Beukers and A. van der Waall, Lamé equations with algebraic solutions. J. Differential
Equations 197 (2004), 1–25.

[8] J.-C. Bouquet and C.A. Briot, Étude des fonctions d’une variable imaginaire. J. Éc.
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[35] I. Pleşca, Algebraic Heun operators with tetrahedral monodromy. An. Ştiinţ. Univ. “Ovid-
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