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Let f and g be two distinct primitive holomorphic cusp forms of even integral
weights k1 and k2 for the full modular group Γ = SL(2,Z), respectively. De-
note by λf (n) and λg(n) the nth normalized Fourier coefficients of f and g,
respectively. In this paper, we consider the summatory function∑

n=a2+b2≤x

λf (n)
iλg(n)

j ,

for x ≥ 2, where a, b ∈ Z and i, j ≥ 1 are positive integers.
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1. INTRODUCTION

The Fourier coefficients of modular forms are interesting and impor-
tant number-theoretic functions. Let Hk be the set of normalized primitive
holomorphic cusp forms of even integral weight k for the full modular group
Γ = SL(2,Z), which consists of the eigenfunctions for the all Hecke operators
Tn. The Fourier coefficients of f ∈ Hk at the cusp infinity admits the Fourier
expansion

f(z) =

∞∑
n=1

λf (n)n
k−1
2 e(nz), ℑ(z) > 0,

where e(z) = e2πiz, and we normalize λf (1) = 1 and λf (n) ∈ R is the nth
normalized Fourier coefficient (Hecke eigenvalue) of f . It is well-known that
the Hecke eigenvalues λf (n) satisfies the Hecke relation

λf (n)λf (m) =
∑

d|(m,n)

λf

(
mn

d2

)
(1)
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for all integersm,n ≥ 1. In 1974, Deligne [5] proved the celebrated Ramanujan-
Petersson conjecture which asserts that

|λf (n)| ≤ d(n),(2)

where d(n) denotes the classical divisor function.
Then the result (2) implies that for any prime number p, there exist two

complex numbers αf (p), βf (p) such that

λf (p) = αf (p) + βf (p), |αf (p)| = |βf (p)| = αf (p)βf (p) = 1.(3)

The distribution of the Fourier coefficients of cusp forms are interesting
and has been investigated by lots of authors. In 1927, Hecke [9] proved that

S(x) =
∑
n≤x

λf (n) ≪f x
1
2 .

Subsequent improvements on S(x) were made by a number of authors (see e.g.,
[5, 10, 27, 32]).

In the 1930’s, Rankin [26] and Selberg [29] independently proved that∑
n≤x

λ2
f (n) = cfx+Of (x

3
5 ),

where cf is some suitable constant depending on f . Later, other authors con-
sidered the higher moments of the Fourier coefficients of cusp forms (see c.f.,
[18, 7, 22]). In particular, Lau and Lü [19] established a general formula for
the summatory function

Ul(x) =
∑
n≤x

λf (n)
l, l ≥ 3

for the normalized Fourier coefficients of both holomorphic cusp forms and
Maass cusp forms under suitable conditions.

Let f ∈ Hk1 and g ∈ Hk2 be Hecke eigenforms, and denote by λf (n) and
λg(n) the nth normalized Fourier coefficients of f and g, respectively. Based
on the work of Gelbart and Jacquet [8], we know that the automorphy of sym-
metric power lifting symjπf attached to f is proved for j = 2, and similarly
for g. Fomenko [7] considered the average behaviour of second moment of nor-
malized Fourier coefficients involving two distinct cusp forms. More precisely,
he proved that ∑

n≤x

λ2
f (n)λg(n) ≪f,g,ε x

5
6
+ε

and ∑
n≤x

λ2
f (n)λ

2
g(n) = cf,gx+Of,g,ε

(
x

9
10

+ε
)

(4)
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for any ε > 0, here cf,g > 0 is some positive constant depending on f, g. The
result in (4) require the condition that sym2πf ≇ sym2πg.

In 2013, Lü [20] established the following formula∑
n≤x

λ5
f (n)λg(n) ≪f,g,ε x

31
32

+ε,

which can be regarded that the sequences {λf (n)
5} and {λg(n)} are asymp-

totically orthogonal as x → ∞. Later, Lü and Sankaranarayanan [21] further
proved that∑

n≤x

λ5
f (n)λ

2
g(n) ≪f,g,ε x

184
187

+ε,
∑
n≤x

λf (n)λ
6
g(n) ≪f,g,ε x

63
64

+ε.(5)

They also established some other similar formulae analogue to (5).

On the other hand, Zhai [33] considered the asymptotic behaviour of the
following sum

Sl(f ;x) :=
∑

a2+b2≤x

λf (a
2 + b2)l,(6)

where 2 ≤ l ≤ 8 and a, b, l ∈ Z. In fact, he established the asymptotics for (6)
by showing that

Sl(f ;x) = xPl(log x) +Of,ε(x
θl+ε),

where the P2(t), P4(t), P6(t), P8(t) are polynomials of degree 0, 1, 4, 13, respec-
tively. And degPj ≡ 0 for l = 3, 5, 7. Here

θ2 =
8

11
, θ3 =

17

20
, θ4 =

43

46
, θ5 =

83

86
,

θ6 =
184

187
, θ7 =

355

358
, θ8 =

752

755
.

Let f ∈ Hk1 and g ∈ Hk2 be two distinct Hecke eigenforms. Inspired by
the above results, in this paper, we are interested in the asymptotic behaviour
of the following sum

Si,j(f, g;x) :=
∑

n=a2+b2≤x

λf (n)
iλg(n)

j

where a, b ∈ Z and i, j ≥ 1 are positive integers. More precisely, we will prove
the following theorems.

Theorem 1.1. Let f ∈ Hk1 and g ∈ Hk2 be two distinct Hecke eigen-
forms. Set i1, j1 ≥ 1 be positive integers. Then for any ε > 0 we have

S2i1,2j1(f, g;x) = xPAi1
Aj1

−1(log x) +Of,g,ε

(
x
1− 42

22i1+2j1+1·21−8Ai1
Aj1

+29
+ε)

,
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where Pj(t) is a polynomial of t with degree j, and Aj is defined by

Aj =
(2j)!

j!(j + 1)!
.

Theorem 1.2. Let f ∈ Hk1 and g ∈ Hk2 be two distinct Hecke eigen-
forms. Let i2, j2 ≥ 1 be positive integers with at least one of them odd. Then,
for any ε > 0, we have

Si2,j2(f, g;x) ≪f,g,ε x
1− 1

2i2+j2
+ε

.

2. AUXILIARY RESULTS

In this section, we review some relevant facts about the automorphic L-
functions and collect some important lemmas which play an important role in
the proof of the main results in this paper.

Let f ∈ Hk1 and g ∈ Hk2 be two distinct Hecke eigenforms. We can
define the jth symmetric power L-function attached to f by

L(symjf, s) :=
∏
p

j∏
m=0

(
1−

αf (p)
j−mβf (p)

m

ps

)−1

(7)

for ℜ(s) > 1. We can rewrite it as a Dirichlet series

L(symjf, s) =
∏
p

(
1 +

λsymjf (p)

ps
+ . . .+

λsymjkf (p)

pks
+ . . .

)

:=

∞∑
n=1

λsymjf (n)

ns
, ℜ(s) > 1.(8)

It is well-known that λsymjf (n) is a real multiplicative function. In particular,
L(sym0f, s) and L(sym1f, s) correspond to the Riemann zeta-function ζ(s) and
the Hecke L-function L(f, s). And from (3), (7), (8) and the theory of Hecke
operators, we have

λf (p
j) =

j∑
m=0

αf (p)
j−2m = λsymjf (p), j ≥ 1.(9)

The Rankin-Selberg L-function attached to symif and symjg is defined
by

L(symif × symjg, s)

:=
∏
p

i∏
m=0

j∏
m′=0

(
1− αf (p)

i−2mαg(p)
j−2m′

p−s
)−1

, ℜ(s) > 1.(10)
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Similarly, for ℜ(s) > 1, we have

L(symif × symjg, s)

=

∞∑
n=1

λsymif×symjg(n)

ns
=

∏
p

(
1 +

∑
k≥1

λsymif×symjg(p
k)

pks

)
,(11)

where λsymif×symjg(n) is real and multiplicative. Similarly, by (9)-(11), for
i, j ≥ 1, we have

λsymif×symjg(p) =
i∑

m=0

j∑
m′=0

αf (p)
i−2mαg(p)

j−2m′
(p)

= λsymif (p)λsymjg(p).(12)

Let πf be a automorphic cuspidal automorphic representation of
GL2(AQ). It is well-known that an automorphic cuspidal representation π of
GL2(AQ) is associated to a primitive form f , hence an automorphic function
L(πf , s) which coincides with L(f, s). Denote by symjπf the jth symmetric
power lift of πf . For 2 ≤ j ≤ 8, the automorphy of symjπf were proved
by a series of important works of Gelbart and Jacquet [8], Kim and Shahidi
[14, 15, 16], Dieulefait [6], and Clozel and Thorne [2, 3, 4]. Very recently,
Newton and Thorne [23, 24] showed that there exists a cuspidal automorphy
representation of GLj+1(AQ) whose L-function equals L(symjf, s) for all j ≥ 1.
Hence for j ≥ 1, the L-function L(symjf, s) can be extended to the whole
complex plane as an entire function and satisfies a functional equation of degree
j + 1. Furthermore, based on the works of Jacquet-Shalika [12, 13], Shahidi
[30, 31], Rudnick-Sarnak [28], Lau-Wu [17], the L-function L(symif×symjg, s)
can be analytically continued to the whole complex plane as an entire function
and satisfies a certain functional equation of degree (i+ 1)(j + 1).

We state some basic definitions and analytic properties of general L-
functions. Let L(ϕ, s) be a Dirichlet series (associated with the object ϕ) that
admits an Euler product of degree m ≥ 1, namely

L(ϕ, s) =

∞∑
n=1

λϕ(n)

ns
=

∏
p<∞

m∏
j=1

(
1−

αϕ(p, j)

ps

)−1

,

where αϕ(p, j), j = 1, 2, · · · ,m are the local parameters of L(ϕ, s) at a finite
prime p. Suppose that this series and its Euler product are absolutely conver-
gent for ℜ(s) > 1. We denote the gamma factor by

L∞(ϕ, s) =

m∏
j=1

π−
s+µϕ(j)

2 Γ

(
s+ µϕ(j)

2

)
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with local parameters µϕ(j), j = 1, 2, · · · ,m of L(ϕ, s) at ∞. The complete
L-function Λ(ϕ, s) is defined by

Λ(ϕ, s) = q(ϕ)
s
2L∞(ϕ, s)L(ϕ, s),

where q(ϕ) is the conductor of L(ϕ, s). We assume that Λ(ϕ, s) admits an
analytic continuation to the the whole complex plane C and is holomorphic
everywhere except for possible poles of finite order at s = 0, 1. Furthermore,
it satisfies a functional equation of the type

Λ(ϕ, s) = ϵϕΛ(ϕ̃, 1− s)

where ϵϕ is the root number with |ϵϕ| = 1 and ϕ̃ is dual of ϕ such that λϕ̃(n) =

λϕ(n), L∞(ϕ̃, s) = L∞(ϕ, s) and q(ϕ̃) = q(ϕ). We call ϕ ∈ S#
e if it satisfies

the above conditions. We say the L-function L(ϕ, s) satisfies the Ramanujan
conjecture if λϕ(n) ≪ nε for any ε.

Here, we state a very general theorem due to Lau and Lü [19].

Lemma 2.1 ([19]). Let L(f, s) is a product of two L-functions L1, L2 ∈ S#
e

with both degLi ≥ 2, i = 1, 2 and L(f, s) satisfies the Ramanujan conjecture.
Then for any ε > 0, we have∑

n≤x

λf (n) = M(x) +O
(
x1−

2
m
+ε

)
,

where M(x) = Ress=1{L(f, s)xs/s} and m = degL.

We define

r2(n) = #{(n1, n2) ∈ Z2 | n = n2
1 + n2

2}.

It is well-known that r2(n) is a multiplicative function and satisfies the relation

r2(n) = 4
∑
d|n

χ4(d),

where χ4 is the non-trivial Dirichlet character modulo 4. We denote r(n) :=∑
d|n χ4(d) and χ := χ4. In particular, one has

r(p) =
∑
d|p

χ(d) = 1 + χ(p).

It is not difficult to find that

Si,j(f, g;x) =
∑
n≤x

λf (n)
iλg(n)

j
∑

n=a2+b2

1

= 4
∑
n≤x

λf (n)
iλg(n)

jr(n),
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where a, b ∈ Z are integers.

Define

Li,j(f, g; s) :=
∞∑
n=1

λf (n)
iλg(n)

jr(n)

ns

for ℜ(s) > 1, where i, j ≥ 1 are positive integers.

Now, we establish some lemmas concerning the decomposition of the L-
function Li,j(f, g; s).

Lemma 2.2. Let f ∈ Hk1 and g ∈ Hk2 be distinct Hecke eigenforms. Let
i1, j1 ≥ 1 be positive integers. Then, we have

L2i1,2j1(f, g; s) = ζ(s)Ai1
Aj1Hi1,j1(f, g; s, χ)Ui1,j1(f, g; s),

where the constant Aj is given by

Aj =
(2j)!

j!(j + 1)!
,(13)

here Hi1,j1(f, g; s) is an L-function which can be represented as the product
of some automorphic L-functions L(syml1f, s), L(symr1g, s) and L(syml2f ×
symr2g, s) with l1, r1, l2, r2 ≥ 1 and its twisted L-functions, and the function
Ui1,j1(f, g; s) for which the associated Dirichlet series converges uniformly and
absolutely in the half-plane ℜ(s) ≥ 1

2 + ε for any ε > 0.

Proof. In view of (1) and the multiplicative property of r(n), we know
that λf (n)

iλg(n)
jr(n) is multiplicative and satisfies the trivial bound O(nε)

for any ε > 0. Hence, we can write L2i1,2j1(f, g; s) as

L2i1,2j1(f, g; s) =
∏
p

(
1 +

∑
k≥1

λf (p
k)2i1λg(p

k)2j1r(pk)

pks

)
(14)

for ℜ(s) > 1. In the half-plane ℜ(s) > 1
2 , the corresponding coefficients of p−s

determine the analytic properties of L2i1,2j1(f, g; s).

By the result of Lau and Lü [19, Lemma 7.1], then we know that

λf (p)
2j = Aj +

∑
1≤r≤j−1

Cj(r)λsym2rf (p) + λsym2jf (p),

where Aj is defined as in (13), and Cj(r) are some suitable constants. By
relation (12), we can rewrite (14) in the following

L2i1,2j1(f, g; s)

= ζ(s)Ai1
Aj1

∏
l,r

L(symlf, s)d1L(symrg, s)e1L(symlf × symrg, s)f1



78 G. Hua 8

×L(symlf × χ, s)d1L(symrg × χ, s)e1L(symlf × symrg × χ, s)f1

×Ui1,j1(f, g; s),

where 1 ≤ l ≤ 2i1, l ≤ r ≤ 2j1 are some suitable constants, and d1, e1, f1
are some constants which need not be specified in this occurrence, the func-
tion Ui1,j1(f, g; s) is some Dirichlet series for which converges uniformly and
absolutely for ℜ(s) > 1

2 . This completes the proof of Lemma 2.2.

Lemma 2.3. Let f ∈ Hk1 and g ∈ Hk2 be distinct Hecke eigenforms. Let
i2, j2 ≥ 1 be positive integers with at least one of them odd. Then, we have

Li2,j2(f, g; s) = Hi2,j2(f, g; s, χ)Ui2,j2(f, g; s),

where Hi2,j2(f, g; s) is an L-function which can be represented as the product
of some automorphic L-functions L(syml′1f, s), L(symr′1g, s) and L(syml′2f ×
symr′2g, s) with l′1, r

′
1, l

′
2, r

′
2 ≥ 1 and its twisted L-functions, and the function

Ui2,j2(f, g; s) for which the associated Dirichlet series converges uniformly and
absolutely in the half-plane ℜ(s) ≥ 1

2 + ε for any ε > 0.

Proof. The proof follows essentially the same argument as Lemma 2.2.

Lemma 2.4. We have∫ T

1

∣∣∣∣ζ(1

2
+ it

)∣∣∣∣2dt ≪ T 1+ε(15)

uniformly for T ≥ 2. Furthermore,

ζ(σ + it) ≪
(
1 + |t|

)max{ 13
42

(1−σ),0}+ε
(16)

uniformly for 1
2 + ϵ ≤ 2 and |t| ≥ 1.

Proof. The first result (15) is a classical result, and second one (16) is the
new breakthrough of Bourgain [1].

From the above, we observe that L(symjf, s), L(symif×symjg, s) and its
twisted L-functions for all i, j ≥ 1 are general L-functions in the sense of Perelli
[25]. For the general functions, we have the following averaged or individual
convexity bounds.
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Lemma 2.5. Suppose that L(s) is a general function of degree m. Then
for any ε > 0, we have∫ T

1

∣∣L(σ + it)
∣∣2dt ≪ Tm(1−σ)+ε,(17)

uniformly for 1
2 ≤ σ ≤ 1 and T ≥ 1, and

L(σ + it) ≪
(
1 + |t|

)max{m
2
(1−σ),0}+ε

(18)

uniformly for 1
2 ≤ σ ≤ 1 + ε and |t| ≥ 1.

Proof. This follows the results of Perelli’s mean value theorem and con-
vexity bound for general L-function in [25].

3. PROOF OF THEOREM 1.1

Recalling Lemma 2.2, and then applying Perron’s formula (see [11, Propo-
sition 5.54]) to the generating function L2i1,2j1(f, g; s), then we can obtain∑
n≤x

λf (n)
2i1λg(n)

2j1r(n) =
1

2πi

∫ η+iT

η−iT
L2i1,2j1(f, g; s)

xs

s
ds+O

(
x1+ε

T

)
,

where η = 1 + ε and 1 ≤ T ≤ x is a parameter to be chosen later.
By shifting the line of integration to the parallel segment with ℜ(s) = 1

2+ε
and invoking Cauchy’s residue theorem, then we have∑

n≤x

λf (n)
2i1λg(n)

2j1r(n)

= Ress=1

{
L2i1,2j1(f, g; s)

xs

s

}
+

1

2πi

{∫ κ+iT

κ−iT
+

∫ η+iT

κ+iT
+

∫ κ−iT

η−iT

}
L2i1,2j1(f, g; s)

xs

s
ds+O

(
x1+ε

T

)
:= xPAi1

Aj1
−1(log x) + J1 + J2 + J3 +O

(
x1+ε

T

)
,(19)

where κ := 1
2 + ε and Pj(t) is a polynomial of t with degree j.

Now, we begin to handle the three terms J1, J2 and J3. For J1, using the
Cauchy-Schwarz inequality, and Lemma 2.4 for ζ(s) along with (17), we have

J1 ≪ xκ max
1≤T1≤T

T−1
1 max

T1≤t≤2T1

∣∣ζ(κ+ it)
∣∣Ai1

Aj1
−1

×
(∫ 2T1

T1

∣∣ζ(κ+ it)
∣∣2dt) 1

2
(∫ 2T1

T1

∣∣Hi1,j1(f, g;κ+ it)
∣∣2dt) 1

2
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≪ xκT
13
84

(Ai1
Aji

−1)−1T
1
2T

1
2
× 1

2
×(22i1+2j1+1−Ai1

Aj1
)+ε

≪ xκT 22i1+2j1−1− 2
21

Ai1
Aj1

− 55
84

+ε.(20)

The estimates for the integrals over the horizontal segments are similar.
From (16) and (18), we have

J2 + J3 ≪
∫ η

κ
xσ

∣∣ζ(σ + it)Ai1
Aj1Hii,j1(f, g;σ + it)

∣∣T−1dσ

≪ max
κ≤σ≤η

xσT { 13
42

Ai1
Aj1

+
22i1+2j1+1−A11

Aj1
2

}(1−σ)+εT−1

≪ x1+ε

T
+ xκT 22i1+2j1−1− 2

21
Ai1

Aj1
−1+ε.(21)

Therefore, from (19), (20) and (21), we have∑
n≤x

λf (n)
2i1λg(n)

2j1r(n) = xPAi1
Aj1

−1(log x)

+O

(
x1+ε

T

)
+O

(
x

1
2
+εT 22i1+2j1−1− 2

21
Ai1

Aj1
− 55

84
+ε

)
.(22)

On taking T = x
42

22i1+2j1+1·21−8Ai1
Aj1

+29 in (22), we can get∑
n≤x

λf (n)
2i1λg(n)

2j1r(n)

= xPAi1
Aj1

−1(log x) +O
(
x
1− 42

22i1+2j1+1·21−8Ai1
Aj1

+29
+ε)

,

which completes the proof of Theorem 1.1.

4. PROOF OF THEOREM 1.2

As we know, Li2,j2(f, g; s) is a general L-function of degree 2i2+j2+1 in the
sense of Lemma 2.1 by noting Lemma 2.3. From Lemma 2.3 and the assumption
on i2, j2, we can derive that Li2,j2(f, g; s) can be analytically continued to the
half-plane ℜ(s) > 1

2 without any poles, thus, by Lemma 2.1, we can obtain∑
n≤x

λf (n)
i2λg(n)

j2r(n) ≪f,g,ε x
1− 1

2i2+j2
+ε

.
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and GL(3). Ann. Sci. Éc. Norm. Super. 11 (1978), 4, 471–542.

[9] E. Hecke, Theorie der Eisensteinschen Reihen höherer Stufe und ihre Anwendung auf
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[28] Z. Rudnick and P. Sarnak, Zeros of principal L-functions and random matrix theory.
Duke Math. J. 81 (1996), 2, 269–322.

[29] A. Selberg, Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Mod-
ulforman nahe verbunden ist. Arch. Math. Naturvid. 43 (1940), 47–50.

[30] F. Shahidi, On certain L-functions. Amer. J. Math. 103 (1981), 2, 297–355.

[31] F. Shahidi, Third symmetric power L-functions for GL(2). Compos. Math. 70 (1989),
3, 245–273.

[32] J. Wu, Power sums of Hecke eigenvalues and applications. Acta Arith. 137 (2009), 4,
333–444.

[33] S. Zhai, Average behavior of Fourier coefficients of cusp forms over sum of two squares.
J. Number Theory 133 (2013), 3862–3876.

Received 26 March 2019 Weinan Normal University
School of Mathematics and Statistics
Shaanxi, Weinan 714099, China

and
Shandong University
School of Mathematics

Shandong, Jinan 250100, China
gdhuanumb@yeah.net


	Introduction
	 Auxiliary results 
	Proof of Theorem 1.1
	Proof of Theorem 1.2

