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Let us consider f as being an entire solution of the differential-difference equation
G(z, f)+h(z)fm(z) = 0, (m ∈ N), where h(z) is a transcendental entire function
and G(z, f) is a differential-difference polynomial in f with entire coefficients.
By considering the order and deficiency of h(z) and such coefficients, we mainly
study the radial distribution of f , and establish a lower bound of measure for the
set of common limiting directions of the Julia sets of derivatives and primitives
of its shifts.
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1. INTRODUCTION AND MAIN RESULTS

A function f(z) is called meromorphic if it is nonconstant and analytic in
the complex plane except at possible isolated poles. A family F of meromorphic
functions on G is said to be normal, in the sense of Montel, if every sequence
of functions in F contains a subsequence which converges uniformly on com-
pact subsets of G to a function f which is meromorphic or identically ∞, the
convergence being with respect to the spherical metric dσ = 2|dw|/(1 + |w|2).
The family F is said to be normal at a point z0 ∈ G, if there exists a neigh-
borhood of z0 in which F is normal. Let f : C → C∪{∞} be a transcendental
meromorphic function in the complex plane. For n ∈ N, we define the n-th
iterate of f as follows:

f̃0(z) = z, · · · , f̃n(z) = f ◦ f̃n−1(z).

Let F(f) be the set of all points z such that the family {f̃n(z)}∞n=1 is normal
at z. We also say F(f) is the Fatou set of f(z), and its complement
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J (f) = C \ F(f) is called the Julia set of f(z). It is well-known that F(f)
is open and completely invariant under f , and J (f) is closed and non-empty.
Some basic knowledge of complex dynamics of meromorphic functions and
related results can be found in [2]–[4],[14]–[16],[21, 22].

Let α, β be two numbers such that 0 ≤ α < β < 2π, and we set

Ω(α, β) = {z ∈ C|α < arg z < β}, Ω(r;α, β) = Ω(α, β) ∩ {z ∈ C : |z| > r}.

Assume that f(z) is a transcendental meromorphic function in C. The ray
arg z = θ from the origin is said to be a limiting direction of the Julia set of
f(z) if Ω(θ − ε, θ + ε) ∩ J (f) is unbounded for any ε > 0. Then, the set of all
limiting directions of the Julia set of f(z) is denoted by

Θ(f) = {θ ∈ [0, 2π)|the ray arg z = θ is a limiting direction of J (f)},

and set

E(f) =
⋂
n∈Z

Θ(f (n)),

where f (n)(z) denotes the n-th derivative of f(z) for n ≥ 0 or the n-th integral
primitive of f(z) for n < 0. Clearly, Θ(f) and E(f) are closed and measur-
able. For brevity, we call a limiting direction of the Julia set of f a limiting
direction of f in this paper, and denote by mesΘ(f) and mesE(f) for their
linear measure, respectively. The following example is intended to help readers
understand the definition of Θ(f) intuitively.

Example 1.1 ([5]). Consider the map fλ(z) = λez, λ > 0. If λ > 1
e , then

J (fλ) is the whole complex plane, hence Θ(fλ) = [0, 2π). If 0 < λ ≤ 1
e ,

then fλ has a repelling fixed point x > 1, J (fλ) is a Cantor set of curves in
{z : Rez > x}, and Θ(fλ) = [0, π2 ] ∪ [3π2 , 2π).

Value distribution theory plays an important role in studying transcen-
dental meromorphic functions. Some standard notations and basic results can
be found in [8, 9, 12, 13, 20, 23]. Given a meromorphic function f(z) in C, we
define the following three functions: the proximity function

m(r, f) :=
1

2π

∫ 2π

0
log+ |f(reiθ)|dθ,

where log+ x := max{0, log x}; the integrated counting function

N(r, f) :=

∫ r

0

n(t, f)− n(0, f)

t
dt+ n(0, f) log r,

where n(t, f) denotes the number of poles of f(z) in {|z| ≤ t} counting multi-
plicities; the characteristic function T (r, f) := m(r, f) +N(r, f).
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We further denote by S(r, f) any quantity satisfying S(r, f) = o(T (r, f))
as r → ∞ outside a possibly exceptional set of finite linear measure. In ad-
dition, the meromorphic function α(z) is said to be a small function of f(z)
if T (r, α) = S(r, f). The order ρ(f) and the lower order µ(f) of f(z) are,
respectively, defined by

ρ(f) = lim sup
r→∞

log+ T (r, f)

log r
, µ(f) = lim inf

r→∞

log+ T (r, f)

log r
.

For entire functions, T (r, f) in the above two definitions can be replaced by
log+M(r, f), which is based on a relationship between the maximum modulus
M(r, f) = max|z|=r |f(z)| and T (r, f). We denote by λ(f) and δ(a, f), respec-
tively, the convergence exponent of zero sequence and the deficiency of a(∈ C)
for f . They are defined as follows:

λ(f) = lim sup
r→∞

log+N(r, 1/f)

log r
, δ(a, f) = 1− lim sup

r→∞

N(r, 1/(f − a))

T (r, f)
.

We say a ∈ C is a Borel exceptional value of f(z) if λ(f − a) < ρ(f), and a is
a Nevanlinna exceptional value or deficient value of f(z) if δ(a, f) > 0.

As a very active subject, the research on limiting directions of Julia sets
of entire solutions for complex differential or difference equations has gener-
ated a lot of interest, and many interesting results have been established (see,
e.g., [5, 10, 11, 17, 18]). In 2012, Huang and Wang [10] investigated the lim-
iting directions of the product of linearly independent solutions of differential
equation

f (n) +A(z)f = 0, n ∈ N, n ≥ 2,(1)

where A(z) is a transcendental entire function with finite order, and obtained
the following result.

Theorem A ([10]). Suppose that {f1, f2, · · · , fn} is a solution base of
(1), then mesΘ(f1f2 · · · fn) ≥ min{2π, π/ρ(A)}.

After that, many authors made a further study for the solutions of higher
order linear differential equation

(2) f (n) +

n−1∑
i=0

Ai(z)f
(i) = 0,

where A0(z) is a transcendental entire function and Ai(z) are entire functions
satisfying T (r,Ai) = o(T (r,A0))(i = 1, 2, · · · , n − 1) as r → ∞. For instance,
Huang and Wang [11] prove that every non-trivial solution f of (2) satisfies
mesΘ(f) ≥ min {2π, π/µ(A0)}. Wang and Chen [17] confirmed that

mesE(f) ≥ min {2π, π/µ(A0)} ,
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and there exists a closed interval I ⊆ E(f) such that mesI ≥ min{2π, π/ρ(A0)}
provided that ρ(Ai) < ρ(A0)(i = 1, 2, · · · , n− 1).

Recently, Wang et al. [18] considered the following differential equation

P (z, f) + h(z)fm(z) = 0,(3)

where P (z, f) =
∑s

j=1 ajf
n0j (f ′)n1j · · · (f (k))nkj , aj(z) are some meromorphic

functions and s,m, nij are non-negative integers satisfying γ= min
1≤j≤s

∑k
i=0 nij≥

m for 0 ≤ i ≤ k, 1 ≤ j ≤ s. We restate it as follows:

Theorem B ([18]). Suppose that m,n are integers, h(z) is a transcen-
dental entire function of finite lower order, and that P (z, f) is a differential
polynomial in f with γ ≥ m, where all coefficients aj(z)(j = 1, · · · , s) are poly-
nomials if µ(h) = 0, or all aj(z)(j = 1, · · · , s) are entire functions satisfying
ρ(aj) < µ(h). Then, for every nonzero transcendental entire solution f of (3),
one has mesΘ(f (n)) ≥ min {2π, π/µ(h)} .

Similar to the differential equation, the case of the difference equation
is also deeply studied (see, e.g., [5]). For j ∈ {1, 2, · · · , n}, we set Pj(z, f) =∑

λ=(k1,··· ,km)∈Λj
aλ

∏m
i=1 f

ki(z + ci), where Λj denotes a finite subset of Nm

and ci(1 ≤ i ≤ m) are distinct complex numbers. Chen et al. [5] considered
the following equation

n∑
j=1

Aj(z)Pj(z, f) = A0(z),(4)

where Aj(z)(j = 0, 1, · · · , n) are n+1 entire functions and A0 is transcendental
with finite lower order so that T (r,Aj) = o(T (r,A0))(j = 1, · · · , n) as r → ∞.
Set Θ1(f) =

⋂
i∈M

Θ(f(z + ηi)), where M denotes a countable subset of N+ and

ηi(i ∈ M) are some distinct complex numbers. Indeed, Chen et al. [5] obtained
the following results.

Theorem C ([5]). For any non-trivial entire solution f of (4), we obtain

mesΘ1(f) ≥ min{2π, π/µ(A0)}.

Moreover, if ρ(A0) > max{ρ(A1), · · · , ρ(An)}, then there exists a closed inter-
val [θ1, θ2] of Θ1(f) such that θ2 − θ1 ≥ min{2π, π/ρ(A0)}.

Noting that, in Theorem C, Aj(z)(0 ≤ j ≤ n) are assumed n + 1 entire
functions and A0(z) is a dominant term. For the special case of n = 2 in
(4), they also proved that for every non-trivial entire solution f of (4), if A0

is transcendental satisfying T (r,A0) ∼ κ logM(r,A0)(0 < κ ≤ 1) as r → ∞
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outside a set of logarithmic density zero, A1 has a finite deficient value a and
µ(A1) < ∞, then

mesΘ1(f) ≥ max{0, σ},

where σ = min
{
2πκ, 4

µ(A1)
arcsin

√
δ(a,A1)

2 − 2π(1− κ)
}
.

Motivated by these works, we consider entire solutions f of a class of
more general differential-difference equation

G(z, f) + h(z)fm(z) = 0, (m ∈ N),(5)

where

G(z, f) =
s∑

j=1

αj(z)
k∏

i=0

(f (i)(z + ci))
nij , (s ∈ N+),

αj(z) are entire functions, ci are some finite complex numbers and nij are non-

negative integers such that γ = min
1≤j≤s

∑k
i=0 nij ≥ m for 0 ≤ i ≤ k, 1 ≤ j ≤ s.

Assume that

ρ(αv) = max
1≤j≤s

ρ(αj)

and ρ(αj) < ρ(h), j ̸= v. Under some conditions, we shall prove that the Julia
sets of f , its n-th derivatives and its n-th integral primitives of shifts have a
large amount of common limiting directions. We denote

L(f) =
⋂
n∈Z

Θ(f (n)(z + ϕ)),

where ϕ is a finite complex number and f (n)(z + ϕ) represents the shift of n-
th derivative of f(z) for n ≥ 0 or the shift of n-th integral primitive of f(z)
for n < 0. Although L(f) can be degenerate into E(f) when ϕ = 0, L(f)
and E(f) may be quite different for some ϕ. For instance, let f(z) = ez, it
follows from Example 1.1 that E(f) = [0, 2π) and L(f) = [0, π2 ]∪ [3π2 , 2π) when
ϕ ∈ (−∞,−1]. Now, we show our results as follows.

Theorem 1.2. Assume αv(z) is an entire function of finite order and
has a finite Borel exceptional value. Let h(z) be an entire function of finite
order and ε0 ∈ (0, π

4ρ(αv)
) such that π

ρ(h) >
π

ρ(αv)
+ 2ε0. For any transcendental

entire solution f of (5), we obtain

mesL(f) ≥ min
{ π

ρ(αv)
− 2ε0,

π

ρ(h)
− π

ρ(αv)
− 2ε0

}
.

An application of Theorem 1.2 is given below.

Example 1.3. The differential-difference equation

−2f ′(z − 1) + ez
2+2z−1(f2(z))′ + 4e2z−1f(z) = 0
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has an entire solution f(z) = e−z2 . Since αv(z) = ez
2+2z−1 and h(z) = 4e2z−1

satisfy all conditions given in Theorem 1.2, then mesL(f) ≥ π
2 − 2ε0.

Noting that, in Theorem 1.2, one needs π
ρ(h) >

π
ρ(αv)

+ 2ε0 which implies

ρ(αv) > ρ(h), the following results consider the other cases without requiring
ρ(αv) > ρ(h).

Theorem 1.4. Suppose that αv(z) has a finite deficient value a and
µ(αv) < ∞. Let h(z) be a transcendental entire function and ω ∈ (0, 1] ∩
(1− 2

πµ(αv)
arcsin

√
δ(a,αv)

2 , 1] such that T (r, h) ∼ ω logM(r, h) as r → ∞ out-
side a set of finite logarithmic measure. For any transcendental entire solution
f of (5), we have

mesL(f) ≥ min
{
2πω,

4

µ(αv)
arcsin

√
δ(a, αv)

2
− 2π(1− ω)

}
= σ.

As an application of Theorem 1.4, one gives the following example.

Example 1.5. The differential-difference equation

ieizf ′(z +
3π

2
)− if2(z + π) + sin zf(z) = 0

has an entire solution cos z. Here, αv(z) = ieiz satisfies δ(0, αv) = 1 and
µ(αv) = 1, T (r, sin z) ∼ 2

π logM(r, sin z) with ω = 2
π ∈ (12 , 1]. By Theorem 1.4,

we have mesL(f) ≥ 4− π.

Theorem 1.6. Let h(z) be a transcendental entire function of finite lower
order and αj(1 ≤ j ≤ s) be some small functions with respect to h. For any
non-trivial entire solution f of (5), we obtain

mesL(f) ≥ min
{
2π,

π

µ(h)

}
.

Moreover, if ρ(h) > ρ(αj) for all 1 ≤ j ≤ s, there exists a closed interval
[θ1, θ2] ⊆ L(f) with θ2 − θ1 ≥ min {2π, π/ρ(h)}.

We also give an application of Theorem 1.6 as follows.

Example 1.7. The differential-difference equation

f2(z)f ′(z + 1) + f (k)(z + 2πi)− (e2z+1 + 1)f(z) = 0

has an entire solution ez. We note that h(z) = −e2z+1 − 1. It follows from
Theorem 1.6 that mesL(f) ≥ π.

The remainder of this paper is organized as follows. In Section 2, some
basic notations and auxiliary lemmas in value distribution of Nevanlinna theory
are introduced, which are needed for the later proofs. The details for the proofs
of our results are showed in Section 3.
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2. AUXILIARY LEMMAS

In the following, we first recall the Nevanlinna characteristic for an angle
(see [8, 22, 23]). We denote the closure of Ω(α, β) by Ω(α, β), where (β−α) ∈
(0, 2π]. Suppose that g(z) is meromorphic in Ω(α, β). Define

Aα,β(r, g) =
ω

π

∫ r

1

( 1

tω
− tω

r2ω

)
{log+ |g(teiα)|+ log+ |g(teiβ)|}dt

t
,

Bα,β(r, g) =
2ω

πrω

∫ β

α
log+ |g(reiθ)| sinω(θ − α)dθ,

Cα,β(r, g) = 2
∑

1<|bv |<r

( 1

|bv|ω
− |bv|ω

r2ω

)
sinω(βv − α),

where ω = π/(β−α) and bv = |bv|eiβv denote the poles of g(z) in Ω(α, β), each
pole occuring with its multiplicity. The Nevanlinna’s angular characteristic of
g(z) is denoted by Sα,β(r, g), which is

Sα,β(r, g) = Aα,β(r, g) +Bα,β(r, g) + Cα,β(r, g),

and the order of Sα,β(r, g) is defined as

ρα,β(g) = lim sup
r→∞

log+ Sα,β(r, g)

log r
.

We need some auxiliary lemmas as follows.

Lemma 2.1 ([3]). If f is a transcendental entire function, then F(f) has
no unbounded multi-connected component.

Lemma 2.2 ([21, Lemma 2.2]). Let f(z) be analytic in Ω(r0; θ1, θ2). Sup-
pose that U is a hyperbolic domain and f(z) : Ω(r0; θ1, θ2) → U . If there exists
a point a ∈ ∂U \{∞} satisfying CU (a) > 0, then there exists a positive constant
d such that

|f(z)| = O(|z|d), z → ∞, z ∈ Ω(r0; θ1 + ε, θ2 − ε)

for sufficiently small ε > 0.

An open set is called hyperbolic if it has at least three boundary points
in C ∪ {∞}. Let U be a hyperbolic open set in C. For any a ∈ C \ U , we set

CU (a) = inf{λU (z)|z − a| : ∀z ∈ U},

where λU (z) is the hyperbolic density on U . It is known that if every component
of U is simply connected, then CU (a) ≥ 1/2.
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Lemma 2.3 ([23, Theorem 2.5.1]). Let f(z) be a meromorphic function
on Ω(α− ε, β + ε) for ε > 0 and 0 < α < β < 2π. Then

Aα,β

(
r,
f

′

f

)
+Bα,β

(
r,
f

′

f

)
≤ K(log+ Sα−ε,β+ε(r, f) + log r + 1)

for r > 1 possibly except a set with finite linear measure, and we also have the
constant K > 0.

Lemma 2.4 ([11, Lemma 2.2]). Let z = reiς, r > r0 +1 and α ≤ ς ≤
β, where 0 ≤ α < β ≤ 2π, 0 < β − α ≤ 2π. Suppose that g(z) is analytic
in Ω(r;α, β) with ρα,β(g) < ∞. Choose two real numbers α1 and β1 satisfying

α < α1 < β1 < β. Then, for every εj ∈ (0,
βj−αj

2 )(j = 1, 2, · · · , n− 1) outside
a set of linear measure zero, where n ≥ 2 is an integer, and

αj = α+

j−1∑
s=1

εs, βj = β −
j−1∑
s=1

εs (j = 2, 3, · · · , n− 1),

there exist K > 0 and M > 0 only depending on g(z), ε1, ε2, · · · , εn−1 and
Ω(αn−1, βn−1) not depending on z such that∣∣∣g′(z)

g(z)

∣∣∣ ≤ KrM (sin k(ς − α))−2

and ∣∣∣g(n)(z)
g(z)

∣∣∣ ≤ KrM
(
sin k(ς − α)

n−1∏
j=1

sin kj(ς − αj)
)−2

for all z ∈ Ω(αn−1, βn−1) outside an R-set, where we have k = π/(β − α) and
kj = π/(βj − αj) with j = 1, 2, · · · , n− 1.

Remark 2.5. An R-set in C is a countable union of discs whose radii have
finite sum (see [12]). Obviously, the union of two R-set is again an R-set. The
set of angles θ for which the ray reiθ meets infinitely many discs of a given
R-set has linear measure zero.

Lemma 2.6 ([13]). Let P (z) = anz
n+an−1z

n−1+ · · ·+a0, where n ∈ N+

and an = bne
iθn , bn > 0, θn ∈ [0, 2π). For any given ε ∈ (0, π/4n), we introduce

2n open angles

Sj =
{
z ∈ C : −θn

n
+ (2j − 1)

π

2n
+ ε < arg z < −θn

n
+ (2j + 1)

π

2n
− ε

}
,

where j = 0, 1, · · · , 2n− 1. Then there exists a positive number R = R(ε) such
that for |z| = r > R,

Re{P (z)} > bn(1− ε) sin(nε)rn,
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if z ∈ Sj when j is even; while

Re{P (z)} < −bn(1− ε) sin(nε)rn,

if z ∈ Sj when j is odd.

Lemma 2.7 ([19]). If g(z) is an entire function with finite positive order,
then there exists an angular domain Ω(α, β) with β − α ≥ π/ρ(g) such that

lim sup
r→∞

log+ log+ |g(reiθ)|
log r

= ρ(g)

for any θ ∈ (α, β).

Lemma 2.8 ([1, 7]). Let f(z) be a transcendental meromorphic function
of finite lower order µ, and f has a deficient value a. Let Λ(r) be a positive
function with Λ(r) = o(T (r, f)) as r → ∞. Then, for any fixed sequence of
Pólya peaks {rn} of order µ, we have

lim inf
rn→∞

mesDΛ(rn, a) ≥ min
{
2π,

4

µ
arcsin

√
δ(a, f)

2

}
,

where
DΛ(r,∞) =

{
θ ∈ [0, 2π) : |f(reiθ)| > eΛ(r)

}
and

DΛ(r, a) =
{
θ ∈ [0, 2π) : |f(reiθ)− a| < e−Λ(r)

}
, a ∈ C.

Remark 2.9 ([23]). The definition of Pólya peaks for T (r, f) was first
posed by Edrei (see [6]). A sequence of increasing and unbound positive num-
ber {rn} is called a sequence of Pólya peaks {rn} of order σ for T (r, f), for
sufficiently small εn, ε

′
n, K > 0 and t ∈ [r′n, r

′′
n], satisfies

(1)r′n → ∞, rn/r
′
n → ∞, r′′n/rn → ∞,

(2) lim inf
n→∞

log T (rn, f)/ log rn ≥ σ,

(3)T (t, f) < (1 + εn)(t/rn)
σT (rn, f),

(4)T (r, f)/tσ−ε′n ≤ KT (rn, f)/(rn)
σ−ε′n ,

outside a finite logarithmic measure.

Lemma 2.10. Suppose that h(z) and αv(z) are entire functions of finite
positive order. Take ε0 ∈ (0, π

4ρ(αv)
) such that π

ρ(h) >
π

ρ(αv)
+ 2ε0. If αv(z) has

a finite Borel exceptional value a, there exists a infinite sequence {rn}∞n=1 such
that

mesE0 ≥ min
{ π

ρ(αv)
− 2ε0,

π

ρ(h)
− π

ρ(αv)
− 2ε0

}
,

where

(6) E0 =

{
θ ∈ [0, 2π)

∣∣∣∣∣ |αv(rne
iθ)− a| < exp(−Kr

ρ(αv)
n )

|h(rneiθ)| ≥ exp(r
ρ(h)−η
n )

}
for any η > 0 and a positive constant K.
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Proof. By the decomposition theorem, we deduce

αv(z) = β(z)eP (z) + a,

where β(z) is an entire function with ρ(β) < ρ(αv) and P (z) is a polynomial
of degree ρ = ρ(αv). We may further assume that

P (z) = bρz
ρ + bρ−1z

ρ−1 + · · ·+ b0, ρ ∈ N+.

Take ε0 ∈ (0, π
4ρ), it follows from Lemma 2.6 that there exist 2ρ open angles

Sj such that

Re{P (z)} < −K0r
ρ, z ∈ ∪ρ

j=1S2j−1,(7)

where K0 is a positive number. For 0 ≤ j ≤ 2ρ−1, we set Lj = {arg z|z ∈ Sj}.
By Lemma 2.6, one further knows

(8) mesL0 = · · · = mesL2ρ−1 =
π

ρ
− 2ε0,

and

(9) Dist(Lj , Lj+2) =
π

ρ
+ 2ε0.

For 0 ≤ j1 ̸= j2 ≤ 2ρ− 1,

(10) Lj1 ∩ Lj2 = ∅.

Since ρ(β) < ρ, there exists a ε1 ∈ (0, ρ−ρ(β)
2 ) such that for sufficiently

large r,
|β(z)| ≤ M(r, β) < exp(rρ(β)+ε1).

Furthermore, one deduces from (7) that

|αv(z)− a| = |β(z)| exp(Re{P (z)})

≤ exp
(
rρ(β)+ε1 −K0r

ρ
)
< exp (−Krρ)

for z ∈
⋃ρ

j=1 S2j−1, where K is a positive number.

On the other hand, Lemma 2.7 gives that for any η > 0, there exist an
angular domain Ω(θ1, θ2) with θ2 − θ1 ≥ π/ρ(h) and a sequence {rn}∞n=1 with
rn → ∞ such that

|h(rneiθ)| ≥ exp(rρ(h)−η
n )

for any θ ∈ (θ1, θ2).
Let E0 be defined as in (6), one can deduce that E0 is non-empty and

mesE0 ≥ min

{
π

ρ(αv)
− 2ε0,

π

ρ(h)
− π

ρ(αv)
− 2ε0

}
from (8), (9), (10) and the discussion above. This completes the proof.
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3. PROOFS OF MAIN THEOREMS

The proof of Theorem 1.2. Let

τ = min

{
π

ρ(αv)
− 2ε0,

π

ρ(h)
− π

ρ(αv)
− 2ε0

}
.

We proceed by contradiction. Suppose that mesL(f) < τ . As we know, L(f)
is a non-empty closed set in [0, 2π) and Φ = (0, 2π) \ L(f) is open. So, Φ can
be covered by at most countably many open intervals and we further choose
finitely m open intervals Il = (al, bl), (l = 1, 2, ...,m) in Φ such that

mes(Φ \
m⋃
l=1

Il) <
τ −mesL(f)

4
.

For any θ ∈ Il, one knows θ ̸∈ L(f), which implies that there exist ζθ, nθ ∈ Z,
only depending on θ, such that (θ− ζθ, θ+ ζθ) ⊂ Il and for sufficiently large r,

Ω(r; θ − ζθ, θ + ζθ) ∩ J (f (nθ)(z + ϕ)) = ∅.

In other words, there exist a corresponding rθ and an unbounded Fatou com-
ponent Uθ of F(f (nθ)(z + ϕ)) such that Ω(rθ; θ − ζθ, θ + ζθ) ⊂ Uθ. Next, by
Lemma 2.1, F(f (nθ)(z + ϕ)) has no unbounded multi-connected component.
So, we can take an unbounded and connected closed section Γθ ⊂ ∂Uθ such
that C \ Γθ is simply connected. By the definition of hyperbolic domains, one
knows C\Γθ is hyperbolic and open. Take a ∈ Γθ \{∞}, CC\Γθ

(a) ≥ 1
2 . Based

on the fact that the mapping

f (nθ)(z + ϕ) : Ω(rθ; θ − ζθ, θ + ζθ) → C \ Γθ

is analytic, by Lemma 2.2 there exists a positive constant dθ such that for
sufficiently small εθ > 0,

(11)
∣∣∣f (nθ)(z + ϕ)

∣∣∣ = O(|z|dθ) as |z| → ∞,

where z ∈ Ω(rθ; θ − ζθ + εθ, θ + ζθ − εθ).
Let’s divide it into two cases:

• If nθ > 0, then∣∣∣f (nθ−1)(z + ϕ)
∣∣∣ ≤ ∫ z

0

∣∣∣f (nθ)(ξ + ϕ)
∣∣∣ |dξ|+O(1) = O(|z|dθ+1),

where the integral path is the segment of a straight line from 0 to z.
Similar to the above procedure, repeating the discussion nθ times, one
can deduce that

|f(z + ϕ)| ≤
∫ z

0

∣∣f ′(ξ + ϕ)
∣∣ |dξ|+O(1) = O(|z|dθ+nθ)



94 Y. Z. Li, Z. X. Liu, and H. Q. Sun 12

holds for z ∈ Ω(rθ; θ − ζθ + εθ, θ + ζθ − εθ). It ensures that

Sθ−ζθ+εθ,θ+ζθ−εθ(r, f(z + ϕ)) = O(log r).

• If nθ < 0, then (11) gives

(12) Sθ−ζθ+εθ,θ+ζθ−εθ(r, f
(nθ)(z + ϕ)) = O(log r),

and ρθ−ζθ+εθ,θ+ζθ−εθ(f
(nθ)(z+ ϕ)) = 0. Then, by Lemma 2.4, there exist

two constants M ′,K ′ such that∣∣∣∣f (nθ+1)(z + ϕ)

f (nθ)(z + ϕ)

∣∣∣∣ ≤ K ′rM
′

for all z ∈ Ω(rθ; θ − ζθ + εθ +
ε

|nθ| , θ + ζθ − εθ − ε
|nθ|) outside an R-set,

where ε is small constant. Furthermore, it follows from Lemma 2.3 that

Sθ−ζθ+εθ+
ε

|nθ |
,θ+ζθ−εθ− ε

|nθ |

(
r,
f (nθ+1)(z + ϕ)

f (nθ)(z + ϕ)

)
= O(log r).

Together with (12), one has

Sθ−ζθ+εθ+
ε

|nθ |
,θ+ζθ−εθ− ε

|nθ |
(r, f (nθ+1)(z + ϕ)) = O(log r).

Similarly, repeating the discussion |nθ| times, one can deduce that

Sθ−ζθ+εθ+ε,θ+ζθ−εθ−ε(r, f(z + ϕ)) = O(log r).

By shrinking the angular domain Ω(al, bl) appropriately, there exists suffi-
ciently small ς such that

(13) Sal+ς,bl−ς(r, f) = O(log r),

i.e., ρal+ς,bl−ς(f) = 0 for each l = 1, 2, · · · ,m. Again, by appropriately shrink-
ing the angular domain Ω(r; al + ς, bl − ς) for l = 1, 2, · · · ,m, we have that for
sufficiently large r, z + c0, · · · , z + ck ∈ Ω(r; al + ς, bl − ς). So, by Lemma 2.4,

(14)

∣∣∣∣f (i)(z + ci)

f(z + ci)

∣∣∣∣ ≤ Kir
Mi , (i = 1, 2, · · · , k)

for all z ∈ ∪m
l=1(Ω(r; al + 2ς, bl − 2ς)) outside an R-set, where we have that

Ki,Mi(i = 1, 2, · · · , k) are some positive constants.
In addition, (5) can be rewritten as follows:

|h(z)| ≤
s∑

j=1,j ̸=v

∣∣∣∣αj(z)

k∏
i=0

(
f (i)(z + ci)

f(z)

)nij

f(z)n0j+···+nkj−m

∣∣∣∣
+

∣∣∣∣αv(z)
k∏

i=0

(
f (i)(z + ci)

f(z)

)niv

f(z)n0v+···+nkv−m

∣∣∣∣.
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On the other hand, by Lemma 2.10,

mesE0 ≥ min

{
π

ρ(αv)
− 2ε0,

π

ρ(h)
− π

ρ(αv)
− 2ε0

}
= τ.

By the definition of Φ and ∪m
l=1Il ⊂ Φ, we have

mes(E0 ∩ (∪m
l=1Il)) = mes(Φ ∩ E0)−mes ((Φ \ ∪m

l=1Il) ∩ E0)

≥ mes[E0\(L(f) ∩ E0)]−mes(Φ \ ∪m
l=1Il)

≥ mesE0 −mesL(f)−mes(Φ \ ∪m
l=1Il)

≥ 3(τ −mesL(f))

4
> 0.

Then there exists an open interval (a0, b0) ⊂ ∪m
l=1(al + 2ς, bl − 2ς) such that

E0 ∩ (a0, b0) is non-empty.
Noting that

∑k
i=0 nij ≥ m for all 1 ≤ j ≤ s and∣∣∣∣f (i)(z + ci)

f(z)

∣∣∣∣ ≤ ∣∣∣∣f (i)(z + ci)

f(z + ci)

∣∣∣∣∣∣∣∣f(z + ci)

f(z)

∣∣∣∣, |αv(z)| ≤ |αv(z)− a|+ |a|.(15)

From (13), (14), (15) and Lemma 2.10 implies that for any θ ∈ E0 ∩ (a0, b0)

and ε ∈ (0,
ρ(h)−ρ(αj)

3 ), there exists a sequence {rn}(→ ∞) such that

exp(rρ(h)−ε
n ) ≤ |h(rneiθ)| ≤ KrMn

( s∑
j=1,j ̸=v

exp(r
ρ(αj)+ε
n ) + exp(−Krρ(αv)

n )

)
,

where K and M are constants. It is impossible for ρ(αj) < ρ(h), j ̸= v. We
thus complete the proof of Theorem 1.2.

The proof of Theorem 1.4. Let σ0 = min

{
2π, 4

µ(αv)
arcsin

√
δ(a,αv)

2

}
, we

deduce that

σ = min

{
2πω,

4

µ(αv)
arcsin

√
δ(a, αv)

2
− 2π(1− ω)

}
= σ0 − 2π(1− ω),

where ω ∈ (0, 1] ∩ (1− 2
πµ(αv)

arcsin

√
δ(a,αv)

2 , 1].

Assume that mesL(f) < σ, i.e., σ −mesL(f) > 0, and

σ0 −mesL(f) > 2π(1− ω).

For any given κ ∈
(
0, 1− 2π(1−ω)

σ0−mesL(f)

)
, we set

(16) χκ(r) = {θ ∈ [0, 2π) : log+ |h(reiθ)| ≤ κ log+M(r, h)}.
By the definition of proximity function m(r, h), one has

m(r, h) =
1

2π

∫
χκ(r)

log+ |h(reiθ)|dθ + 1

2π

∫
[0,2π)\χκ(r)

log+ |h(reiθ)|dθ
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≤ κmes(χκ(r))

2π
logM(r, h) +

(
1− mes(χκ(r))

2π

)
logM(r, h).

Since T (r, h) ∼ ω logM(r, h) outside a set F of finite logarithmic measure, for
sufficiently large r ̸∈ F , we have

mes(χκ(r)) ≤
2π(1− ω)

1− κ
< σ0 −mesL(f).

Set ϱ = σ0 − mesL(f) − mes(χκ(r)) > 0 and Φ = (0, 2π) \ L(f). As it was
shown in the proof of Theorem 1.2, one can choose finite many open intervals
Il = (al, bl), (l = 1, 2, ...,m) in Φ such that mes(Φ\

⋃m
l=1 Il) <

ϱ
4 . Similarly, one

also gets that

Sal+ς,bl−ς(r, f) = O(log r)

for l = 1, 2, · · · ,m, and∣∣∣∣f (i)(z + ci)

f(z + ci)

∣∣∣∣ ≤ Kir
Mi (i = 1, 2, · · · , k),

holds for z ∈ ∪m
l=1(Ω(r; al + 2ς, bl − 2ς)) outside an R-set.

However, let Λ(r) be any positive function with Λ(r) = o(T (r, αv)). Ap-
plying Lemma 2.8 for αv(z),

lim inf
rn→∞

mesDΛ(rn, a) ≥ min

{
2π,

4

µ(αv)
arcsin

√
δ(a, αv)

2

}
= σ0

holds for any fixed sequence of pólya peaks {rn}, where DΛ(rn, a) = {θ ∈
[0, 2π) : |αv(rne

iθ)− a| < e−Λ(rn)}. For positive function Λ(r),

(17) |αv(rne
iθ)− a| < e−Λ(rn) < 1.

For sufficiently large n, one has

(18) mesD0(rn, a) > σ0 −
ϱ

2
,

where D0(rn, a) = {θ ∈ [0, 2π) : |αv(rne
iθ)− a| < 1}.

From (18) and mes(Φ \ ∪m
l=1Il) <

ϱ
4 , we have

mes((∪m
l=1Il) ∩D0(rn, a)) = mes(Φ ∩D0(rn, a))−mes ((Φ\ ∪m

l=1 Il) ∩D0(rn, a))

≥ mesD0(rn, a)−mesL(f)−mes(Φ\ ∪m
l=1 Il))

≥ σ0 −mesL(f)− 3ϱ

4
(19)

≥ ϱ

4
+ mes(χκ(rn)) > 0.

Based on the above discussion, there exists an open interval I0 ⊂ ∪m
l=1Il such

that (I0 ∩D0(rn, a))\χκ(rn) is non-empty.
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For any θ ∈ (I0 ∩D0(rn, a))\χκ(rn), it follows from (16) and (17) that

|αv(rne
iθ)| < |a|+ 1, |h(rneiθ)| > [M(rn, h)]

κ

holds for sufficiently larger rn( ̸∈ F ). As showed in the proof of Theorem 1.2,
one has (13), (14) and (15). We thus get from (5) that for rn ̸∈ F ,

[M(rn, h)]
κ < |h(rneiθ)| ≤ KrMn

( s∑
j=1,j ̸=v

|αj(z)|+ |a|+ 1
)
, rn → ∞,

whereK,M are constants. This is impossible for transcendental entire function
h(z) and ρ(h) > ρ(αj)(j ̸= v). This completed the proof of Theorem 1.4.

The proof of Theorem 1.6. From (5), it is not difficult to verify that all
non-trivial solutions of (5) are transcendental. In the following, we assume
that

mesL(f) < min

{
2π,

π

µ(h)

}
= τ1.

Let Φ = (0, 2π) \ L(f). We also choose finitely many open intervals

Il = (al, bl) ⊂ Φ, (l = 1, 2, ...,m) such that mes(Φ \
⋃m

l=1 Il) <
τ1−mesL(f)

4 .

Let Λ(r) = max
1≤j≤s

{√
log r,

√
T (r, αj)

}
·
√

T (r, h) and T (r, αj) = S(r, h).

Since h(z) is transcendental, one has for j = 1, 2, · · · , s

(20) log r = o(Λ(r)), T (r, αj) = o(Λ(r)).

Applying Lemma 2.8 for entire function h(z), then for any fixed sequence of
pólya peaks {rn} and sufficiently large n, we have

mesDΛ(rn,∞) > τ1 −
τ1 −mesL(f)

2
,

where DΛ(rn,∞) =
{
θ ∈ [0, 2π) : |h(rneiθ)| > eΛ(rn)

}
.

As showed in (19), we get mes (DΛ(rn,∞) ∩ (∪m
l=1Il)) ≥

τ1−mesL(f)
4 . Then

there exists an open interval I0 ⊂
⋃m

l=1 Il such that

mes(DΛ(rn,∞) ∩ I0) ≥
τ1 −mesL(f)

4m
> 0.

According to the definition of DΛ(rn,∞), one has

(21)

∫
DΛ(rn,∞)∩I0

log+ |h(rneiθ)|dθ ≥ τ1 −mesL(f)

4m
Λ(rn).

Furthermore, it can be concluded from (5) that

(22) |h(z)| ≤
s∑

j=1

∣∣∣∣αj(z)

k∏
i=0

(
f (i)(z + ci)

f(z)

)nij

f(z)
∑k

i=0 nij−m

∣∣∣∣.
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It follows from the proof of Theorem 1.2 that Equations (13), (14) and (15)
are verified. Together with (21), (22), we obtain

τ1 −mesL(f)

4m
Λ(rn) ≤

∫
DΛ(rn,∞)∩I0

log+ |h(rneiθ)|dθ

≤
s∑

j=1

m(rn, αj) +O(log rn),

a contradiction is derived from (20). Hence,

mesL(f) ≥ min
{
2π,

π

µ(h)

}
.

Moreover, we further assume that ρ(h) > ρ(αj) for 1 ≤ j ≤ s, and
we will show that there exists a closed interval in L(f) with the measure at
least min{2π, π/ρ(h)}. By Lemma 2.7, there exists an interval (θ1, θ2) with
θ2 − θ1 ≥ min{2π, π/ρ(h)} such that

(23) lim sup
r→∞

log+ log+ |h(reiθ)|
log r

= ρ(h).

If [θ1, θ2] ̸⊆ L(f), there exists an open subinterval (ϑ1, ϑ2) ⊂ (θ1, θ2) \ L(f)
such that Ω(r;ϑ1, ϑ2) ⊂ F(f (n)(z+ϕ)) for some n ∈ Z and sufficiently large r.
Similarly, one concludes from (22) that

log+ |h(reiθ)| ≤
s∑

j=1

log+ |αj(re
iθ)|+O(log r) ≤ rρ(αj)+ε ≤ rρ(h)−ε,

where ε can be selected such that 0 < ε < min
1≤j≤s

{
ϑ2 − ϑ1

4
,
ρ(h)− ρ(αj)

3

}
,

which contradicts (23). That completes the proof of Theorem 1.6.
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