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In this paper, we study connections between composition operators on Sobolev
spaces and mappings defined by p-moduli inequalities (p-capacity inequalities).
We prove that weighted moduli inequalities lead to composition operators on
corresponding Sobolev spaces and conversely, that composition operators on
Sobolev spaces imply weighted moduli inequalities.
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1. INTRODUCTION

In this paper, we study connections between composition operators on
Sobolev spaces and mappings defined by weighted p-moduli inequalities of
curves families or corresponding weighted p-capacity inequalities. In the case
p = n, the mappings defined by conformal moduli inequalities are quasiconfor-
mal mappings [1, 34] and the conformal modules method is one of the basic
methods in the geometric theory of quasiconformal mappings [34].

The topological mappings defined by p-capacity inequalities were firstly
studied in [5]. In this article [5], the notion of p-distortion of mappings was in-
troduced and the Lipschitz properties of such mappings was proved in the case
n − 1 < p < ∞, p ̸= n. The topological mappings defined by (p, q)-capacity
inequalities were studied in [30] in connections with composition operators on
Sobolev spaces. In [30, 40] the weak differentiability of inverse mappings and
their Hölder continuity properties were proved in the case n− 1 < q < p < ∞.
Continuous mappings satisfying (p, q)-capacity inequalities were considered in
[32]. In this work [32], Liouville type theorems were proved and removabil-
ity properties of singular sets were considered. In the recent paper [37] (see
also [31, 36]), mappings which satisfy weighted (p, q)-capacity inequalities were
considered in connection with problems of the geometric theory of composition
operators on Sobolev spaces [30, 41, 42].
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Significant contributions to the theory of mappings defined by moduli
inequalities belong to the Donetsk geometric mapping theory school. In par-
ticular, for mappings satisfying to weighted Poletsky’s type inequalities for p-
modulus of families of curves, their differentiability almost everywhere and the
local integrability of partial derivatives were established [28]. Some problems
concerning the local behavior of such mappings and the problem of removabil-
ity of an isolated singular point were investigated in [6, 7, 27]. In particular,
mappings with a distortion of the modulus of order n − 1 < p < n have no
essential singular points, that fundamentally distinguishes them from analytic
functions and mappings with bounded distortion, see [6, Theorem 1.1]. Let
us note that some results concerning of weighted inequalities with respect to
the p-modulus for such classes of mappings were obtained in [29]. It should
be noted that the similar theory of mappings was developing independently in
the context of directly weighted p-moduli, that can be found in works [2, 3].

Composition operators on Sobolev spaces arise in the geometric analysis
of Sobolev spaces [9, 13, 14] and are closely connected with the quasiconformal
Reshetnyak problem [38]. In series of works [30, 35, 40, 41, 42] and [10] was
founded the geometric theory of composition operators on Sobolev spaces. This
theory has significant applications in the spectral theory of elliptic equations,
see, for example, [11, 16, 17].

The composition operators on Sobolev spaces are generated by weak
(p, q)-quasiconformal mappings [10, 30, 40] and allow characterization in the
terms of capacity inequalities. Hence, there is a connection between the geo-
metric theory of composition operators on Sobolev spaces and the theory of
mappings defined moduli inequalities. Q-homeomorphisms [22] were consid-
ered in connection with composition operators on Sobolev spaces in [25, 26].

In the present work, we give connection between mappings defined by
weighted moduli inequalities and weak (p, q)-quasiconformal mappings (map-
pings that generate composition operators on Sobolev spaces). Namely, we
prove the following statement:

Let a homeomorphism φ : Ω → Ω̃ satisfy to the p-modulus inequality

Mp (φΓ) ⩽
∫
Ω

Q(x) · ρp(x)dx, n− 1 < p < ∞,

with a non-negative function Q ∈ L1(Ω). Then φ generates the bounded
composition operator

φ∗ : L1
p′(Ω̃) → L1

1(Ω), p′ = p/(p− n+ 1).
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The inverse assertion states:
Let a homeomorphism φ : Ω → Ω̃ generate a bounded composition oper-

ator
φ∗ : L1

p(Ω̃) → L1
n−1(Ω), n− 1 < p < ∞ .

Suppose that the mapping φ satisfies Luzin’s N -property. Then

Mp′ (φΓ) ⩽
∫
Ω

Q(x) · ρp′(x)dx, p ′ =
p

p− n+ 1
,

with a non-negative function Q ∈ L1(Ω).
The suggested methods are based on the geometric theory of composition

operators on Sobolev spaces and moduli inequalities.

2. SOBOLEV SPACES AND COMPOSITION OPERATORS

2.1. Sobolev spaces

Let Ω be an open subset of Rn. The Sobolev space W 1
p (Ω), 1 ⩽ p ⩽ ∞,

is defined [23] as a Banach space of locally integrable weakly differentiable
functions f : Ω → R equipped with the following norm:

∥f | W 1
p (Ω)∥ = ∥f | Lp(Ω)∥+ ∥∇f | Lp(Ω)∥,

where ∇f is the weak gradient of the function f , i. e. ∇f = ( ∂f
∂x1

, ..., ∂f
∂xn

).

The homogeneous seminormed Sobolev space L1
p(Ω), 1 ⩽ p ⩽ ∞, is de-

fined as a space of locally integrable weakly differentiable functions f : Ω → R
equipped with the following seminorm:

∥f | L1
p(Ω)∥ = ∥∇f | Lp(Ω)∥.

In the Sobolev spaces theory, a crucial role belongs to capacity as an outer
(capacitary) measure. This measure regulates some natural properties (for
example, convergence properties) of corresponding Sobolev spaces [21, 23]. In
accordance to this approach, elements of Sobolev spaces W 1

p (Ω) are equivalence
classes up to a set of p-capacity zero [24].

Recall the definition of the capacity [12, 21, 23]. Suppose Ω is an open
set in Rn and F ⊂ Ω is a compact set. The p-capacity of F with respect to Ω
is defined by

capp(F ; Ω) = inf{∥∇f |Lp(Ω)∥p},
where the infimum is taken over all functions f ∈ C0(Ω) ∩ L1

p(Ω) such that
f ≥ 1 on F and which are called admissible functions for the compact set
F ⊂ Ω. If U ⊂ Ω is an open set, we define

capp(U ; Ω) = sup{capp(F ; Ω) : F ⊂ U, F is compact}.
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In the case of an arbitrary set E ⊂ Ω, we define the inner p-capacity

cap
p
(E; Ω) = sup{capp(F ; Ω) : F ⊂ E ⊂ Ω, F is compact},

and the outer p-capacity

capp(E; Ω) = inf{capp(U ; Ω) : E ⊂ U ⊂ Ω, U is open}.

A set E ⊂ Ω is called p-capacity measurable, if cap
p
(E; Ω) = capp(E; Ω).

Let E ⊂ Ω be a p-capacity measurable set. The value

capp(E; Ω) = cap
p
(E; Ω) = capp(E; Ω)

is called the p-capacity measure of the set E ⊂ Ω. Borel subsets E ⊂ Ω are
p-capacity measurable [21].

The mapping φ : Ω → Rn belongs to the Sobolev space W 1
1,loc(Ω), if

its coordinate functions belongs to W 1
1,loc(Ω). In this case, the formal Jacobi

matrixDφ(x) and its determinant (Jacobian) J(x, φ) are well defined at almost
all points x ∈ Ω. The norm |Dφ(x)| is the operator norm of Dφ(x),

Let us recall the change of variable formula in the Lebesgue integral [4, 20].
Suppose a homeomorphism φ : Ω → Ω̃ is such that there exists a collection
of closed sets Ak ⊂ Ak+1 ⊂ Ω, k = 1, 2, ..., for which restrictions φ|Ak

are
Lipschitz mappings on the sets Ak and∣∣∣∣Ω \

∞⋃
k=1

Ak

∣∣∣∣ = 0.

Then there exists a Borel set S ⊂ Ω, |S| = 0, such that on the set Ω \ S the
homeomorphism φ has the Luzin N -property (the image of a set of measure
zero has measure zero) and the change of variable formula

(1)

∫
E

f ◦ φ(x)|J(x, φ)| dx =

∫
Ω̃\φ(S)

f(y) dy

holds for every measurable set E ⊂ Ω and every non-negative measurable
function f : Ω̃ → R.

Note, that Sobolev homeomorphisms of the class W 1
1,loc(Ω) satisfy the

conditions of the change of variable formula [20] and, therefore, for Sobolev
homeomorphisms the change of variable formula (1) holds.

If the mapping φ possesses the Luzin N -property, then |φ(S)| = 0 and
the second integral can be rewritten as the integral on Ω̃. Note, that Sobolev
homeomorphisms of the class L1

p(Ω), p ⩾ n, possess the Luzin N -property [39].
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2.2. Composition operators and regularity of inverse mappings

Let Ω and Ω̃ be domains in the Euclidean space Rn. Then a homeomor-
phism φ : Ω → Ω̃ generates a bounded composition operator

φ∗ : L1
p(Ω̃) → L1

q(Ω), 1 ⩽ q ⩽ p ⩽ ∞,

by the composition rule φ∗(f) = f ◦ φ, if for any function f ∈ L1
p(Ω̃), the

composition φ∗(f) ∈ L1
q(Ω) defined quasi-everywhere in Ω and there exists a

constant Kp,q(φ; Ω) < ∞ such that

∥φ∗(f) | L1
q(Ω)∥ ⩽ Kp,q(φ; Ω)∥f | L1

p(Ω̃)∥.

Recall that the p-dilatation [5] of a Sobolev mapping φ : Ω → Ω̃ at a
point x ∈ Ω defined as

Kp(x) = inf{k(x) : |Dφ(x)| ⩽ k(x)|J(x, φ)|
1
p }.

The following theorem gives a characterization of composition operators
in terms of integral characteristics of mappings of finite distortion. Recall that
a weakly differentiable mapping φ : Ω → Rn is the mapping of finite distortion
if Dφ(x) = 0 for almost all x from Z = {x ∈ Ω : J(x, φ) = 0} [39].

Theorem 2.1. The homeomorphism φ : Ω → Ω̃ between two domains Ω
and Ω̃ generates a bounded composition operator

φ∗ : L1
p(Ω̃) → L1

q(Ω), 1 ⩽ q ⩽ p ⩽ ∞,

if and only if φ ∈ W 1
q,loc(Ω), has finite distortion, and

Kp,q(φ; Ω) := ∥Kp | Lκ(Ω)∥ < ∞, 1/q − 1/p = 1/κ (κ = ∞, if p = q).

The norm of the operator φ∗ is estimated as ∥φ∗∥ ⩽ Kp,q(φ; Ω).

This theorem, in the case p = q = n, was proved in [38], the case p = q > n
was proved in [35] (see, also [10]). The general case q ≤ p < ∞ was proved in
[30] (see, also [40]) and the limit case p = ∞ was considered in [15].

Let us recall, that homeomorphisms φ : Ω → Ω̃ which satisfy conditions
of Theorem 2.1 are called weak (p, q)-quasiconformal mappings [10, 40].

In the case of weak (p, q)-quasiconformal mappings, the following compo-
sition duality property was introduced in [30] (the detailed proof can be found
in [18]):

Theorem 2.2. Let the homeomorphism φ : Ω → Ω̃ between two domains
Ω and Ω̃ generate a bounded composition operator

φ∗ : L1
p(Ω̃) → L1

q(Ω), n− 1 < q ⩽ p < ∞.
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Then the inverse mapping φ−1 : Ω̃ → Ω generates a bounded composition
operator (

φ−1
)∗

: L1
q′(Ω) → L1

p′(Ω̃),

where p′ = p/(p − n + 1), q′ = q/(q − n + 1). In the case n = 2, this

theorem is correct for 1 ⩽ q ⩽ p < ∞, the inverse assertion is also correct and
p′′ = p′/(p′ − 1) = p, q′′ = q′/(q′ − 1) = q.

The limit case of this theorem p = ∞ and q = n − 1 was considered in
[15] in the frameworks of the weak inverse theorem for Sobolev spaces.

In the present work, we consider the case q = n− 1 < p < ∞.

Theorem 2.3. Let the homeomorphism φ : Ω → Ω̃ between two domains
Ω and Ω̃ possess the Luzin N -property and generate a bounded composition
operator

φ∗ : L1
p(Ω̃) → L1

n−1(Ω), n− 1 < p < ∞.

Then the inverse mapping φ−1 : Ω̃ → Ω generates a bounded composition

operator (
φ−1

)∗
: L1

∞(Ω) → L1
p′(Ω̃),

where p′ = p/(p−n+1). In the case n = 2 the inverse assertion is also correct

and p′′ = p′/(p′ − 1) = p.

Proof. Since φ : Ω → Ω̃ generates a bounded composition operator

φ∗ : L1
p(Ω̃) → L1

n−1(Ω), n− 1 < p < ∞,

then by [30] the mapping φ ∈ W 1
n−1,loc(Ω) and has a finite distortion. Be-

cause φ possesses the Luzin N -property, then the inverse mapping belongs to
W 1

1,loc(Ω̃) and is a mapping of finite distortion [15]. Hence

|Dφ−1(y)| ≤ |Dφ(x)|n−1

|J(x, φ)|
,

for almost all x ∈ Ω \ (S ∪ Z), y = φ(x) ∈ Ω̃ \ φ (S ∪ Z), and |Dφ−1(y)| = 0
for almost all y ∈ φ(S), where Z = {x ∈ Ω : J(x, φ) = 0} and S is the singular
set in the change of variables formula (1). Because the measure of S is zero
and the mapping φ has N -property then the measure of φ(S) is also zero.
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Therefore,∫
Ω̃

|Dφ−1(y)|p′ dy =

∫
Ω̃\φ(S∪Z)

|Dφ−1(y)|p′dy ≤
∫

Ω̃\φ(S∪Z)

(
|Dφ(φ−1(y))|n−1

|J(φ−1(y), φ)|

)p′

dy

=

∫
Ω\(S∪Z)

(
|Dφ(x)|n−1

|J(x, φ)|

)p′

|J(x, φ)| dx

=

∫
Ω

(
|Dφ(x)|p

|J(x, φ)|

) n−1
p−(n−1)

dx < ∞,

by Theorem 2.1. Hence [15], φ−1 : Ω̃ → Ω generates a bounded composition
operator (

φ−1
)∗

: L1
∞(Ω) → L1

p′(Ω̃),
where p′ = p/(p− n+ 1).

3. COMPOSITION OPERATORS AND MODULI
INEQUALITIES

3.1. Modulus and capacity

Let Γ be a family of curves in Rn. Denote by adm(Γ) the set of Borel
functions (admissible functions) ρ : Rn → [0,∞] such that the inequality∫

γ

ρ ds ⩾ 1

holds for locally rectifiable curves γ ∈ Γ.
Let Γ be a family of curves in Rn, where Rn is a one point compactification

of the Euclidean space Rn. The quantity

Mp(Γ) = inf

∫
Rn

ρp dx

is called the p-module of the family of curves Γ [22]. The infimum is taken over
all admissible functions ρ ∈ adm(Γ).

Let Ω be a bounded domain in Rn and F0, F1 be disjoint non-empty
compact sets in the closure of Ω. Let Mp(Γ(F0, F1; Ω)) denote the moduli of a
family of curves which connect F0 and F1 in Ω. Then [22]

(2) Mp(Γ(F0, F1; Ω)) = capp(F0, F1; Ω) ,

where capp(F0, F1; Ω) is the p-capacity of the condenser (F0, F1; Ω) [23].
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Suppose that a homeomorphism φ : Ω → Ω̃ between two domains Ω and
Ω̃ satisfies the moduli inequality

(3) Mp (φΓ) ⩽
∫
Ω

Q(x) · ρp(x)dx

with a non-negative measurable function Q for every family Γ of rectifiable
curves in Ω and every admissible function ρ for Γ. Such homeomorphisms are
called Q-homeomorphisms.

The next section is devoted to connections between Q-homeomorphisms
and the composition operators in the case Q ∈ L1(Ω).

3.2. Composition operators and Q-homeomorphisms

Firstly, we define two dilatation functions for Sobolev mappings of finite
distortion φ : Ω → Ω̃.

The outer p-dilatation is the following quantity

KO
p (x, φ) =

{ |Dφ(x)|p
|J(x,φ)| , J(x, φ) ̸= 0,

0, J(x, φ) = 0.

The inner p-dilatation is the following quantity

KI
p (x, φ) =

{ |J(x,φ)|
l(Dφ(x))p , J(x, φ) ̸= 0,

0, J(x, φ) = 0,

where l(Dφ(x)) = min
h=1

|Dφ(x) · h| for almost all x ∈ Ω.

Theorem 3.1. Let the homeomorphism φ : Ω → Ω̃ satisfy the moduli
inequality

(4) Mp (φΓ) ⩽
∫
Ω

Q(x) · ρp(x)dx, n− 1 < p < ∞,

with a non-negative function Q ∈ L1(Ω). Then φ generates the bounded com-
position operator

φ∗ : L1
p′(Ω̃) → L1

1(Ω), p′ = p/(p− n+ 1).

Proof. Because φ satisfies the moduli inequality with Q ∈ L1(Ω), then
by [28] the mapping φ ∈ ACL(Ω), has finite distortion and the inequality

(5) |Dφ(x)|p ⩽ C(n, p)|J(x, φ)|p−n+1Qn−1(x)
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holds for almost all x ∈ Ω. Hence(
|Dφ(x)|

p
p−n+1

|J(x, φ)|

) p−n+1
n−1

⩽ C(n, p)Q(x) for almost all x ∈ Ω.

Since Q ∈ L1(Ω), we have∫
Ω

(
|Dφ(x)|

p
p−n+1

|J(x, φ)|

) p−n+1
n−1

dx ⩽ C(n, p)

∫
Ω

Q(x) dx < ∞.

Then, by Theorem 2.1, the mapping φ generates the bounded composition
operator φ∗ : L1

p′(Ω̃) → L1
q′(Ω), where p

′ = p/(p−n+1) and the number q′ = 1
is the solution of the equation

q′

p′ − q′
=

p− n+ 1

n− 1
.

In [8], the integrability of Jacobians of open discrete mappings with con-
trolled p-modulus was considered. As a consequence of Theorem 3.1, we ob-
tain that homeomorphisms which satisfy the weighted p-moduli inequality (4)
posses measure distortion properties as weak (p′, 1)-quasiconformal mappings
[40, 41].

Now, using the composition duality property in the case of planar domains
Ω, Ω̃ ⊂ R2, we obtain:

Theorem 3.2. Let the homeomorphism φ : Ω → Ω̃, Ω, Ω̃ ⊂ R2, satisfy
the moduli inequality

Mp (φΓ) ⩽
∫
Ω

Q(x) · ρp(x)dx, 1 ⩽ p < ∞,

with a non-negative function Q ∈ L1(Ω). Then, the inverse mapping φ−1 :
Ω̃ → Ω generates the bounded composition operator(

φ−1
)∗

: L1
∞(Ω) → L1

p(Ω̃).

In particular, φ−1 ∈ L1
p(Ω̃).

Now, we prove the inverse property.

Theorem 3.3. Let the homeomorphism φ : Ω → Ω̃ generate the bounded
composition operator

φ∗ : L1
p(Ω̃) → L1

n−1(Ω), n− 1 < p < ∞ .

Suppose that the mapping φ satisfies Luzin’s N -property. Then φ is a Q-
homeomorphism with respect to p ′-modulus with Q(x) = KI

p ′(x, φ) ∈ L1(Ω),
where p ′ = p

p−n+1 .
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Proof. On the first step, we prove that under conditions of the theorem
the inner distortion functionKI

p ′(x, φ) ∈ L1(Ω). Since φ generates the bounded
composition operator

φ∗ : L1
p(Ω̃) → L1

n−1(Ω), n− 1 < p < ∞ .

then, by Theorem 2.3, the inverse mapping φ−1 : Ω̃ → Ω generates a bounded
composition operator(

φ−1
)∗

: L1
∞(Ω) → L1

p′(Ω̃), p′ =
p

p− n+ 1

and belongs to the Sobolev space L1
p′(Ω̃) [15].

Because the inverse mapping is a mapping of finite distortion, then
by [19]∫

Ω

|J(x, φ)|
l(Dφ(x))p′

dx =

∫
Ω\Z

|J(x, φ)|
l(Dφ(x))p′

dx =

∫
Ω\Z

|Dφ−1(φ(x))|p′ |J(x, φ)| dx

=

∫
Ω̃

|Dφ−1(y)|p′ dy < ∞.

Now, by the definition of the Q-homeomorphism with respect to p ′-
modulus, we have to show that for every family Γ of curves in Ω and every
ρ ∈ adm(Γ)

Mp ′(φΓ) ⩽
∫
Ω

KI
p ′(x, φ)ρ p ′

(x) dx.

First, note that by Theorem 2.1, φ ∈ W 1
n−1,loc(Ω). Also, φ

−1 ∈ W 1
p ′,loc(Ω̃)

by Theorem 2.2. It implies, that φ−1 ∈ ACLp ′

loc(Ω̃), is differentiable a.e. (see
[33, Lemma 3]).

By Fuglede’s theorem (see [34], p. 95), if Γ̃ is the family of all curves
γ ∈ φΓ for which φ−1 is absolutely continuous on all closed subcurves of γ,
then Mp ′(φΓ) = Mp ′(Γ̃). Then, for given ρ ∈ adm(Γ), one consider

ρ̃(y) =

{
ρ(φ−1(y))|Dφ−1(y)|, y ∈ Ω̃,

0, otherwise.

Then, for γ̃ ∈ Γ̃ ∫
γ̃

ρ̃ds ⩾
∫

φ−1◦γ̃

ρds ⩾ 1,

and consequently ρ̃ ∈ adm(Γ̃).
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We denote by Z0 the set of all points y ∈ Ω̃, where Jφ−1(y) = 0. By
change of variable formula (see [4, Theorem 3.2.5]), we obtain that

Mp ′(φΓ) = Mp ′(Γ̃) ⩽
∫
Ω̃

ρ̃p
′
dy

=

∫
Ω̃

ρp
′
(φ−1(y))|Dφ−1(y)|p ′

dy =

∫
Ω̃\Z0

ρp
′
(φ−1(y))

l(Dφ(φ−1(y)))p ′ dy

=

∫
Ω̃

ρp
′
(φ−1(y))KI

p ′(φ−1(y), φ)Jφ−1(y) dy ⩽
∫
Ω

KI
p ′(x, φ)ρp

′
(x) dx

which completes the proof.

In the planar case Ω, Ω̃ ⊂ R2, we have the following theorem:

Theorem 3.4. Let φ : Ω → Ω̃ be a homeomorphism of the domains
Ω, Ω̃ ⊂ R2. Then φ satisfies the moduli inequality

(6) Mp (φΓ) ⩽
∫
Ω

Q(x) · ρp(x)dx, 1 < p < ∞,

with a non-negative function Q ∈ L1(Ω), if and only if φ generates the bounded
composition operator

φ∗ : L1
p′(Ω̃) → L1

1(Ω), p′ = p/(p− 1).
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