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The functions on Rd−1 × (0,∞) (d ≥ 3) that are annihilated by the Laplace–
Beltrami operator corresponding to the line-element dl2 = x2

d(dx
2
1+. . .+dx2

d) are
called modified harmonic. In this note, we prove a conjecture of Heinz Leutwiler
concerning the space of homogeneous modified harmonic polynomials of a fixed
degree.
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1. INTRODUCTION

The “upper half space”
{(

x1, . . . , xd
)

∈ Rd |xd > 0
}

of Rd (d ≥ 3)
equipped with the line-element dl2 = x2d

(
dx21 + · · ·+ dx2d

)
becomes a Rieman-

nian manifold, whose Laplace–Beltrami operator is 1
x2
d

(
∆ + d−2

xd
· ∂
∂xd

)
, where

∆ = ∂2

∂x2
1
+ . . .+ ∂2

∂x2
d
. The functions u that are annihilated by this operator or,

more generally, the solutions of

xd ·∆u+ (d− 2) · ∂u

∂xd
= 0

(waiving the restriction xd > 0) are called modified harmonic functions. It is
straightforward to see that this property passes from u to ∂u

∂x1
, . . . , ∂u

∂xd−1
.

In [1], Heinz Leutwiler introduces the space Hn(Rd) of all homogeneous
modified harmonic polynomials of degree n on Rd (i.e., modified harmonic
functions on Rd which are homogeneous polynomials of degree n) and shows
that its dimension equals

(
d−2+n
d−2

)
. He further mentions that if u is a modified

harmonic function, then so is its modified Kelvin transform,

M [u](x1, . . . , xd) :=
1

r2d−4
u
(x1
r2

, · · · , xd
r2

)
,
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where r =
√

x21 + . . .+ x2d. This can be verified by an elementary, but lengthy

computation.

Now, since u(x1, . . . , xd) :=
1

r2d−4
is a modified harmonic function (being

the modified Kelvin transform of 1), so are its partial derivatives

uα1...αd−1
:=

∂nu

∂xα1
1 . . . ∂x

αd−1

d−1

for α1, . . . , αd−1 ∈ N∪{0}, α1+ . . .+αd−1 = n, as well as their modified Kelvin
transforms

vα1...αd−1
(x1, . . . , xd) := M [uα1...αd−1

](x1, . . . , xd)

(1) =
1

r2d−4
uα1...αd−1

(x1
r2

, . . . ,
xd
r2

)
= r2n+2d−4 · ∂nr4−2d

∂xα1
1 . . . ∂x

αd−1

d−1

,

since uα1...αd−1
is homogeneous of degree 4 − 2d − n (in fact, r4−2d is homo-

geneous of degree 4 − 2d, and every partial derivative reduces the degree of
homogeneity by 1). Setting R := r2, it follows by induction that uα1...αd−1

has
the form R2−d−n ·P , where P is a polynomial, whence vα1...αd−1

is a polynomial
too. Altogether, vα1...αd−1

∈ Hn(Rd).

H. Leutwiler conjectured that the
(
d−2+n
d−2

)
polynomials vα1...αd−1

∈ Hn(Rd)

are linearly independent (and therefore, form a basis of Hn(Rd)) (see [1]). The
purpose of this article is to prove this conjecture. To this end, we follow the
same reasoning as in our earlier paper [3], where we had proven the older par-
tial conjecture of Leutwiler (see [2]), which concerned the four-dimensional case
(d = 4). We remark that the general proof given here also covers the case of
the lowest significant dimension d = 3.

Finally, we close this introduction by listing the polynomials vα1...αd−1
for

α1 + . . .+ αd−1 ≤ 2:
v0...0 = 1;
v0...010...0 = (4− 2d)xi (the index 1 is at the i-th position);
v0...020...0 = (4− 2d)r2+(4− 2d)(2− 2d)x2i (the index 2 is at the i-th position);
v0...010...010...0 = (4 − 2d)(2 − 2d)xixj (the two indices 1 are at the positions i
and j).

2. PROOF OF LEUTWILER’S CONJECTURE

We introduce the new variables X1 := x21, X2 := x22 , . . . , Xd := x2d. Then,
R = r2 = X1 +X2 + · · ·+Xd. Furthermore, we relate every function f of the
variables X1, . . . , Xd to the function

g(x1, . . . , xd) := f (X1, . . . , Xd)|X1=x2
1,...,Xd=x2

d
,
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where we assume x1, . . . , xd ≥ 0. The following relations take place for the
partial derivatives of f and g:

∂g

∂xi
(x1, . . . , xd) =

∂f

∂Xi
(X1, . . . , Xd)

∣∣∣∣
X1=x2

1,...,Xd=x2
d

· 2xi

=

[
∂f

∂Xi
(X1, . . . , Xd) · 2

√
Xi

]∣∣∣∣
X1=x2

1,...,Xd=x2
d

for 1 ≤ i ≤ d, which we shall express in the shorter form

∂g

∂xi
= 2
√

Xi ·
∂f

∂Xi
.

Under this convention, which we shall always use in the sequel, it further holds
for 1 ≤ i, j ≤ d, i ̸= j:

∂2g

∂x2i
= 2 · ∂f

∂Xi
+ 4Xi ·

∂2f

∂X2
i

,
∂2g

∂xi∂xj
= 4
√
XiXj ·

∂2f

∂Xi∂Xj
,

∂3g

∂x3i
= 12

√
Xi ·

∂2f

∂X2
i

+ 8Xi

√
Xi ·

∂3f

∂X3
i

etc.

For the proof of the conjecture, we need the next three lemmas.

Lemma 1. Let the notation be as above.

1. For α ∈ 2N ∪ {0} and i ∈ {1, . . . , d} it holds:

∂αg

∂xαi
=

α
2∑

j=0

ci,α,jX
j
i ·

∂
α
2
+jf

∂X
α
2
+j

i

with certain ci,α,j ∈ N.

2. For α ∈ 2(N ∪ {0}) + 1 and i ∈ {1, . . . , d} it holds:

∂αg

∂xαi
=

α−1
2∑

j=0

ci,α,j+ 1
2
X

j+ 1
2

i · ∂
α+1
2

+jf

∂X
α+1
2

+j

i

with certain ci,α,j+ 1
2
∈ N.

Proof. 1. We only have to verify the inductive step from α to α + 2.
Let A denote the right side of the assertion for an even α. Then,

∂A

∂xi
=

α
2∑

j=0

2ci,α,j

(
jX

j− 1
2

i · ∂
α
2
+jf

∂X
α
2
+j

i

+X
j+ 1

2
i · ∂

α
2
+j+1f

∂X
α
2
+j+1

i

)
,
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∂2A

∂x2i
=

α
2∑

j=0

4ci,α,j

[
j

(
j − 1

2

)
Xj−1

i · ∂
α
2
+jf

∂X
α
2
+j

i

+

(
2j +

1

2

)
Xj

i ·
∂

α
2
+j+1f

∂X
α
2
+j+1

i

+

Xj+1
i · ∂

α
2
+j+2f

∂X
α
2
+j+2

i

]

=

α
2
+1∑

j=0

[2(4j + 1)ci,α,j + 4ci,α,j−1]X
j
i ·

∂
α
2
+j+1f

∂X
α
2
+j+1

i

+

α
2
−1∑

j=0

4(j + 1)

(
j +

1

2

)
ci,α,j+1 ·Xj

i ·
∂

α
2
+j+1f

∂X
α
2
+j+1

i

=

α+2
2∑

j=0

[4ci,α,j−1 + 2(4j + 1)ci,α,j + 2(j + 1)(2j + 1)ci,α,j+1]X
j
i ·

∂
α+2
2

+jf

∂X
α+2
2

+j

i

,

where we have set ci,α,−1 = ci,α,α+2
2

= ci,α,α+4
2

= 0. This completes the

proof for even α, as it is inductively clear that the square brackets do not
vanish.

2. If α is odd, then α− 1 is even, so by what has just been proven,

∂αg

∂xαi
=

α−1
2∑

j=0

2ci,α−1,j

(
jX

j− 1
2

i · ∂
α−1
2

+jf

∂X
α−1
2

+j

i

+X
j+ 1

2
i · ∂

α−1
2

+j+1f

∂X
α−1
2

+j+1

i

)

=

α−1
2∑

j=0

[2ci,α−1,j + 2(j + 1)ci,α−1,j+1]X
j+ 1

2
i · ∂

α+1
2

+jf

∂X
α+1
2

+j

i

.

Obviously, the square brackets do not vanish in this case either.

Remark 1. Any confusion in the coefficients regarding the two cases of
the lemma is avoided by the fact that the third index in the coefficients is an
integer only in case 1.

Lemma 2. The functions (X1, . . . , Xd−1) 7→Xi1
1 . . . X

id−1

d−1 , where we have

that i1, . . . , id−1 run through 1
2N ∪ {0}, are linearly independent.

Proof. After the substitution X1 = x21, . . . , Xd−1 = x2d−1, these functions

become the monomials x2i11 . . . x
2id−1

d−1 , which obviously are linearly independent.
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Lemma 3. Let k ∈ N and h(X1, . . . , Xd) =
1

(X1+...+Xd)k
. Then, for every

l ∈ N ∪ {0} it holds that

∂lh

∂X l
1

= . . . =
∂lh

∂X l
d

=
(−1)l · (k)l

(X1 + . . .+Xd)k+l
,

where (k)l :=
∏l−1

i=0(k + i) is the Pochhammer symbol.

Proof. The claim follows easily by induction.

We now start with the actual proof of the conjecture.

For the function f defined by f(X1, . . . , Xd) = 1
(X1+···+Xd)d−2 , the last

lemma gives for α1, α2, . . . , αd−1 ∈ N ∪ {0}:
∂α1f(X1, . . . , Xd)

∂Xα1
1

=

(−1)α1 · (d− 2)α1

(X1 + · · ·+Xd)d−2+α1
=

(−1)α1 · (d+ α1 − 3)!

(d− 3)! (X1 + · · ·+Xd)d+α1−2
,

∂α1+α2f(X1, . . . , Xd)

∂Xα1
1 ∂Xα2

2

=
(−1)α1 · (d+ α1 − 3)! · (−1)α2 · (d+ α1 − 2)α2

(d− 3)! · (X1 + · · ·+Xd)d+α1−2+α2

=
(−1)α1+α2 · (d− 3 + α1 + α2)!

(d− 3)! · (X1 + · · ·+Xd)d−2+α1+α2
, . . . ,

(2)
∂α1+...+αd−1f(X1, . . . , Xd)

∂Xα1
1 ∂Xα2

2 . . . ∂X
αd−1

d−1

=
(−1)α1+···+αd−1 · (d− 3 + α1 + · · ·+ αd−1)!

(d− 3)! · (X1 + · · ·+Xd)d−2+α1+···+αd−1
.

Since f(X1, . . . , Xd)|X1=x2
1,...,Xd=x2

d
= r4−2d for r =

√
x21 + . . .+ x2d, the

conjecture is proven if we show that the functions

∂n

∂xα1
1 . . . ∂x

αd−1

d−1

[
f(X1, . . . , Xd)|X1=x2

1,...,Xd=x2
d

]
=

vα1...αd−1
(x1, . . . , xd)

r2d+2n−4

(see (1)) for α1, . . . , αd−1 ∈ N ∪ {0}, α1 + . . . + αd−1 = n, are linearly in-
dependent. By reductio ad absurdum, we assume that there exists a linear
combination
(3) ∑
α1+···+αd−1=n
α1,...,αd−1≥0

Cα1,...,αd−1
· ∂n

∂xα1
1 . . . ∂x

αd−1

d−1

[
f(X1, . . . , Xd)|X1=x2

1,...,Xd=x2
d

]
= 0 ,

where not all Cα1,...,αd−1
vanish.

Next, let α̂1 be the biggest value of α1 such that Cα1,...,αd−1
̸= 0 for certain

α2, . . . , αd−1. Let then α̂2 be the biggest value of α2 as to Cα̂1,α2,α3,...,αd−1
̸=0 for
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certain α3, . . . , αd−1. Continuing inductively, let eventually α̂d−2 be the biggest
value of αd−2 for which Cα̂1,α̂2,...,α̂d−3,αd−2,αd−1

̸= 0 for certain αd−1. Obviously,

there is only one such value of αd−1, namely α̂d−1 := n− α̂1 − α̂2 − . . .− α̂d−2.
According to Lemma 1, the term with the highest order monomial

Xj1
1 . . . X

jd−1

d−1 in
∂n

∂xα1
1 . . . ∂x

αd−1

d−1

[
f(X1, . . . , Xd)|X1=x2

1,...,Xd=x2
d

]
is

c1,α1,
α1
2
· . . . · c

d−1,αd−1,
αd−1

2
·X

α1
2

1 . . . X
αd−1

2
d−1 · ∂

α1+...+αd−1f(X1, . . . , Xd)

∂Xα1
1 . . . ∂X

αd−1

d−1

.

Therefore, after setting Xd = 1−X1 − . . .−Xd−1 (restricting x1, . . . , xd−1 to[
0, 1√

d−1

]
, that is, X1, . . . , Xd−1 to

[
0, 1

d−1

]
, which does not affect Lemma 2)

and taking (2) into account, the product X
α̂1
2

1 X
α̂2
2

2 . . . X
α̂d−1

2
d−1 appears only once

in (3), and its coefficient is

Cα̂1,...,α̂d−1
· c

1,α̂1,
α̂1
2

· c
2,α̂2,

α̂2
2

· . . . · c
d−1,α̂d−1,

α̂d−1
2

· (−1)n · (d− 3 + n)!

(d− 3)!
̸= 0 ,

which contradicts Lemma 2. At this point, the proof is completed.
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