RECURRENCE SETS FOR PARTIAL INVERSE
SEMIGROUP ACTIONS AND RELATED STRUCTURES

\ MARIUS MANTOIU\

Communicated by Lucian Beznea

Two types of recurrence sets are introduced for inverse semigroup partial actions
in topological spaces. Some applications to the basic dynamical properties of
the action are indicated, covering topics as topological transitivity, limit points
and periodic points. We then explore the connections of these recurrence sets
with similar notions for related types of imperfect symmetries (prefix inverse
semigroup expansions, partial group and groupoid actions).
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1. INTRODUCTION

In the theory of classical dynamical systems, a special role is played by
recurrence sets (also called dwelling sets); this can be seen in any of the stan-
dard texts, as [II, [4] for example. Suppose that the group G acts continuously
on the topological space X, the action being denoted by «. For M, N C ¥ one
defines

(1.1) G(a)y = {9 €Glag(M)NN #0}.

Such subsets of G are relevant for the behavior of the dynamical systems in
many ways. As a basic example, for singletons M = {o} and N = {7}, the set
=
This serves to characterize invariant subsets. Many other important proper-
ties may be defined or described in terms of recurrence sets; we mention only
(topological) transitivity, limit sets, (non-)wandering points, periodic and al-
most periodic points, minimality, mixing, but there are others. The versatility
of the notion comes both from the nature and the relative position of the sets

G(a)l = (a)g]]: is non-void if and only if o and 7 belong to the same orbit.
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M, N and from the requirements on the size of the correspondent recurrent
set.

To study more general and subtle notions of (local or partial) symmetry,
in the last decades groups have been replaced by more general mathematical
objects as groupoids or inverse semigroups. Even in the setting of groups,
partial actions are an important way to encode imperfect symmetries. One
important application (which has been our initial motivation) is towards the
theory of C*-algebras, but we will not refer to this in the present paper.

Dynamical notions of such general type of actions have mostly been in-
troduced in a non-systematic ad hoc manner. In [§], the topological dynamics
of groupoid actions has been treated in a more consistent way, but only the
basic theory has been developed. We are also interested in a similar project
for inverse semigroup actions. In starting this project, we become aware of a
certain intricacy of the topic and especially of the fact that well-known connec-
tions of the inverse semigroup actions with other mathematical notions may be
a fruitful technical tool. Actually, the present short article is devoted merely to
explore these connections in the setting of recurrence and to present some basic
applications. The development of the theory itself is postponed to a further
publication, oriented towards the theory of dynamical systems.

We are interested in triples (S, 6,X), where S is a (discrete) inverse semi-
group, % is a topological space and the action 6 is composed of a family of
homeomorphisms {0 | s € S} between open subsets of ¥, having suitable
properties. The precise definition and the basic theory are presented in Sub-
section but let us just note three peculiar features that are not present
for groups: (a) The transformations 5 are not defined everywhere. (b) Two
transformations 0, and #; may act in the same way on an open subset of the
intersection of their domains. (c) The composition 6506, has to be defined in a
precise (maximal) way. We speak of a (genuine) action of S if this composition
equals O, . Actually, to include the concept of partial group action, guided by
[2], we allow partial inverse semigroup actions, in which 6 o 6, is only required
to be a restriction of f; .

By analogy to (|1.1]), one can define recurrence sets of the form

(1.2) SO = {s€S|0,(M)NN +#0}.

Since it is easier, and since sharp results will be obtained for this situation, let
us restrict to the case when M = {o} is a one-point set. As a consequence
of (a), it is understood that only elements s for which 65 is defined in o are
candidates in (T.2)) . On the other hand, because of (b), the set S(6)Y seems
redundant. This could be important, since for some dynamical properties its
size (infinite, complement of a finite set, syndetic) should play an important
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role. This is why, besides the “naive” set S(#)Y, we also define in (2.8) a

quotient notion .7 ()Y, that is more suited to the developments we have in
view in the future.

For illustration, in the remaining part of the second section, we present
briefly some basic applications involving recurrence sets. We show their rele-
vance for topological transitivity, limit sets and periodicity. Of course, in the
case of discrete group (global) actions one recovers well-known classical results.
Topological transitivity for étale groupoids has been recently used in [13] in the
setting of groupoid, inverse semigroup and Leavitt path algebras, to get prime-
ness properties. In [8, Section4], it is shown that for “non-open groupoids”
the various concepts of topological transitivity turn out to be different. This
does not appear in our framework: discrete inverse semigroups are connected
to étale groupoids, for which the source map is open. The characterization of
periodic points as having finite orbits is not so difficult to prove, since we rely
on discreteness. However, the incomplete information inherent to a (partial)
action of an inverse semigroup requires some care.

Comparing the two types of recurrence sets for inverse semigroup actions
with others, attached to related mathematical structures, is the main goal of
the third section.

In [B], to each group G one attaches an inverse semigroup Sg, suitably
generated by G, such that the partial actions of G transform into actions of
Sg , the procedure satisfying a certain universal property. In [I1] and [3] this is
extended to partial inverse semigroup actions: one starts with an inverse semi-
group A, generates another inverse semigroup S 4 satisfying certain relations,
and then there is a one-to-one correspondence between the partial actions of A
and the genuine actions of S, . In Subsection we study the fate of orbits
and recurrence sets under this correspondence of actions.

In Subsection we work with quotients S/~ of S through idempotent
pure congruences. When § is F-unitary, and =2 is the minimum group congru-
ence, then S/~ is actually the mazimal homomorphic group image of S . By [9],
there is a canonical way to transform a partial action of S into a partial action
of S/~ in the same topological space (the case of genuine actions is simpler).
We show that the two connected actions have the same invariant sets, and we
find relations between the respective recurrence sets.

In Subsections[3.3|and [3.4] we use well-known connections between inverse
semigroups and étale groupoids, looking for their effect on recurrence sets. In
[8], a rather detailed study of recurrence and related dynamical properties for
continuous groupoid actions can be found, so the results of these two sections
will be combined in a future work to convert available groupoid information in
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terms of inverse semigroup action. But, for various reasons, more effort will be
needed to have a comprehensive theory.

To an inverse semigroup partial action one associates its groupoid of
germs; there is a perfect correspondence of invariant sets. Natural recurrence
sets (see Deﬁnition may be expressed in pure groupoid language, as (maybe
non-invariant) reductions, as shown in Proposition Their connection with
the two types of recurrence sets of the initial partial action are then subject of

Propositions and

In Subsection we have that for a groupoid action on a topological
space, Definition [3.19] indicates the natural recurrence sets. If the groupoid is
étale, there is a canonical inverse semigroup formed of bisections. The actions
of the groupoid generate actions of this inverse semigroup. Theorem and
Proposition indicate the way the relevant recurrence sets are linked. A
final corollary, summarizing previous information, refers to the transformation
groupoid associated to a groupoid action in the language of recurrence.

The results on recurrent sets, in all the situations we treat, show a clear
preference for .7 (6)Y upon S(6)Y. The first set can be directly involved in

g g
describing dynamical properties and it is each time in a one-to-one correspon-

dence with the analog set of the related structure. The second one is only
mapped surjectively. All the maps defining the connections seem interesting.

2. SOME DYNAMICAL PROPERTIES OF INVERSE
SEMIGROUP ACTIONS

2.1. Inverse semigroup partial actions and their recurrence sets

For general facts on inverse semigroups and their partial actions, we refer
mainly to [10] 12, 2].

Definition 2.1. An inverse semigroup is a semigroup S such that for every
s € S there is a unique element s* € S satisfying

SﬁSSﬁ = Sﬁ, SSﬁS = S.

We are always going to assume that S is discrete and infinite. In an
inverse semigroup S, a partial order relation is defined by

s <t if and only if s= tshs.

On the commutative subsemigroup of idempotents £(S) this reduces to e = fe.
The order may be reformulated:

(2.1) s<t<e Jec&(S),s=et & Ifec&(S),s=1tf.
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PHomeo(X), the family of all the homeomorphisms between open subsets
of 3, is an inverse semigroup with obvious composition and inversion, the order
relation being now just the restriction of functions.

Definition 2.2. A partial action of the inverse semigroup S in the topo-
logical space ¥ is a family

0 = {m& )

SES},

where 05 : ¥ = dom(fy) — X5 = im(6s) is a homeomorphism between open
subsets of X, satisfying for every s,t € S:

(iv) ¥ =U.eg(s)Ze (non-degeneracy).
We speak of a (genuine) action whenever
fs060, =04 ,Vs,teS.
Note that (ii) implies that
(2.2) SN0 (Es) C s, Vs, t€S,
from which one deduces immediately
Y CEpry, X C Xy, VEES.
In addition, 0. = idy, for any e € £(S). We will often use the notation
Os(0) =so0 =sogo.
We define now several dynamical notions. It is useful to set
S8{0,0} :={s € S|o € Ty =dom(b;)}
for the family of points of & which can be applied to o. In virtue of
(2.3) teS{0,0},seS{0,toc} = st e S{,0}.
An equivalence relation is defined in 3 by
(2.4) o7 if and only if Js e S{f,0} with O5(c) = 7.

Consequently, one has usual notions such as orbit, orbit closure, invariant
subset, etc.
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Definition 2.3. Let (S,6,3%) be an inverse semigroup action. The naive
recurrence set assigned to M, N C X is

SO :={seS|0,(M)NN #0}
:{SES‘HUEESﬁﬂM, fs(0) € N}.

Clearly, if s € S(9)}; and s < ¢ then t € S(9)};. In the case M = {5}
and N = {7} (with simplified notations)

rs,t€SO)] = s € S6)7 and rs't € S(O)7.

(e T

(2.5)

In particular, S(#) is an inverse subsemigroup of S, and S(0)Y is contained

in S{0,0} = S(0)Z for every N C ¥.
Definition 2.4. We introduce an equivalence relation on S{6,c} by
(2.6) s%t if and only if 3Ir € S{0,0}, r < s,t.
The quotient space is denoted by .#{0,0} := S§{6,0}/ X The equivalence class

of s will be denoted by (s)? or by 7%(s), giving rise to the quotient map
(2.7) 72 :8{0,0} — #{0,0}.

Remark 2.5. Tt follows from the definition that if s % t then O5(0) = 6,(0)
(the converse fails, in general). Concerning the connection between <§> and the
minimum group congruence <>, see below.

The next definition is meant to eliminate redundant contributions to re-
currence.

Definition 2.6. Let (S,0,%) be an inverse semigroup action. The recur-
rence set assigned to 0 € ¥ and N C X is

(2.8) SO :=50))/, = ()]s €SO}

A standard notion [10, [12] is the following:

Definition 2.7. The mazimum group homomorphic image of the inverse
semigroup S is the quotient S/, of S through the minimum group congruence

(2.9) st dreS,r<s,t.
The class of s € S is denoted by (s) or by 7(s).

Remark 2.8. The congruence <« is intrinsic to S. If (S, ,) is a partial

action, on every set S{f,0} we have defined the equivalence relation & in
g

(2.6) , which does depend on the given action. If s,¢ € S{6,0} for some o,



7 Recurrence sets for partial inverse semigroup actions 127

then s & ¢ implies s <+ t, but the opposite implication generally fails, since in
equatiofl r is not bound to belong to S{#,c}. In general, the restriction
of the equivalence relation <> to S{f, 0} is weaker than s &t However, see
Lemma ’

Recall that the inverse semigroup S is called E-unitary if every element
larger than an idempotent must be an idempotent. This can be restated in
several ways, for instance: if e > s and e is idempotent, then s must also be
idempotent. For us, an important fact is the following result, that we did not
find in the literature:

LEMMA 2.9. Let (S,0,%) be the partial action of an E-unitary inverse
semigroup. If o € ¥ and s,t € S{0,0}, then

0
st st
o

Proof. As mentioned in Remark we only need to check =. So let
s,t € §{0,0} such that s <» ¢t. From [10, Pag.25,66] it follows that they are
compatible, i.e. sft and st! are idempotents, and s At := stit = tsfs is the
infimum of s and ¢ with respect to <. The domain of 6455; contains

dom(@s 060 Ht) = dom(@s) N dom(@t) =X4NXy Do,

soS{H,a}Bs/\tgs,t,thuss(gt. O
g

Remark 2.10. Let (S, 6,%) be the partial action of an inverse semigroup
and let M, N C ¥. Then the recurrence set .#(#)}; may be introduced directly
as the quotient of the naive recurrence set S (H)J\N/[ through the minimum group
congruence <:

S (0)3=S(0)31 /o>

2.2. Topological transitivity

Definition 2.11. Let 6 be a continuous partial action of the inverse semi-
group S in the topological space . The action is topologically transitive if ¥
is not the union of two proper invariant closed subsets.

This definition generalizes the case of classical dynamical systems (global
group actions on topological spaces). The property holds if there is a dense
orbit (pointwise transitivity), and, if ¥ is a Baire second-countable space point-
wise transitivity equivalent to topological transitivity. For convenience, we are
going to prove the next straightforward result:
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PROPOSITION 2.12. The following conditions are equivalent: (0) The ac-
tion is topologically transitive. (i) Any two open non-void invariant subsets of
Y have non-trivial intersection. (ii) Each non-empty open invariant subset of
Y is dense. (iii) Fach invariant subset of ¥ is ether dense, or nowhere dense.

Proof. (0) < (i) follows immediately taking complements.

(74) = (i) If each non-void open invariant subset is dense, it meets every
other non-void open set (invariant or not).

(#i7) = (1) is trivial.
(i) = (ui7) Let us assume (i), but let A C 3 be invariant, neither dense,
nor nowhere dense. Then the interior of its closure (A)o and the interior of

its complement (A°)° = (Z)C are both non-void open sets, which are clearly
invariant. They should meet, by (i), but this is obviously false. [

One can rephrase topological transitivity in terms of recurrence sets, and
here it is not important which one we use:

PROPOSITION 2.13. The action (S,0,%) is topologically transitive if and
only if S(O)f; # O for any open sets O # U,V C X. This is equivalent with
F0); £ 0 for any open sets ) £ U,V C X.

To show this result, we also introduce saturations; among others, they
will emphasis the role of recurrence sets. For T'C S and M C ¥ one sets

ToM :={0s(0)|s€T,oc e Sy M} = | 0,(S3 N M).
seT
It is clear that if M is open, then T'oM is also open. If N C X, its saturation

Sat(N) = SoN = ﬂ M

NCM
M invariant

is the smallest invariant subset of ¥ containing N.
LEMMA 2.14. Let M, N C X. Then
(2.10) Sat(M)NSat(N)#0 < SO, £ 0 = .70, £0.

Proof. Tt is clear that S(9)); # 0 & L)), #0.

Further, one has Sat(M)NSat(N) # () if and only if there exist s,t € S,
oceMnNXy and 7 € NN Xy such that

(2.11) soo=toT € XNy
Applying 6,5 to (2.11)) one gets
(tﬁs) oo = (tﬁt) or =idy, (1) =T,
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hence, we get t*s € S(0)}] .
For the converse, if ()4, # 0, there exists r € S such that roo = 7, with

o€ MNY,; and 7 € N. Then Sat(M)NN # (), from which Sat(M)NSat(N)#0
follows. [

Now, we can prove Proposition [2.13]

Proof. The saturation of an open set is also open and every open invariant
subset coincides with its saturation. Then, the result follows from Lemma |2.14
and the description (i) of topological transitivity in Proposition since
Sat(U) and Sat(V') are open and invariant. [

2.3. Limit sets

From now on, to avoid trivial situations, for a given point ¢ € 3 we are
going to assume that .#{0,0} is infinite. We set F(o) for the family of all
subsets F of S{#, ¢} such that 7% (F) is finite (this includes the finite subsets of
S§{6,c0} but, in many cases, much more).

Definition 2.15. The family of limit points of o under the action 6 is

Zf = ) (S{0,0}\F)oo.

FeF (o)

PROPOSITION 2.16. The point 7 € ¥ belongs to £ if and only if .7 (0)Y
1s infinite for every neighborhood V' of T.

Proof. If V is a neighborhood of 7 € Z¢, then
7€ (8{0,0}\F)oo, VFeF(o),

so for each such F there exists sp € S{6,0}\F such that s ¢ o € V, meaning
that s € S(0)Y , and thus

(se)5 € 6| (S{0,01\F) NSO | € (16,0} \ 75(F) N.7(0)}.

Since we assumed that {6, o'} is infinite and each 7% (F) is finite, there exists
an infinity of such points (sg)?

o

To prove the converse, let us suppose that 7¢ £9 so 7¢ (S{0,0}\F) oo
for some F € F(o). There is a neighborhood V' of 7 with

VN [(8{,0}\F)oa] =0.

Then S(0)Y C F, implying that .#(0)Y C 7, (F) is finite, which finishes the
proof. [
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PROPOSITION 2.17. The closure of the orbit of o is
(2.12) 0, =0,U27.
Proof. For F € F(o), the set F o o is only composed of a finite number
of points, by Remark Then one has
O0,=8{0,0} 00
= (F U (S{0,0} \ F)) X
=(Foo)U(S{0,0} \F) oo
cO,U (S{G,a}\F) o
This shows the inclusion C in . The opposite one is obvious. [

2.4. Periodic points and finite orbits

Definition 2.18. Let (S,0,%) be a partial inverse semigroup action. We
say that o € ¥ is periodic if there exists F € F(o) such that FS(0)7 = S{6,0}.

Having in view (2.3), one has FS(0)7 C §{6,0}S(0)7 C S{f,c}, which
gives a meaning to the definition. The condition involving F may be reinter-
preted as a syndeticity condition on .#(0)7 : taking into account the definition
of F(o) from the previous subsection, one has F.7(0) = .#{6,0}, where
FO .= 7 (F) c #{0,0} is a finite set.

THEOREM 2.19. The point 0 € X has a finite orbit if and only if it is a
periodic point.

Proof. For o € X2, let us define the surjective function
(2.13) we:S{0,0} = Oy CE, wy(s):=0s(c)=sc0.

By Remark [2.5, 7%(r1) = 7%(ry) implies that w,(r1) = w,(r2), so one has
the factorization w, = Q, o 7%, with Q, : #{0,0} — O,. Any surjection

¢ : A — B defines canonically an equivalence relation ~, on A and thus, a
bijection ¢ : A/, — B. Thus, the following sets are simultaneously finite

(2.14) §{0,0} 22 Oy E2 0,0} ..

If o is periodic, then FS(0)7=5{6, o} for some set F C S{#, o}, with 7% (F)
finite. There exist sq,...,sm € S{0,0} such that 70 (F) =72 ({s1,...,sm}). It
is clear that

(2.15) seS{0,0},te€S0)] = steS{,0}, we(st) =ws(s).

g
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Then one gets
Op = we(8{0,0}) = wo (FS(6)7)

B, (F) =0, (70 (F)]

:wa({sl,. . .,Sm}),

which is finite.

Now suppose that O, is finite, meaning that S{0,0}/.,_ is finite. So
there is a finite set {¢,...,tx} C S{0, 0} such that for every s € S{0, 0} there
is some j € {1,...,m} such that w,(s) = ws(;), i.e. O5(0) =0, (0) € BNy .
Then 9t§s(a) = 0, meaning that tg-s € 5(0)7, and then s = tj(tg.s) .0

3. CONNECTIONS WITH OTHER MATHEMATICAL
STRUCTURES

3.1. Inverse semigroup expansions

Following [3], we describe briefly the prefiz expansion inverse semigroup
S 4 associated to an inverse semigroup A. A different point of view can be
found in [I1]; the group case appeared in [5] (see also [7]). S is generated by
elements [a] , where a € A, subject to the relations

(i) [a*)[al[¥] = [a)[ab], (i) [a[0)[6F] = [ab][0F], (iii) [a][a®][a] = [a].

Buss and Exel show that there is an involutive anti-automorphism #: S4 — Sy
such that [a]# = [af] for every a € A. In fact, S is an inverse semigroup; it is
E-unitary if and only if A is E-unitary (in this case, Lemma [2.9| applies). The
elements €, := [a][a] = [a][a]?” are commuting idempotents. It is also shown
that every element of S4 has a unique normal form

(3.1) €y - €Ecpla), ci1,...cn,a€ A, neN,
under the conditions clc§ =...= cncgl = aa? and a,adf € {c1,...,cn}. Tt is
useful to use the notations
t: A= 8Sa, a):=]a],
q:Sa— A, qle, ...e,ld)=a.
Clearly ¢ is a section of q.

The main property of Sy is its universal property. If T is an inverse
semigroup and ¢ : A — 7T is a map satisfying for all elements a,b € A the
conditions

$(a®)p(a)(b) = 1p(af)e(ab),
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P(a) (D) () = p(ab)ip(b?),
P(a)p(a*)y(a) = ¥(a),

then there is a unique inverse semigroup morphism ¥ : S4 — 7 such that
U([a]) = 9(a) for each a € A.

It is then easy to see that there is a one-to-one correspondence between
partial actions of the inverse semigroup .4 and (genuine) actions of its prefix
expansion inverse semigroup S4 (in the same topological space X).

PRrROPOSITION 3.1. The two actions have the same invariant sets.

Proof. Let us start with the partial action (A4,4,%) and denote next by
0 : S4 — PHomeo(X) the associated inverse semigroup action. For an element
in normal form (3.1)), one has

(32) eeclmecn [a] = GGCI O-++-0 9€cn @] '19(1 .

Since €, is an idempotent, 0. is the identity map on its domain. Conse-

quently, for every o € ¥ belonging to the (common) domain

(3.3) dom (0 =g NI (S, N+ NEe,,)

€cqy-€cp [a]) €cq

of the two transformations in (3.2)), one has

eecl...ecn [a] (0) = Va(0).

From this, the conclusion can be deduced easily. [

Let us now relate the recurrence sets of the partial inverse semigroup
action 9 to the two types of recurrence sets of the associated prefix expansion
inverse semigroup action 6.

PROPOSITION 3.2. Let 0 : S4 — PHomeo(X) be the inverse semigroup
action attached to the partial action (A,9,%) and let M, N C . Then

(34) L[AW)] = Sa(0)h; N u(A),
(3.5) a(Sa037) = AW

Proof. One has s = [a] € Sa(0)); N «(A) if and only if there is some
o€ MNEgs=MnNIX, with 0(0) = Ja(0) € N, and this means exactly

that [a] = t(a) € ¢[A(9)}] . Thus, is proven.
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The relation follows by analyzing the definitions, or we may write
a(Sa)3r) = a(Sa®37) Na(u(A)
= q(Sa@}7 nu(A))
= a(1[A)])
=A@}

We used the fact that ¢ is a section of ¢, equation (3.4) and the fact that ¢(.A)
is saturated (to distribute ¢ to the intersection). [

THEOREM 3.3. Let 0 : S4 — PHomeo(X) be the inverse semigroup action
attached to the partial action (A,9,X) and let o € X.

(i) The map q: Sa — A restricts to a surjection ¢,: Sa{f,0} — A{V,0}.
(ii) The map
Qo : Laf{0,0}:= Sa{0, U}/ﬁ> — A{d,0}, Qs [n(s)] = ¢o(s)

is a well-defined bijection. One has bijectively

(3.6) Qo [Z4®))] = AW)Y, ¥NCE.

o

Proof. (i) As mentioned above, the domain of element 0, ., (4 is Xgz N
9t (2661 N---N Ee%), contained in ¥ 4, the domain of ¥, , where we get that
a= q(ecl ... €, [a]). This shows that q(SA{H, a}) C A{¥,0}. Surjectivity is
obvious: if a € A{Y,c} then [a] € S4{0,0} and ¢([a]) = a.

(ii) The statement about @, relies on showing that ¢,(s) = ¢, (t) if and
only if s & t; this proves both the correctness of the definition and the in-
g

jectvity. (Surjectivity follows from the fact that ¢, is onto.) Using normal
forms

Si=€c ... € lal, t:=¢€q ...€q, b,
the assumption ¢, (s) = ¢,(t) reads a = b. Then

Ti=€cy ... €c €dy ---€dy, 0] € SA
satisfies r < s,t. From (3.3]) one gets easily
o€ dom(@r) = dom(@s) N dom(@t),
sor € Sy{0,0} and we get s & t. For the inverse implication, using (2.1)) and

normal forms, one sees that r < s implies ¢(r) = ¢(s). Then s & implies
g
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r < s,t for some r, therefore q(t) = q(r) = g(s). The relation (3.6]) follows

from previous results and definitions:

A D o(s400)) = Qo [nt (s405)] B2 @, [7a(0)2].
0

3.2. Quotients through idempotent pure congruences

Let us fix an idempotent pure congruence ~ in S. By definition [I0], this
means that ~ is an equivalence relation on S such that
srRt, urRv = su=tv,

s~e, ec&(S) = se&(S).
We set p(s) for the ~-equivalence class of s € S. Note that p : § — S/~
is an inverse semigroup epimorphism, where the inversion in the quotient is
p(s)T:=p(s*) . It is convenient to set R := S/~ . A crucial fact ([9, Lemma 2.2])
is that if (S,60,%) is a partial action of the inverse semigroup S, there exists a
unique partial action (R,ﬁ, E) such that

o 23 - Up(s)=a2g7 Va S R,
° ﬁp(s)(o’) =0s(0), Vo € Egﬁ (C Eg(s)f) )
THEOREM 3.4. Let (S,0,%) and (R,ﬂ,E) as above.
(i) The two partial actions have the same orbits and the same invariant sets.

(ii) Next, for every o € X the map p : & — R restricts to a surjection
po: S8{0,0} — R{V,0}. For N C ¥ one has p, [S(0)Y] = R(9)Y.

(iii)) The map
P,:7{0,0}:=85{0, a}/& —%{V,0} ::R{ﬁ,a}/g, P, [71'0(3)] = wﬁ[ (5)]

o

1s a well-defined surjection. For N C X one has

(3.7) P, [2(0))] = %9

Proof. (i) follows easily from the definitions and from the way 1 has been
constructed out of 6.
For (ii), we have

a € R{J,0} <:>o'EZgJr = UEZﬁ & Jsea, o€ Zgﬁ@ES € §{0,0}, p(s)=a.

sea
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Including the set N in the arguments is trivial.
(iii) It is clear that P, is onto. One still has to check that if s,¢ € S{0,0}
and s & ¢ then Do (8) & po(t), ensuring that P, is well-defined. This follows
g g

easily from the definition of the equivalences, since a homomorphism of inverse
semigroups preserves the orderings. Then (3.7) is a consequence of the previous
definitions and results:

RW); =15 [R(0)g] =75 [pe(S(0)5)] = Po [m5(S(0)7)] = Po [ (0)7]. O

Ezample 3.5. Let us suppose now that S is an F-unitary inverse semi-
group. It is known then [I0, Sect. 2.4] that < is an idempotent pure congru-
ence, that we use instead of & in the above arguments. In addition, R := S/,
is a group (the maximum group homomorphic image of ). To the partial
action 6 of S on X, we associate as above the partial action ¥ of R in 3. Since

now R is a group, the equivalence relation 2 on R{¥, 0} is just the equality,
g

so Z{¥,0} = R{9,0}. By Theorem one has the well-defined surjection

P, : S{0,0} — #{V,0}. In fact, it is even a bijection. To show this, one

has to check for s, € S{0,0} that p,(s) = p,(t) implies that 7% (s) = 7(s).

Taking the definitions into consideration, this amounts to s <+t = s &t
g

This is solved by Lemma [2.9, Consequently, in this case, the recurrence sets

LN and Z(V)Y are in a one-to-one correspondence for every N C ¥.

3.3. From partial actions of inverse semigroups to groupoids

Groupoids are small categories in which all the arrows are invertible. The
object part of such a category = is also called the unit space and denoted by
2O = X. The source and range maps, denoted by d,r : Z — =) define the
family of composable pairs

E@ = {(&n)|d(€) =r(n)}
For M, N C X one sets

(3.8) Eyi=d Y (M), 2V=rtM), 2} :=2ynzY,

N
[1]
X
(1]

with the particular notations 2, = ¢, and 2* = ==}, A topological groupoid
is a groupoid = with a topology such that the inversion & — ¢~! and multipli-
cation (&,7n) — &n are continuous.

Following [2], we now define and use the groupoid of germs associated
to the partial action 6 of the inverse semigroup & on the topological space
Y. (For the case of genuine actions, see [0 [7, [12] and references therein.) In
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this generality, this also covers the transformation groupoids of partial group
actions from [5]. First define

SO%:={(s,0) € SxX |0 €Ty}
={(s,0) e SxX|s € 8{0,0}}.
Definition 3.6. We say that (s,0), (t,7) € SO are germ equivalent, and

(3.9)

0
write (s,a)i(t,T),ifa:Tands&t.
g

0
Remark 3.7. Note that = is an equivalence relation, that depends on the
partial action #. However, when S is E-unitary, by Lemma [2.9] it becomes
independent of #. In the case of partial group actions, = is just the equality.

The quotient S[1X/, is also denoted as Sy Its generic elements are

denoted by (s, o) := [(s,0)] s . Then Sy is a groupoid with unit space 3,

with the well-defined algebrgic structure
(3.10) 2((s,0)) =0, t((s,0)):=04(0),

(t,05(0))(s,0) := (ts, o), (s,0)":= (5%, 0,(0)).
Note that (e, o) is independent of e € £(S) if o € X, , hence it will be identified
with o.

One defines a topology on S >yY as follows: given s € S and an open set

U C X, one sets
(s,U) :={(s,0) € SpyS |0 € U}.

The family of all these sets forms a basis for a topology that makes S>ypX an
étale topological groupoid.

We are going to use systematically groupoid actions in the next section.
One only needs here a particular case (the canonical action, cf. Example|3.17).
For a topological groupoid E with unit space ¥, we write £ * d(§) := r(&) for
every ¢ € Z. This may be reformulated as & x o := (o€t if 0 = d(€). Orbit
equivalence is denoted by ¢ ~ 7, and it means that ¢ = d(¢) and 7 = r(¢) for
some { €2, ie. EL £

PROPOSITION 3.8. Use the shorthand = = S>gX and consider its canon-

ical action on its unit space. One has o ~ 7 if and only if o Lr. Hence,
the orbits in the unit space of the germ groupoid coincide with the orbits of the
miatial inverse semigroup partial action. Invariant subsets are the same.

Proof. By (2.4), o L 7 if and only if 65(c) = 7 for some s € S such that
o € Xy. Equivalently, (s,0) x 0 = 7. Indeed, the only not-straightforward
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piece is the computation
(5,0) % 0= (5, 0) (5%, 0) (5, 0) "L = (5555, 0) (5%, 00 (0)) = (55, 6 (0)) =Os(0) = T

and the proof is finished. The remaining assertions are direct consequences.
O

Let us define
0:8O0X =X x%, O(s,0):=(0:(0),0).
It is easy to see, by Remark that the map
O:SpY > L XD, @((s,a}) = (65(0),0)
is well-defined. We get the diagram

Sxy ~1— soy —2+ nxy
(3.11) . .

S SD@Z

where j is an obvious embedding, p; is the first projection, p; its restriction to
S and 7 is the quotient map.

Definition 3.9. For M, N C X, the corresponding groupoid recurrence set
of the action 0 is © 1 (N x M).

The pure groupoid interpretation of this set is seen in the first part of the
following proposition, while its connection with the naive recurrence set of the
inverse semigroup partial actions is subject of the second.

PROPOSITION 3.10. For every M, N C %, and using the notation (3.8)),
one has

(3.12) (Spex)}, = O H(N X M).
On the other hand,
(3.13) SO =p1[0H(NxM)].

Proof. Taking into account , one has
(S DQZ)AA; ={(s,0) € S>pT|0((s,0)) =0 € M, t((s,0)) =0(c) € N}
={(s,0) € S>¢T| (0s(0),0) € N x M}
=0 (N x M),
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and is proven. For :
p1[O0H (N xM)] = {s € S|3(s,0) € SO, O(s,0) € Nx M}
={se S|3(s,0) e SOX, O5(0) € N,o € M}
={seS|qoeXsNM, bs;(c) € N}
= S(9)3 -
We used and . O

Remark 3.11. Let ¢ : Spp3X — SUX be a section of 7 in diagram [3.11
Setting

Ji=pjoi=piojoi:Spyl =S,
it follows immediately that

J[(S pgz)m c SO,
The inclusion is usually strict, and J has no remarkable properties.

For a one-point set M = {o} there is a direct way to relate germ groupoid
recurrence sets with the inverse semigroup recurrent sets ([2.8)). Taking into
account Definition the map

Yo i (Sty E)U—> 0,0}, Yo ((s,0)) = (5)0 = x9(s)
is well-defined and bijective. From the definitions we deduce that, for every

N C X, the map 7, sends (S g E)iv to 7 (0)Y . We formulate for further

reference:
PROPOSITION 3.12. The map (Swvg X)), 3 (s,0) -5 (s)) € #{0,0}

[

restricts to a bijection between (S Do E)iv and Z(0)Y, for every N C X.
Remark 3.13. Actually, one can also introduce
v:Spg X =S/, 7((5,0)) = (s) = 7(s),

involving the maximal group homomorphic image from Definition It is
a well-defined surjection, but it is generally not one-to-one and it seems less
convenient for our purposes.

We indicate now a result that complements Proposition Recall that
to a partial action (S, 6, Z) one associates the germ groupoid SypX .

PROPOSITION 3.14. Let us set T': 25 — 25%0%  where
IL(R):={(s,0)|s€E R, 0 €1y}
For every M, N C X one has
(Spex)Y C T[S(B)3].
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The inclusion may be strict. For a one-point set M = {c}, it is an equality:
(5502)Y = T[S0
Proof. For s € § and ¢ € X we have
(s,T) € (SDgZ)j\\; & TEXN, s, T)eEM, t(s,T) €N
&S 1€y, TeEM, O4(r) €N
= T7€Xy, 0s(M)NN #0
e reXy, seSOY
& (s, 7)€ I’[S(G)%].

At the third line, of course, there is just a one-sided implication: the condition
Os(M) N N # () has nothing to do with 7. However, if M is specified to be a
singleton, one clearly gets an equality. [

Remark 3.15. We indicate briefly the connection between Propositions
and First, let us note that the map I' restricts to a surjection
L'y: 2‘?{9"’} — 2(8%6%)s which in its turn gives rise to a well-defined bijection
[,: 27100t 5 2(S%6%)o given by
(3.14) Lo [78(R)] :=To(R) =7, [z2(R)], VRCS{0,0}.

In (3.14)), the first equality is the definition. The second equality, involving an

inverse image, is the desired connection, easy to prove. To summarize, we have
I'; = 75!, where the right hand side should be seen as a set function.

3.4. From groupoid actions to inverse semigroup actions

Definition 3.16. A continuous groupoid action (Z,p,k,%) consists of a
topological groupoid =, a topological space ¥, a continuous surjective map
p: X — X (the anchor) and the continuous action map

R ENS = {(60)]d(E) = p(0)} 3 (€.0) = (o) = Eopr €D
satisfying the axioms:
1. p(o)e,o=0,YVoeX,

2. if (£,7) € E@ and (n,0) € Zx %, then we have (£,ne,0) € Ex ¥ and
(En)eno =Eor(nes0).

If the action x is understood, we write £ ® ¢ instead of £ e, 0. The theory is
developed in [14].
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Example 3.17. Each topological groupoid acts continuously in a canonical
way on its unit space: £ sends d(§) into r(£). Here, ¥ = X and p = idy, and
then (special notation) &xx := £zt if d(€) = 2.

Ezxample 3.18. The topological groupoid = also acts on itself, with ¥X:==,
p:=rand (en:=¢n.

For ¢ e =, A,BC =, M C ¥ we use the notations
(3.15) AB:={¢n|¢ecA,neB d(f) =1(n)},

AeM :={fec| €A, oM, () }_Ug oM.
A subset M C X is called invariant if £ @« M C M, for every { € =. Particular
cases are the orbits O, 1= =, @ 0 and the orbit closures O,. The orbit

equivalence relation will be denoted by ~ or by ~ .
Definition 3.19. For every M, N C ¥ one defines the recurrence set
SYE —{£€~|(§ M)NN #0}.
Remark 3.20. Note that = M - g M)) When p is also injective, one has

= —p(N =
:JA\}::ZEM)). In Example[3.17) one has Z), ==V = {¢€Z|d(6) e M, r(¢) e N},

making the connection with tThe previous section.

A bisection of the topological groupoid Z is an open subset of the groupoid
on which the restrictions of both d and r are injective. We recall that the
groupoid Z is called étale if d : = is a local homeomorphism. If = is étale,
X =20 i5 a clopen (closed and open) subset of =, all the fibres Z* and =,
are discrete, and d,r and the multiplication are open maps.

Let Z be an étale groupoid over the unit space X and let Bis(Z) be the
inverse semigroup associated to =, formed of bisections (they form a basis of
clopen sets for the topology of =). The multiplication is given by (3.15) and
the inverse is A':= A~!, under which

ATIA=d(A), AAT=1(A)
hold. The family of idempotents £[Bis(Z)] = Top(X) is formed exactly of the
open subsets of the unit space, X being the unit and ) the zero element.

Definition 3.21. Let (2, p, k, ) be a groupoid action, with = étale. The
inverse semigroup Bis(Z) acts continuously on 3 by

dom(fa) = Ba-1:= p H[d(A)], im(0a) = Za:=p [r(A)],

(3.16) Oa(o) = fﬁ(a).“ 0 = Fgh )(U) , YAE€BIis(E), o€ pldA),

where ¢8 =d| ;' (2) denotes the unique element ¢ € A such that d(¢)=r€AC X.
The action is genuine.
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PROPOSITION 3.22. The orbits and the invariant sets in 3 of the action

k of the groupoid Z coincide with those of the associated action 0 of Bis(Z) in
3.

Proof. We will prove that ¢ ~ 7 < o L 7. We have o £ 7 if and only
if 3A € Bis(E) with 0 € ¥o-1 and 0a(c) = 7. By definition, this means that
p(o) € d(A) and fﬁ‘a) e o = 7. This is equivalent with ¢ & 7, taking into
account the defining property of a bisection. The remaining assertion of the
proposition follows from this. [

To simplify, we are going to use the notation B := Bis(Z). Thus, there
are also notations as B{#,0}, #{6,0}, for instance. We recall the quotient
map ([2.7), that in our concrete situation reads

70 B{h,0} — B{0,0} = 8{9,0}/&.
We are looking for connections between different types of recurrence sets, at-
tached to the actions, cf. Definitions and
THEOREM 3.23. The map
0 : B{0,0} > ) =Ey0),  Oo[ma(A)] ==&y
1s a well-defined bijection. For every N C ¥ one has

(3.17) 5, [2(0))] ==N.

g

Proof. First set
50- : B{H, U} — Ep(o’) ) 50’(A) = é.pA(O')

which is onto, since the bisections cover the groupoid. Let A,B € B{f,0},
which means that A, B are bisections and p(c) € d(A) Nd(B). The first state-
ment of the Proposition follows if we check that

(3.18) 55(A) = 6,(B) < A <§> B.

It is easy to see for two bisections that C < D if and only if C C D. Using the
definitions, we see that (3.18)) reads in detail

(3.19) oy =Enoy & ICCANB with p(o) € d(C).

The implication = in is solved by taking C := ANB > 5;?‘(0_) = pr(U)
The other implication is trivial, by the unicity involved in the definition of the
bisection C. Then is a consequence of and of the definitions of
the recurrence sets 95’(0) and 2. O
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The next result yields a second point of view upon the connection between
recurrence sets. We set

A:2% 598 A(E):={AcB|ANE #0}.

PROPOSITION 3.24. Let (E, p, k, %) be an étale groupoid action and denote

by (B, 0, E) the associated inverse semigroup partial action, where B = Bis(Z).
Leto €Y and M,N C X.

(i) One has
(3.20) BO)Y = AEY).

(ii) Let us denote by A, : 250 — 2B09} the restriction of A to 200,
Then Ay = 6,1 (the last one regarded as a set function,).

Proof. (i) For A € B one may write
Aec BB © 04M)NN #0

& Joec Mnpd(A)], ()eN

& JoeMnp d(A)], &eno €N

& JoeMnpd(A)], EI{EAﬂup(U),goRUGN
& JEEA, (o, M)NN #£0

& 2N £ 0

& AcAEN).
The forth equivalence is due to the uniqueness of an element £ of the bisection
A such that d(&) = p(o).
(ii) One gets as a particular case of (3.20) the relation

B{0,0} = B(0)F = A(E,) = A(Z,))-

This and the fact that A is increasing justifies the restriction A, in the diagram.
If E € 270 then for every n € E one has d(n) = p(o), which justifies the
non-trivial part of the third step below:

5, (E) ={AeB{b,0}|6,(A) € E}

= {AeB{0,0} |, € E}
={ACB{0,0}|ANE #0}
= A, (E).
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For a further connection, one needs a description of the germ groupoid
of the action of bisections of a given acting étale groupoid. This involves the
transformation groupoid attached to the groupoid action (=, p, k, ). Follow-
ing [14], we recall that as a topological space it is the subset

=x, 3 1= {(€,0)[d(€) = p(0)} € Ex 3
with structure maps
D(€7U) =0, R(&U) = HE(U)v
(777“5(0))(5,0) = (775,0')’ (570-)_1 = (E_lv I{g(O‘)).

The groupoids Zx > and By are isomorphic. The result is well known; for
convenience, we write down explicitly the isomorphism

HiEXE = BreX, u(& o) := (A o),

where £ € Z, 0 € X, d(§) = p(0) and A is any bisection with £ € A. The
definition is correct; showing that p is a topological groupoid morphism consists
in a routine application of the definitions. The inverse is

p i BrgY = Ex.E, p (A o) = (524(0)"7)'

COROLLARY 3.25. Let (Z,p, k,X) be an action of an étale groupoid and
let 0 be the action of B := Bis(E) on X introduced in Definition [3.21] For
any o € X and N C X, the recurrent set of the action of the bisection inverse
semigroup is

(3.21) w(ExE)Y) = (BreD)Y =516, (EY)].

Proof. The first equality in (3.21]) is a consequence of the isomorphism g
and of the definitions (a groupoid isomorphism intertwines the source and the

range maps, respectively). The second equality follows from Proposition
and Theorem [3.23l [
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