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The purpose of this paper is to investigate an ℓ-ring structure of algebraic integers
from an arithmetic point of view. We endow the algebra D of hyperbolic numbers
with its standard f -algebra structure [7]. We introduce the ring of hyperbolic

integers Zh as a sub f -ring of the ring ZD
of integers of D. Next, we prove

that Zh is the unique, up to ring isomorphism, Archimedean f -ring of quadratic
integers. Our study focuses on arithmetic properties of Zh related to its lattice-
ordered structure. We show that many basic properties of the ring of integers Z
such as primes, unique factorization theorem and the notions of floor and ceiling
functions can be extended to Zh. A surprising fact is that prime numbers seen as
hyperbolic integers are semiprimes. We also obtain some properties of hyperbolic
Gaussian integers. As an application, we discuss the Dirichlet divisor problem
using hyperbolic intervals.
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1. INTRODUCTION

In order to solve problems concerning certain classes of integers, number
theorists of the XIX century are led to study generalizations of the usual arith-
metic of the natural numbers in more general settings. In these analogous of
Z, concepts like unique factorization into prime elements, Euclidean division
and modular arithmetic are developed. One can cite, for instance, Gaussian
integers Z[i] and Kummer’s cyclotomic integers Z[exp(2πi/n)] whose interest
came about little by little.

In a process of generalization of the above constructions, Dedekind [3]
introduced the notion of ring of integers OK of a number field K. The ring of
integers Z is the simplest ring of integers. Namely, Z = OQ where Q is the field
of rational numbers. The ring of Gaussian integers Z[i] is the ring of integers
of the number field Q(i). Also, the ring of cyclotomic integers Z[exp(2πi/n)]
is the ring of integers of the cyclotomic field Q(exp(2πi/n)).
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Another structure of the ring of integers Z is useful as it corresponds to
its order structure. It is clear that one has to take into account the relation
between its divisibility and its order properties as the existence of a unique
positive gcd and the existence of unique factorization into product of positive
primes. In this paper, Z is seen as an Archimedean f -ring. Indeed, the general
notion of f -algebra is simultaneously a Riesz space (or vector lattice) and an
associative real algebra that fulfills certain “positivity” conditions. A typical
example of f -algebras is the linear space of real valued continuous functions
on a topological space. Obviously, the fundamental example of Archimedean
f -algebras is the field of real numbers.

The purpose of this paper is to answer the following general question:
can we extend the order structure of Z to some of its generalizations in a way
compatible with its arithmetic characteristics?

The first part of the answer is given by Theorem 3.1. We prove that there
is no analogous of positivity in the ring OK . Actually, we prove a more general
result concerning ring extensions of Q.

This leads us to consider non division extension of real numbers. More
precisely, we consider the ring of hyperbolic numbers

D =
{
z = x+ jy : x, y ∈ R, j /∈ R; j2 = 1

}
.(1.1)

Hyperbolic numbers (also called duplex numbers) are an extension of real num-
bers defined in the same way as complex numbers C but with an imaginary
unit j satisfying j2 = 1 (instead of i2 = −1). It is clear that D is not a division
algebra. However, it enjoys an important order structure which makes it into
the unique (up to an isomorphism) two-dimensional Archimedean f -algebra.
Therefore, basic notions of real analysis as sign, absolute value, Archimedean
and Dedekind completeness are extended to hyperbolic numbers [7]. Note
that complex numbers and hyperbolic numbers are the only real commutative
Clifford algebras:

D ∼= ClR(1, 0) and C ∼= ClR(0, 1).

The notion of partial order on D stimulates many authors and leads to
interesting applications in different areas of mathematics. Alpay et al. [1]
investigated the D-normed bicomplex modulus. In probability theory, it is
shown in [2] that Kolmogrov’s axioms and Bays’ theorems hold in the context
of D-valued probabilities. Kumar et al. [15] introduced the notion of D-valued
measure on a sigma algebra. As an application to fractal geometry, a concept
of Cantor sets in hyperbolic numbers was developed by Balankin et al. [4] and
Téllez-Sánchez et al. [24]. Recently, the authors of the present paper used in
[8] lattice-theoretical results to go further in the development of the theory of
bicomplex zeta function. Further applications are found in [13, 14, 17, 18, 20].
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The aim of this paper is to investigate a lattice-ordered ring (ℓ-ring) of
algebraic integers where we are able to generalize many of the basic divisibility
and order properties of Z. Our main result (Theorem 3.2) is the existence of
a unique, up to ring isomorphism, Archimedean f -ring of quadratic integers
called the ring of hyperbolic integers denoted Zh. Namely, Zh is the ring of
integers of the extension Q(j) = {α+ jβ ; α, β ∈ Q}.

The present paper is organized in the following way: in Section 2, we re-
call some notions and terminology concerning ℓ-groups, f -rings and f -algebras
and present basic notions and properties of hyperbolic numbers that are used
throughout this article. Section 3 introduces the lattice-ordered ring Zh of
hyperbolic algebraic integers, and various of its properties are established. We
introduce the notions of hyperbolic floor and ceiling functions which generalize
that of real numbers. Sections 4 and 5 are devoted to the divisibility in Zh.
Many of the basic concepts of the arithmetic of Z are extended to Zh: the
Euclidean division, the existence of a unique positive gcd, the existence of a
unique factorization into a product of positive primes. In Section 6, we estab-
lish some properties of the hyperbolic Gaussian integers as a subring of Zh.
As an application, we discuss the Dirichlet divisor problem using hyperbolic
intervals.

2. PRELIMINARIES

In this section, we recall basic facts which we use throughout this paper.

2.1. Basic lattice concepts

We recall some notions and terminology about ℓ-groups, f -rings [5, 23]
and f -algebras [25].

Let G be a group which is also a partially ordered set. The group opera-
tion is denoted additively even if G is not assumed abelian, and so the identity
element and the inverse of a ∈ G are denoted by 0 and −a, respectively. G is
called a partially ordered group if the partial order ≤ satisfies: for any a, b ∈ G,

a ≤ b⇒ a+ c ≤ b+ c and c+ a ≤ c+ b for all c ∈ G.

In the partially ordered group G, an element a is called positive if a ≥ 0.
The set G+ of all positive elements is called the positive cone of G. The
partially ordered group G is said to be Archimedean if for each nonzero a in
G the set {na :n ∈ Z} has no upper bound in G; equivalently, a, b ∈ G+ and
na ≤ b for all n ∈ N⇒ a = 0.
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The partially ordered group G is a lattice-ordered group (an ℓ-group) if
the partial order is a lattice order (i.e., the supremum a ∨ b and the infimum
a ∧ b exist in G for all a, b ∈ G). Every element a in an ℓ-group G can be
written as a = a+ − a−, where a+ = a ∨ 0 and a− = −a ∨ 0. The absolute
value of a is defined as |a| = a ∨ (−a) = a+ + a−. Any Archimedean ℓ-group
is abelian.

A real vectorial space V is said to be a vector lattice or Riesz space if V as
a group is an ℓ-group satisfying the property: for any a, b ∈ V, a ≤ b⇒ αa ≤ αb
for all α ∈ R+. A ring R is called an f -ring if R is an ℓ-group and for any
a, b ∈ R+,

ab ∈ R+ and a ∧ b = 0⇒ ac ∧ b = ca ∧ b = 0 for all c ∈ R+.

An f -ring is Archimedean if its underlying group is Archimedean. For
each element a in an f -ring, we have a+a− = 0. Two f -rings R and S are
called ℓ-isomorphic if there exists a ring isomorphism φ from R to S satisfying
φ(a∨b) = φ(a)∨φ(a) and φ(a∧b) = φ(a)∧φ(a) for all a, b ∈ R. An associative
real algebra is an f -algebra if it is an f -ring and its underlying group is a vector
lattice.

We give some examples of partially order groups, ℓ-groups and f -rings.
1. The additive group G = Z, Q, or R is an Archimedean totally ℓ-group

with the usual order between real numbers, and |x| = x ∨ (−x) = max{x,−x}
for all x ∈ G.

2. Let (G,P ) be the partially order group R× R with positive cone P .

• If P = {(x, y) : x > 0 or x = 0 and y ≥ 0}, then (G,P ) is a totally ordered
group which is not Archimedean since for any n ∈ N, n(0, 1) ≤ (1, 0).
The absolute value in (G,P ) is given by |(x, y)| = max{(x, y), (−x,−y)}.

• If P = {(x, y) : x > 0 and y > 0 or (x, y) = (0, 0)}, then (G,P ) is an
Archimedean partially ordered group but not an ℓ-group.

• If P = {(x, y) : x ≥ 0 and y ≥ 0}, then (G,P ) is an Archimedean ℓ-group,
and |(x, y)| = (|x|, |y|).

3. Let Z[ε] = {z = x + εy : x, y ∈ Z, ε /∈ R; ε2 = 0} be the ring of
dual Gaussian integers. Let z ∈ Z[ε] belong to the positive cone P of Z[ε] if
Re(z) > 0 or Re(z) = 0 and Im(z) ≥ 0. Then (Z[ε], P ) is a totally f -ring but
not Archimedean, and the absolute value is given by.

|z| = max{z,−z} =
{

z if z ≥ 0
−z if z ≤ 0

4. The ring Z[i] of Gaussian integers cannot be made into an f -ring since
i2 = −1 (the squares in any f -ring are positive). Nevertheless, there is a partial
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order on Z[i] that makes it into an Archimedean ℓ-group; namely, z ≤ w in
Z[i] if and only if Re(z) ≤ Re(w) and Im(z) ≤ Im(w). Thus, for any z ∈ Z[i],
the absolute value is

|z| = |Re(z)|+ i|Im(z)|.
It is worth noticing that both |z| and the modulus

√
zz̄ are generalizations of the

usual absolute value in the sens that they coincide on real numbers. However,
the first one belongs to Z[i] as an ℓ-group, and the second is a positive real
number which represents the euclidean distance from z to the origin 0 as a
lattice point.

2.2. Hyperbolic numbers

We recall basic properties of hyperbolic numbers equipped by their natu-
ral Archimedean f -algebra structure (see [7]). Hyperbolic numbers defined by
(1.1) are commutative ring with group of units defined by

D∗ =
{
z ∈ D : ∥z∥h ̸= 0

}
,

where ∥z∥h := zz̄ = x2 − y2 denotes the hyperbolic square-norm of z = x+ jy,
(x, y ∈ R) and z̄ is the conjugate of z given by exchanging y ←→ −y. The
hyperbolic plane has an important basis {e1, e2} where

e1 =
1 + j

2
, e2 =

1− j

2
.

e1 and e2 are mutually complementary idempotent zero divisors, i.e.,

(2.1) e21 = e1; e22 = e2; e1 + e2 = 1; e1e2 = 0.

In this basis, each hyperbolic number z can be written as

(2.2) z = π1(z)e1 + π2(z)e2,

where the maps π1, π2 : D → R are a pair of surjective ring homomorphisms
defined by

π1(x+ jy) = x+ y and π2(x+ jy) = x− y.

From representation (2.2), called the spectral decomposition [22], algebraic op-
erations correspond to coordinate-wise operations, the square norm of z is the
product π1(z)π2(z) and its conjugation is given by exchanging π1(z)↔ π2(z).
Moreover, we can define a partial order ≤ on D that makes it into Archimedean
f -algebra, where

(2.3) z, w ∈ D; z ≤ w if and only if πk(z) ≤ πk(w), k = 1, 2.
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From this ordering, the lattice operations are

z ∨ w = max{π1(z), π2(z)}e1 +max{π1(z), π2(z)}e2,
z ∧ w = min{π1(z), π2(z)}e1 +min{π1(z), π2(z)}e2.

Moreover, z ∨ w and z ∧ w can be expressed as an I(D)-combination of z and
w, where I(D) means the set of all idempotent elements of D. More precisely,
this property is formulated in the following result.

Proposition 2.1 (Proposition 3.1 in [7]). For any z, w ∈ D there exist
unique u, v ∈ I(D) satisfying uv = 0 and u+ v = 1 such that

z ∨ w = uz + vw and z ∧ w = vz + uw.

The Riesz space D is Dedekind complete, i.e., every nonempty subset A
that is bounded above (resp., below), has a supremum supA (resp., infimum
inf A), and

(2.4) supA = supπ1(A)e1 + supπ2(A)e2,

(2.5) inf A = inf π1(A)e1 + inf π2(A)e2.

In the ring of hyperbolic numbers there is a multiplicative group S called group
of signs given by

(2.6) S =
{
1,−1, j,−j

}
∼= Z/2Z× Z/2Z.

Theorem 2.1 (Theorem 5.1 in [7]). Let z ∈ D, then there exists an
element ε ∈ S such that

εz ≥ 0.
If ∥z∥h ̸= 0 then ε is unique, called sign of z, denoted sgn(z) and given by

sgn(z) =
z

|z|
.

The f -algebra D under the norm

∥z∥R := min
{
α ∈ R+ : α ≥ |z|

}
= |z| ∨ |z| for all z ∈ D,

is a unital Banach lattice algebra, i.e., the norm ∥.∥R satisfies the properties:
(i) |z| ≤ |w| implies ∥z∥R ≤ ∥w∥R; (ii) ∥zw∥R ≤ ∥z∥R∥w∥R and ∥1∥R = 1.
As |z| ∨ |z| = max{|π1(z)|, |π2(z)|}, then using the standard basis {1, j} an
explicit expression of ∥z∥R is given by the formula

∥x+ jy∥R = max{|x+ y|, |x− y|} for all x, y ∈ R.
The Banach algebra structure allows us to define the exponential of z, for any
hyperbolic number z, as

ez :=
∞∑
n=0

zn

n!
= eπ1(z)e1 + eπ2(z)e2.
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The hyperbolic exponential function exp is a group homomorphism from
the additive group D to the multiplicative group D∗. But unlike complex
numbers, the hyperbolic exponential function is one-to-one with the group
exp(D) = D+

∗ = {z = z1e1 + z2e2 : z1, z2 ∈ R∗
+}. Therefore, exp : D −→ D+

∗ is
a group isomorphism, and this leads to define the hyperbolic logarithm function
as the inverse isomorphism ln = exp−1.

Given z ∈ D+
∗ and α ∈ D, we define the hyperbolic exponentiation zα as

zα := eα ln(z) = eπ1(α) ln(π1(z))e1 + eπ2(α) ln(π2(z))e2.

We write z = z1e1 + z2e2, α = α1e1 + α2e2. Then, from the above formula,
we obtain

(2.7) zα := zα1
1 e1 + zα2

2 e2.

Finally, let us mention that we use the following notation: for any z, w ∈ D,
we write

z ≺ w if and only if w − z ∈ D+
∗ .

Therefore, if z, w ∈ R then z < w in R if and only if z ≺ w in D.

3. HYPERBOLIC INTEGERS

3.1. Basic definitions and properties

Let R be a ring extension of Q with degree n, i.e., a unital commutative
ring in which its underling group is a Q-vector space with dimension n. There-
fore, each α ∈ R is an algebraic number (i.e., a root of a polynomial P ∈ Z[X])
since it satisfies the equation

anα
n + an−1α

n−1 + · · ·+ a0 = 0, ai ∈ Z.

If, in addition, an = 1, α is said to be an algebraic integer. The set OR of all
algebraic integers of R is a ring [21, Chapter 2] called the ring of integers of
R. In particular, a finite field extension K of Q is usually refereed as a number
field. The ring OK of its integers is Notherian but in general is not a unique
factorization domain see [10, Chapter 12]. In lattice-ordered rings framework,
we obtain the following result.

Theorem 3.1. Let R be a ring extension of Q with degree ̸= 1. If R is an
integral domain, then its ring of integers OR cannot be made into Archimedean
f -ring.

Proof. Let R be an integral ring extension of Q with degree d > 1. Sup-
pose that OR can be made into Archimedean f -ring. Let x ∈ OR then x+ = 0
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or x− = 0 since x+x− = 0 and OR is an integral domain. This means that
x ≥ 0 or x ≤ 0, since x can be written as x = x+ − x− with x+, x− ≥ 0. It
follows that for any u, v ∈ OR, either u− v ≥ 0 or u− v ≤ 0, and hence u ≥ v
or u ≤ v; that is, OR is a totally ordered group. Therefore, from Hölder’s
theorem [5, Theorem 2.6.3], OR is isomorphic to a subgroup of R. This yields
a contradiction since dimQR ̸= 1. This completes the proof.

The aim of this paper is the characterization of all Archimedean f -rings
of quadratic integers. From Theorem 3.1, these rings must be non integral
domains. In fact, we show that, up to an ℓ-isomorphism, there is only one
Archimedean f -ring of quadratic integers, namely the ring of integers of the
extension Q(j) = {α+ jβ ; α, β ∈ Q}.

Theorem 3.2 (Hyperbolic integers). The ring of integers of Q(j) is given
by

Zh := Ze1 + Ze2,
and it is the unique, up to order and ring isomorphism, Archimedean f -ring of
quadratic integers called the ring of hyperbolic integers.

Proof. The Z-module Zh = Ze1 +Ze2 is a subring and sublattice (closed
under ∨ and ∧) of the Archimedean f -algebra D. So, it is an Archimedean
f -ring under the partial order induced from D, and for any u = ne1+me2 and
v = pe1 + qe2, we have

(3.1) u∨v=max{n, p}e1+max{m, q}e2 and u∧v=min{n, p}e1+min{m, q}e2.

We prove now that Zh is the ring of integers of Q(j). To do this, we use the
decomposition Q(j) = Qe1 +Qe2 that follows from the identities: e1 + e2 = 1
and e1 − e2 = j. Let υ = αe1 + βe2 ∈ Qe1 + Qe2 then υ ∈ OQ(j) if and
only if there exists (a, b) ∈ Z2 such that υ2 + aυ + b = 0, i.e., from (2.1)
(α2 + aα+ b)e1 + (β2 + aβ + b)e2 = 0. This means that α and β are the roots
of x2 + ax+ b. Then, up to a permutation of the roots one has

(3.2) α =
−a+

√
a2 − 4b

2
=
n

2
and β =

−a−
√
a2 − 4b

2
=
m

2
,

where n,m,α + β and αβ are integers, so that n+m
2 , nm4 ∈ Z. This holds only

if n and m are even, i.e., from (3.2) α, β ∈ Z. Hence Zh = OQ(j).
Let OR be the ring of integers of a quadratic ring extension R of Q.

Suppose that OR is an Archimeadean f -ring. Then, it contains an element
b having u1 = b+ ̸= 0 and u2 = b− ̸= 0. Otherwise, v+ = 0 or v− = 0
for every v ∈ OR, and so it is a totally ordered Archimedean group which
implies (by Hölder’s theorem [5, Theorem 2.6.3]), that OR is isomorphic to a
subgroup of R, which is a contradiction. As OR is an f -ring, we must have
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u1u2 = b+b− = 0 which implies that {u1, u2} are linearly independent over Q.
Indeed, αu1+βu2 = 0 implies αu21 = 0 and βu22 = 0 and so α = β = 0 since any
unital Archimedean f -ring is semiprime (i.e., 0 is the only nilpotent element).
Let α1, α2 ∈ Q be such that 1 = α1u1 +α2u2. Thus, (v1, v2) := (α1u1, α2u2) is
a basis of R satisfying the properties

(3.3) 1 = v1 + v2, v1v2 = 0 =⇒ v21 = v1, v
2
2 = v2.

Let now υ = αv1+βv2 ∈ R = Qv1+Qv2. Then, from (3.3), a similar reasoning
to that of Q(j) = Qe1 +Qe2 shows that υ ∈ OR if and only α, β ∈ Z, that is,
OR = Zv1 +Zv2. We claim that it is an Archimedean f -ring under the partial
order (nv1+mv2) ≤ (pv1+ qv2) if and only if n ≤ p and m ≤ q in Z. It is clear
that the positive cone is closed under multiplication. Also, OR is an ℓ-group
and for any two elements u = nv1 +mv2 and v = pv1 + qv2,

(3.4) u∨v=max{n, p}v1+max{m, q}v2 and u∧v=min{n, p}v1+min{m, q}v2.

The Archimedean property follows from that of Z with the usual order. For
the f -ring property, we prove that for any positive elements u, v and w we have
wu ∧ v = 0 whenever u ∧ v = 0. Write u = n1v1 + n2v2, v = m1v1 +m2v2 and
w = p1v1 + p2v2 with n1, n2,m1,m2, p1, p2 ∈ Z+. Let c1 = min{p1, p2, 1} and
c2 = max{p1, p2, 1}. Thus, from (3.4), we get c1(u ∧ v) ≤ wu ∧ v ≤ c2(u ∧ v),
and hence u ∧ v = 0 implies wu ∧ v = 0.

It remains to prove that the f -rings OR and Zh are ℓ-isomorphic. Define
the mapping

φ : nv1 +mv2 7→ ne1 +me2.

Clearly φ is bijective and (by (3.1), (3.4)), it preserves ∨ and ∧. Moreover, it
follows from (2.1) and (3.3) that φ is also a ring homomorphism. Therefore, φ
is an ℓ-isomorphism between the two f -rings.

Remark 3.3. Using notations of [21, Chapter 2] one can define the set

ZD
as the integral closure of Z in D, i.e., the ring of algebraic integers of D.

From Proposition 2.1, it is clear that ZD
is a sublattice of D, under the induced

partial order (2.3), and then an Archimedean f -ring. One can easily check that

ZD
= e1Z

R ⊕ e2Z
R
. Indeed, an hyperbolic number α is an algebraic integer if

and only if α1 = π1(α) and α2 = π2(α) are real algebraic integers. From this
point of view, the ring of hyperbolic integers Zh can be seen as the smallest

(with respect to inclusion) sub f -ring of ZD
containing {e1, e2}.

As for integers of a quadratic field Q(
√
d), every hyperbolic integer a is

the root of a monic polynomial P ∈ Z[X] given by

P (X) = X2 − 2Re(a)X + ∥a∥h,
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where ∥a∥h = aā and Re(a) is the real part of a. However, Zh has zero divisors
which are the multiples ne of e ∈ {e1, e2} with n ∈ Z \ {0}. For the units of
Zh, we have

Proposition 3.1. The units of Zh coincide with the group of signs of D
(2.6); that is

U(Zh) = S =
{
1,−1, j,−j

}
.

Proof. The units of Zh are characterized by all υ∈Zh such that ∥υ∥h=±1
since the square norm ∥.∥h is multiplicative and υ satisfies: υ2 + av + b = 0,
where a, b ∈ Z with a = 2Re(υ) and b = ∥υ∥h. Write υ = ne1 + me2, then
∥υ∥h = nm = ±1 if and only if (n,m) ∈ {±(1, 1),±(1,−1)}. As e1 + e2 = 1
and e1 − e2 = j, we get υ = ±1,±j.

In the hyperbolic plane D ≡ R2, Zh is a “square” full lattice [19] with the
fundamental parallelepiped P = {z ∈ D : 0 ≤ z ≺ 1} and minimal elements
±e1, ±e2 (see Figure 1).

Figure 1 – Hyperbolic integers with fundamental parallelepiped P .

Proposition 3.2. Let A be a nonempty subset of Zh. Then, the following
hold.

(i) If A is bounded from above and closed under ∨, then it has a largest
element.

(ii) If A is bounded from below and closed under ∧, then it has a smallest
element.
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Proof. (i) If A is finite, it is clear that maxA =
∨

a∈A a. Otherwise,
A is a countable set which means that A can be viewed as a sequence
(an). Let zn = a0 ∨ · · · ∨ an for n = 0, 1, · · · . Then, (zn)n≥0 is an
increasing sequence of A which is bounded above. It follows that (zn)
become constant, i.e., there exists an integer N ∈ N such that zn = zN
for all n ≥ N . Hence maxA = zN .

(ii) We apply (i) for −A and use the duality formula inf A = − sup(−A).

3.2. Ideals of Zh

In this subsection, we establish some properties involving ideals of Zh.

Proposition 3.3. For every ideal I in the ring Zh there exists a unique
positive element gI such that I = gIZh. Moreover, I is a sublattice of Zh.

Proof. Let I be an ideal of the ring Zh. Since for every k = 1, 2 the map
πk is a surjective ring homomorphism from Zh to Z, then πk(I) is an ideal of
the principal ideal domain Z. Therefore, there is a unique positive integer nk
such that πk(I) = nkZ. Thus, the element gI = n1e1+n2e2 generates I and it
is the only positive one. It follows from Proposition 2.1 that I is a sublattice
of Zh.

Recall that an ℓ-subgroup C (i.e., subgroup and sublattice) of an ℓ-group
G is said to be convex if 0 ≤ a ≤ b in G and b ∈ C imply a ∈ C. An ℓ-ideal
of an ℓ-ring R is a convex ℓ-subgroup of R that is also an ideal of R. The
following characterizes ℓ-ideals of the ℓ-ring Zh.

Proposition 3.4. An ideal of Zh is an ℓ-ideal if and only if it is generated
by an idempotent element.

Proof. Let I be an ideal of Zh with positive generator gI . We see by
Proposition 3.3 that I is an ℓ-subgroup of Zh. So, I is an ℓ-ideal if and only if
I is convex. Suppose that gI is an idempotent element, i.e., gI ∈ {0, 1, e1, e2}.
It is obvious that I is convex if gI = 0 or gI = 1. Assume that gI = e ∈ {e1, e2}
that means I = eZh = eZ. Let a, b ∈ Zh be such that 0 ≤ a ≤ b and b ∈ I.
Then a = αe for some real α, since eR is an order ideal of D (see Theorem
3.5 in [7]). We must also have α ∈ Z, because a ∈ Zh. Hence, a ∈ I and this
proves that I is convex. Conversely, assume that I is convex. We have to prove
that the generator gI of I is an idempotent element. We distinguish two cases:
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(i) if ∥gI∥h = 0 the case gI = 0 is trivial. Suppose that gI = ne for some
e ∈ {e1, e2} and some integer n ≥ 1. Then, we have 0 ≤ e ≤ ne with
ne ∈ I which implies that e ∈ I = neZ. Thus, nk = 1 for some k ∈ Z.
This yields that n = 1, and hence gI = e.

(ii) if ∥gI∥h ̸= 0, then 0 ≤ 1 ≤ gI with gI ∈ I which means that 1 ∈ I, i.e.,
I = Zh. Therefore, gI = 1.

Proposition 3.5. Let I be an ideal of Zh with the positive generator
gI = n1e1 + n2e2. Then,

Zh/I ≃ Z/n1Z× Z/n2Z.

In particular, Zh/I ≃ Z if and only if I is a nontrivial ℓ-ideal.

Proof. Let us consider next I as an ideal in Zh with the positive generator
gI = n1e1 + n2e2. One can easily see that the mapping

Zh/I ∋ ȧ 7→
(
π̂1(a), π̃2(a)

)
∈ Z/n1Z× Z/n2Z,

establishes an isomorphism of Zh/I with Z/n1Z× Z/n2Z. In particular, from
Proposition 3.4, Zh/I ≃ Z if and only if I is a nontrivial ℓ-ideal.

3.3. Hyperbolic floor and ceiling functions

Let us consider z ∈ D. Then the sets E+(z) := {k ∈ Zh : k ≤ z}
and E−(z) := {k ∈ Zh : k ≥ z} are two nonempty sublattices of Zh. Thus
from Proposition 3.2, the notions of floor ⌊.⌋ and ceiling ⌈.⌉ functions on real
numbers can be extended to the hyperbolic numbers in the following way.

Definition 3.4. The functions ⌊.⌋D and ⌈.⌉D from D to Zh defined by

⌊z⌋D := max
{
k ∈ Zh : k ≤ z

}
,

⌈z⌉D := min
{
k ∈ Zh : k ≥ z

}
are called, respectively, hyperbolic floor function and hyperbolic ceiling func-
tion.

By (2.4) and (2.5), we derive that

(3.5) ⌊z⌋D = ⌊π1(z)⌋e1 + ⌊π2(z)⌋e2 and ⌈z⌉D = ⌈π1(z)⌉e1 + ⌈π2(z)⌉e2.

Therefore,

(3.6) z − 1 ≺ ⌊z⌋D ≤ z ≤ ⌈z⌉D ≺ z + 1 for all z ∈ D.
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Let us consider a hyperbolic closed interval (see [4] and [24]) defined by

[α, β]D := {z ∈ D : α ≤ z ≤ β}.

Geometrically, [α, β]D is a rectangle (Figure 2) when ∥α − β∥h ̸= 0 called
nondegenerate interval, otherwise it is a line segment [α, β] parallel to one of the
two bisector axis. The open interval (α, β)D and half-open intervals (α, β]D and

Figure 2 – Nondegenerate hyperbolic closed interval [α, β]D.

[α, β)D are defined in a similar way replacing ≤ by ≺ in left-right and left/right,
respectively. However, all these intervals are empty if ∥α − β∥h = 0. One has
(α, β)D = [α, β]D \ (∂α ∪ ∂β), (α, β]D = [α, β]D \ ∂α and [α, β)D = [α, β]D \ ∂β
where ∂α and ∂β are the two edges that meet, respectively, at α and β. As on
real numbers, the functions ⌊.⌋D and ⌈.⌉D allow one to determine the number
NZh

(I) of hyperbolic integers in a hyperbolic interval I by considering the four
types below.

Proposition 3.6. Let α, β ∈ D be such that α ≤ β then

NZh
([α, β]D) =

∥∥∥⌊β⌋D − ⌈α⌉D + 1
∥∥∥
h
,

NZh
([α, β)D) =

∥∥∥⌈β⌉D − ⌈α⌉D∥∥∥
h
,

NZh
((α, β]D) =

∥∥∥⌊β⌋D − ⌊α⌋D∥∥∥
h
,

NZh
((α, β)D) =

∥∥∥⌈β⌉D − ⌊α⌋D − 1
∥∥∥
h
.

Proof. Let us denote by I1 = [α, β]D, I2 = [α, β)D, I3 = (α, β]D and
I4 = (α, β)D. Then the sets Zh ∩ Ik are bijectively mapped onto Z2 ∩φ(Ik) via
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the map from D to R2 defined by φ(z) = (π1(z), π2(z)). Thus, for k = 1, . . . , 4,
NZh

(Ik) = #Z2 ∩Rk where Rk = φ(Ik) are the rectangles

R1 = [π1(α), π1(β)]× [π2(α), π2(β)] , R2 = [π1(α), π1(β))× [π2(α), π2(β)) ,

R3 = (π1(α), π1(β)]× (π2(α), π2(β)] , R4 = (π1(α), π1(β))× (π2(α), π2(β)) .

Therefore,

NZh
(I1) = (⌊π1(β)⌋ − ⌈π1(α)⌉+ 1) (⌊π2(β)⌋ − ⌈π2(α)⌉+ 1) ,

NZh
(I2) = (⌈π1(β)⌉ − ⌈π1(α)⌉) (⌈π2(β)⌉ − ⌈π2(α)⌉) ,

NZh
(I3) = (⌊π1(β)⌋ − ⌊π1(α)⌋) (⌊π2(β)⌋ − ⌊π2(α)⌋) ,

NZh
(I4) = (⌈π1(β)⌉ − ⌊π1(α)⌋ − 1) (⌈π2(β)⌉ − ⌊π2(α)⌋ − 1) .

Finally, the results follow from (3.5) and the propriety ∥z∥h = π1(z)π2(z).

4. DIVISIBILITY

4.1. First properties

Divisibility in Zh is defined naturally: we say b divides a, or a is a multiple
of b (and write b|a) if a = bc for some c ∈ Zh. In this case, we call b a divisor
of a.

Proposition 4.1. For a, b ∈ Zh we have

(i) a|b in Zh implies ∥a∥h
∣∣∣ ∥b∥h ∈ Z;

(ii) a|b and ∥b∥h ̸= 0 implies |a| ≤ |b|;

(iii) a|b and b|a if and only if |a| = |b|.

Proof. (i) If a|b then b = ac which implies, by multiplicativity of ∥.∥h,
that ∥b∥h = ∥a∥h∥c∥h. Hence, ∥a∥h

∣∣∣ ∥b∥h ∈ Z.
(ii) If a|b and ∥b∥h ̸= 0, then b = ca for some c ∈ Zh with ∥c∥h ̸= 0 that means
|c| ≥ 1. Therefore,

|b| − |a| = (|c| − 1)|a| ≥ 0.

(iii) a|b and b|a if and only if a = εb for some unit ε, i.e., (by Proposition 5.1
in [7]) if and only if |a| = |b|.
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4.2. Hyperbolic euclidean division and congruence

Theorem 4.1. Let a, b ∈ Zh with ∥b∥h ̸= 0, then there exist unique
q, r ∈ Zh such that

a = bq + r, 0 ≤ r ≺ |b|.
The hyperbolic integers q and r are called, respectively, the quotient and the
remainder of the division of a by b.

Proof. We consider first the uniqueness. Assume that

a = bq1 + r1 = bq2 + r2, 0 ≤ r1, r2 ≺ |b|.

Then,

0 ≤ |q1 − q2| =
|r1 − r2|
|b|

≺ 1.

Hence, q1 = q2 which implies r1 = r2.
Consider now the existence. Put

q = ε

⌊
a

|b|

⌋
D
and r = a− bq,

where ε = sgn(b) = |b|
b and ⌊.⌋D is the hyperbolic floor function (3.4). Then,

we have q, r ∈ Zh and a = bq + r. It remains to prove that 0 ≤ r ≺ |b|. From
(3.6) one has

(4.1)
a

|b|
− 1 ≺

⌊
a

|b|

⌋
D
≤ a

|b|
.

Multiply (4.1) by −εb = −|b| and use r = a− bq to get the desired inequality.

As for integers, congruences in Zh are defined using divisibility.

Definition 4.2. Let a, b, v ∈ Zh. We further write a ≡ b mod v if and
only if v|(a− b).

Since congruence modulo 0 means equality and a|b if and only if |a|
∣∣∣b, we

usually assume the modulus is a nonzero positive element of Zh.

Proposition 4.2. For a, b, c, v ∈ Zh one has

(i) a≡b mod v and c≡d mod v imply a+c≡b+d mod v and ac≡bd mod v;

(ii) if also a, b, v ∈ Z then a≡b mod v in Zh if and only if a≡b mod v in Z;

(iii) a ≡ b mod v in Zh if and only if πk(a) ≡ πk(b) mod πk(v) in Z for
k = 1, 2;
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(iv) a ≡ b mod v if and only if ā ≡ b̄ mod v̄.

Proof. The proof is straightforward.

Let v ∈ Zh, v ≻ 0. Then (by Proposition 3.5), the number of the residue
classes modulo v is its square norm ∥v∥h. For instance, the four binary classes
are the set

(4.2) Zh/2Zh = {0̂, 1̂, ê1, ê2}.

4.3. Positive gcd and positive lcm

According to Proposition 3.3, for every a, b ∈ Zh the ideals aZh + bZh

and aZh ∩ bZh are generated by a unique positive element. This justifies the
following result.

Theorem 4.3. Every a, b ∈ Zh have a unique positive greatest common
divisor gcdZh

(a, b) and a unique positive latest common multiple lcmZh
(a, b).

Moreover,

gcdZh
(a, b) = gcd(π1(a), π1(b))e1 + gcd(π2(a), π2(b))e2 ,

lcmZh
(a, b) = lcm(π1(a), π1(b))e1 + lcm(π2(a), π2(b))e2 .

As an immediate consequence of Theorem 4.3, we have the following
properties of gcdZh

and lcmZh
which are extension of the corresponding ones

in Z.

Proposition 4.3. For a, b ∈ Zh we have

(i) gcdZh
(|a|, |b|) = gcdZh

(a, b) and lcmZh
(|a|, |b|) = lcmZh

(a, b);

(ii) gcdZh
(a, b) lcmZh

(a, b) = |ab|;

(iii) gcdZh
(a, b) = gcdZh

(ā, b̄) and lcmZh
(a, b) = lcmZh

(ā, b̄);

(iv) gcdZh
(a ∨ b, a ∧ b) = gcdZh

(a, b) and lcmZh
(a ∨ b, a ∧ b) = lcmZh

(a, b).

Remark 4.4. In view of Proposition 4.1, the quazi-order on Z+
h defined

by

a ≤ b if and only if a|b,
is a partial order, and under such order, Z+

h is a lattice ordered multiplicative
monoid with a ∧ b = gcdZh

(a, b) and a ∨ b = lcmZh
(a, b) for all a, b ∈ Z+

h .
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5. PRIMES AND IRREDUCIBLES IN Zh

In this section, we characterize all prime and irreducible elements of Zh.
We also extend the unique factorization theorem of Z to Zh. The set of all prime
numbers: 2, 3, 5, 7, 11, · · · is denoted by P. For basic notions and terminology
about prime and irreducible elements we refer to [16, Chapter II].

5.1. Characterization

Theorem 5.1 (Hyperbolic primes). The following statements are satis-
fied.

(i) Prime elements of Zh are u = εv where ε is a unit and

v ∈ {e1, e2, pe1 + e2, e1 + pe2 : p ∈ P}.

(ii) Irreducible elements of Zh are u = εv where ε is a unit and v is in

Ph := {pe1 + e2, e1 + pe2 : p ∈ P}

where Ph is defined as the set of hyperbolic prime numbers (or hyperbolic
primes),

Proof. Let v = ne1+me2 be a nonzero and nonunit positive element of
the ring Zh.
(i) By Proposition 3.5, v is prime if and only if Z/nZ × Z/mZ is an integral
domain, i.e, if and only if one of Z/nZ or Z/mZ is an integral domain and the
other one is zero. It follows that (n,m) ∈ {(1, 0), (0, 1), (p, 1), (1, p) : p ∈ P}.
Which means that

v ∈ {e1, e2, pe1 + e2, e1 + pe2 : p ∈ P}.

(ii) If v is irreducible, then vZh is a maximal ideal, since by Proposition 3.3,
every ideal in the ring Zh is principal. Therefore, vZh is a prime ideal which
means that v is prime. So from (i), either v = e1 or v = e2 or v = pe1 + e2
or v = e1 + pe2 for some prime number p. We prove that each nonzero-divisor
prime element v is irreducible, since the atoms e1 and e2 are not. Let a, b ∈ Zh

be such that v = ab. Then, taking the norm ∥.∥h, we obtain p = ∥a∥h∥b∥h.
Since p is irreducible in Z it follows that ∥a∥h = ±1 or ∥b∥h = ±1. Hence,
either a ∈ S or b ∈ S.

Remark 5.2. (i) Theorem (5.1) shows that hyperbolic primes are pos-
itive nonzero-divisor prime elements of Zh and they are the hyperbolic
integers of the form pe1+e2 or e1+pe2 with p ∈ P. Write p = pe1+pe2,
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then using the hyperbolic exponentiation (2.7), we have pe1 + e2 = pe1

and e1 + pe2 = pe2 . Thus, hyperbolic primes are the set

Ph := {pe : (p, e) ∈ P× {e1, e2}}.

(ii) It is well known that Gaussian primes are, up to units, prime numbers p
with p≡3 mod 4 or Gaussian integers z=a+ib with the norm zz̄=a2+b2,
being a prime number. Similarly, (nonzero-divisor) hyperbolic primes
are, up to units, hyperbolic integers υ with square norm ∥υ∥h = υῡ = p,
where p is a prime number. However, for each prime number p one has
the decomposition p = pe1pe2 . It is quite remarkable to see that p viewed
as a hyperbolic integer is in fact “semiprime”.

5.2. Unique factorization theorem

The fundamental theorem of arithmetic states that every nonzero integers
n can be written uniquely in the form

n = ε
∏
p∈P

pvn(p),

where ε is a unit (ε = sgn(n)) and vn : P −→ N with vn(p) ̸= 0 for a finite
number of p.

Using the hyperbolic exponentiation (2.7), the following statements show
that this property can be generalized to hyperbolic integers.

Theorem 5.3. Every a ∈ Zh with ∥a∥h ̸= 0 can be written uniquely in
the form

a = ε
∏
p∈P

pva(p),

where ε is a unit and va : P −→ Z+
h with va(p) ̸= 0 for a finite number of p.

Proof. Let a ∈ Zh with ∥a∥h ̸= 0. By Theorem 2.1, there is a unique unit
ε ∈ S such that a = ε|a|. Let n1, n2 ∈ N be such that |a| = n1e1+n2e2. Then,
n1, n2 ̸= 0. By the fundamental theorem of arithmetic, for every n ∈ N there
is a unique application µn : P −→ N with µa(n) = 0 for almost all p such that

n =
∏
p∈P

pµn(p).

Let va : P −→ Z+
h be the function defined by va(p) = µn1(p)e1 + µn2(p)e2.

Therefore,

|a| =
∏
p∈P

pva(p).
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Theorem 5.4 (Unique factorization theorem). Every a∈Zh with ∥a∥h ̸=0
can be written uniquely in the form

a = ε
∏
u∈Ph

uva(u),

where ε is a unit and va : Ph −→ N with va(u) = 0 for almost all u.

Proof. The proof follows immediately from Theorem 5.3 by observing
that hyperbolic primes are pe1 and pe2 with p ∈ P (Theorem 5.1).

6. HYPERBOLIC GAUSSIAN INTEGERS

By analogy to complex numbers, the hyperbolic Gaussian integers or,
more simply, the h-Gaussian integers (also called split Gaussian integers [11])
are the set

Gh = Z[j] :=
{
x+ jy : x, y ∈ Z

}
.

We see next that it is a subring of Zh with zero divisors that are the
multiples n(1 ± j), n ∈ Z \ {0}, and units that are 1,−1, j, and −j. From the
four binary classes (4.2) of hyperbolic integers, we have the following charac-
terization of h-Gaussian integers.

Theorem 6.1. Let a ∈ Zh, then a ∈ Gh if and only if either a ≡ 0 mod 2
or a ≡ 1 mod 2.

Proof. Let a = ne1 +me2 =
(
n+m
2

)
+ j

(
n−m
2

)
∈ Zh with n,m ∈ Z. So,

a ∈ Gh if and only if n ≡ m mod 2, i.e., if and only if either a ≡ 0 mod 2 or
a ≡ 1 mod 2.

In view of Theorem 2.1 and by the units of Gh being the set S, one can
see that Gh is closed under absolute value. But it is not an ℓ-subgroup of Zh,
since 0 ∨ j = e1 /∈ Gh. However, the next result gives under which condition
the supremum of two incomparable (with respect to the order induced by Zh)
h-Gaussian integers exists in Gh.

Proposition 6.1. Let a, b ∈ Gh be incomparable, then

a ∨ b ∈ Gh if and only if a ≡ b mod 2.

Proof. Let a, b ∈ Gh be incomparable. Then, from Proposition 2.1, we
can write

a ∨ b = ua+ vb,
for some u, v ∈ {e1, e2} with u + v = 1. Therefore, Theorem 6.1 implies that
a ∨ b ∈ Gh if and only if a ≡ b mod 2.
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Proposition 6.2. Every a ∈ Gh with ∥a∥h ̸= 0 can be written uniquely
in the form

a = εa2
ν
∏
p ̸=2

pva(p),

where εa is a unit, va : P −→ Z+
h with va(p) = 0 for almost all p and ν ∈ Z+

h

is such that ν = 0 if a ≡ 1 mod 2 and ν ≻ 0 if a ≡ 0 mod 2.

Proof. From Theorem 5.3, a can be uniquely expressed in the form

a = εa
∏
p

pva(p) = εa2
ν
∏
p ̸=2

pva(p),

where εa is a unit and P va−→ Z+
h with va(p) = 0 for almost all p and any

ν = va(2) ∈ Z+
h . Therefore, a ≡ 2ν mod 2 since, pva(p) ≡ 1 mod 2 for p ̸= 2.

It follows that ν = 0 if a ≡ 1 mod 2 and ν ≻ 0 if a ≡ 0 mod 2.

7. DIRICHLET DIVISOR PROBLEM

The Dirichlet divisor problem, arises from estimatingD(ρ) :=
∑

n≤ρ d(n),
where d(n) is the number of positive divisors of n. A well-known result is
D(ρ) = ρ ln ρ + (2γ − 1)ρ + ∆(ρ), where γ is Euler’s constant and ∆(ρ) is
the error term. The Dirichlet divisor problem asks for the correct order of
magnitude of ∆(ρ) as ρ −→∞ (see e.g., [12, Chapter 5]). From a geometrical
point of view D(ρ) is equal to the number of lattice points in the first quadrant
under the hyperbola xy = ρ. Thus, this is equivalent to determine the number
of hyperbolic integers a ≻ 0 with ∥a∥h ≤ ρ, i.e.,

(7.1) D(ρ) = #Zh ∩ D+(ρ), D(ρ) := {z ∈ D∗ : ∥z∥h ≤ ρ}.

Define

D⋆(ρ) = D(ρ) ∩ [−ρ, ρ]D .
Geometrically, D⋆(ρ) is the square [−ρ, ρ]D if ρ ≤ 1, and D⋆(ρ) ⊊ [−ρ, ρ]D if
ρ > 1 as represented in Figure 3.

Proposition 7.1. We have D(ρ) = #Zh ∩ D+
⋆ (ρ).

Proof. It suffices, from (7.1), to prove that Zh ∩ D+(ρ) = Zh ∩ D+
⋆ (ρ).

Then, suppose that

(7.2) Zh ∩ ([−ρ, ρ]cD ∩ D
+(ρ)) ̸= ∅.

Observing that [−ρ, ρ]D is the closed ball BR(0, ρ) in (D, ∥.∥R) where ∥.∥R is
the lattice norm (2.2), then equation (7.2) yields that there exists a hyperbolic
integer a=ne1+me2 ≻ 0 such that ∥a∥R=max{n,m} > ρ and ∥a∥h=nm ≤ ρ.
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Figure 3 – A representation of D⋆(ρ) for ρ > 1 with τ =
√
ρe

1
2
j ln ρ.

So, from the identity nm = max{n,m}min{n,m} one has that ρ ≥ nm > ρ,
which is a contraction. Hence,

Zh ∩ D+(ρ) = Zh ∩ D+
⋆ (ρ).

Let n be an integer ≥ 2. Define ξk, λk, µk and ηk such that

ξk =
√
ρe

jk
2n

ln ρ, λk = ξk ∧
√
ρ, for k = 0, · · · , n;

ηk = ξk ∨ ξk−1, µk = ξk ∧ ξk−1, for k = 1, · · · , n.

Thus, and referring to Figure 4, Proposition 7.1 yields that

(7.3) D−
n (ρ) ≤ D(ρ) ≤ D+

n (ρ),

where

(7.4) D−
n (ρ) = NZh

(
(0,
√
ρ]D

)
+ 2NZh

((α, τ ]D) + 2
k=n∑
k=2

NZh
((λk, ξk−1]D) ,

(7.5) D+
n (ρ) = NZh

(
(0,
√
ρ]D

)
+ 2NZh

((α, τ ]D) + 2

k=n∑
k=1

NZh
((λk, ηk]D) .

Let ∆−
n (ρ) and ∆+

n (ρ) be such that

∆−
n (ρ) = D−

n (ρ)− (ρ ln ρ+ (2γ − 1)ρ),

∆+
n (ρ) = D+

n (ρ)− (ρ ln ρ+ (2γ − 1)ρ).

Next, let δ(ρ) be a function defined for ρ > 1 by δ(ρ) = 0 if ρ /∈ N and
δ(ρ) = d(ρ) + χN(

√
ρ), otherwise.
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Figure 4 – .

Proposition 7.2. One has lim sup
n→∞

(∆+
n (ρ)−∆−

n (ρ)) ≤ δ(ρ).

Proof. We have

∆+
n (ρ)−∆−

n (ρ) = D+
n (ρ)−D−

n (ρ) = 2

k=n∑
k=1

NZh
((µk, ηk]D) .

We further denote by J = Zh ∩ (D⋆(ρ) \ γ∗ρ) where γ∗ρ is the image of

γρ(t) =
√
ρejt defined in

[
0, 12 ln ρ

]
. Since J is a nonempty finite set, one

obtains dγ∗
ρ
= min

h∈J
d(h, γ∗ρ) = min

h∈J
inf
ξ∈γ∗

ρ

∥h − ξ∥ > 0. Let N be an integer such

that

2
√
ρ sinh(

ln ρ

4N
)
√
cosh(ln ρ) < dγ∗

ρ
.

Then, for every n ≥ N and for every k = 1, · · · , n we have

diam [µk, ηk] = ∥ξk − ξk−1∥

≤ 2
√
ρ sinh(

ln ρ

4n
)
√
cosh(ln ρ)

≤ 2
√
ρ sinh(

ln ρ

4N
)
√
cosh(ln ρ)

< dγ∗
ρ

Thus, if Zh ∩ (µk, ηk] ̸= ∅ then for every h ∈ Zh ∩ (µk, ηk], we have

d(h, γ∗k) ≤ diam [µk, ηk] < dγ∗
ρ
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where γ∗k = γρ

([
(k−1)

2 ln ρ, k2 ln ρ
])

. Therefore, Zh∩(µk, ηk]D ⊂ Zh∩γ∗ρ . Hence

n⋃
k=1

Zh ∩ (µk, ηk]D ⊂ Zh ∩ γ∗ρ .

It follows from the inclusion above that

∆+
n (ρ)−∆−

n (ρ) ≤ 2#Zh ∩ γ∗ρ for all n ≥ N.

Therefore,

lim sup
n→∞

(∆+
n (ρ)−∆−

n (ρ)) ≤ sup
n≥N

(∆+
n (ρ)−∆−

n (ρ)) ≤ 2#Zh ∩ γ∗ρ .

Thus, it follows from Zh ∩ γ∗ρ = {h ∈ Z+
h , Im(h) ≥ 0 : ∥h∥h = ρ} that

2#Zh ∩ γ∗ρ = 2#{(x, y) ∈ Z2, 0 ≤ x ≤ y : xy = ρ} = δ(ρ).

This completes the proof.

Proposition 7.3. We have 0 ≤ ∆(ρ)−∆−(ρ) ≤ δ(ρ) where

∆−(ρ) = ψ(ρ)+2 lim inf
n→∞

( k=n∑
k=2

(
⌊ρ

1
2
+

(k−1)
2n ⌋−⌊ρ

1
2 ⌋
)(
⌊ρ

1
2
− (k−1)

2n ⌋−⌊ρ
1
2
− k

2n ⌋
))

,

ψ(ρ) = ⌊ρ
1
2 ⌋2 + 2

(
⌊ρ⌋ − ⌊ρ

1
2 ⌋
)
− (ρ ln ρ+ (2γ − 1)ρ).

Proof. We have

0 ≤ ∆(ρ)−∆−
n (ρ) ≤ D+

n (ρ)−D−
n (ρ).

Put ∆−(ρ) = lim inf
n→∞

∆−
n (ρ). Thus, from Proposition 7.2 one has

0 ≤ lim sup
n→∞

(∆(ρ)−∆−
n (ρ)) = ∆(ρ)−∆−(ρ) ≤ δ(ρ).

From the above inequality, we have

∆−
n (ρ) = ψ(ρ) + 2

k=n∑
k=2

NZh
((λk, ξk−1]D) ,

ψ(ρ) = NZh

(
(0,
√
ρ]D

)
+ 2NZh

((α, τ ]D)− (ρ ln ρ− (2γ − 1)ρ).

Straightforward calculations give

τ = ρe1 + e2, α = ρ
1
2e1 ,

λk = ρ
1
2e1 + ρ

n−k
2n e2, ξk = ρ

n+k
2n e1 + ρ

n−k
2n e2, ηk = ρ

n+k
2n e1 + ρ

n−(k−1)
2n e2 .
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Therefore, from Proposition 3.6, we have

NZh

(
(0,
√
ρ]D

)
= ⌊ρ

1
2 ⌋2,

NZh
((α, τ ]D) = ⌊ρ⌋ − ⌊ρ

1
2 ⌋,

NZh
((λk, ξk−1]D) =

(
⌊ρ

n+(k−1)
2n ⌋ − ⌊ρ

1
2 ⌋
)(
⌊ρ

n−(k−1)
2n ⌋ − ⌊ρ

n−k
2n ⌋

)
.

Hence

∆−
n (ρ) = ψ(ρ) + 2

k=n∑
k=2

(
⌊ρ

1
2
+

(k−1)
2n ⌋ − ⌊ρ

1
2 ⌋
)(
⌊ρ

1
2
− (k−1)

2n ⌋ − ⌊ρ
1
2
− k

2n ⌋
)
,

ψ(ρ) = ⌊ρ
1
2 ⌋2 + 2

(
⌊ρ⌋ − ⌊ρ

1
2 ⌋
)
− (ρ ln ρ− (2γ − 1)ρ).

Finally,

∆−(ρ) = ψ(ρ)+2 lim inf
n→∞

( k=n∑
k=2

(
⌊ρ

1
2
+

(k−1)
2n ⌋ − ⌊ρ

1
2 ⌋
)(
⌊ρ

1
2
− (k−1)

2n ⌋ − ⌊ρ
1
2
− k

2n ⌋
))

.

Theorem 7.1. For every real ϵ > 0, we have

∆(ρ)=ψ(ρ)+2 lim inf
n→∞

( k=n∑
k=2

(
⌊ρ

1
2
+

(k−1)
2n ⌋−⌊ρ

1
2 ⌋
)(
⌊ρ

1
2
− (k−1)

2n ⌋−⌊ρ
1
2
− k

2n ⌋
))

+O(ρϵ).

Proof. From Proposition 7.3, ∆(ρ) is given by ∆−(ρ) and the error is the
order of δ(ρ). Thus, the proof follows from the definition of δ by observing
that d(n) = O(nϵ) for every ϵ > 0.
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